Introduction to Reinforcement Learning

Matt Barnes

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle

[Tesauro 1995]

FINGER PIVOTING

SLIDING

FINGER GAITING

The elephant in the room: Should we use deep reinforcement learning to solve all our robotics problems?

Today's Goals

- 1. Be able to define a Markov Decision Process is, and how it relates planning and reinforcement learning
- reinforcement learning
- 3. How powerful function approximators like neural networks have

2. Understand the high-level idea behind each of the 3 general approaches to

contributed to recent successes in RL, and what their trade-offs are

- Agent and environment interact at discrete time steps: t = 0, 1, 2, ...
- Agent observes state *x*^{*t*} at time *t*
- Agent takes action $u_t \sim \pi(x_t)$
- Environment produces cost $c_t \sim c(s_t, u_t)$ and next state $s_{t+1} \sim T(s_t, u_t)$

The transition function / the dynamics

Our goal is to learn a policy which minimizes the **cumulative cost**

The time horizon

$$\sum_{t=1}^{H} c(x_t, \pi(x_t))$$

Known (deterministic) environment

 $x_{t+1} = Ax_t + Bu_t$ $c(x_t, u_t) = x_t^T Q x_t + u_t^T R u_t$

We must learn about the environment by interacting with it.

Unknown & stochastic 12

interactions with the environment

This is generally referred to as the **sample complexity** of the algorithm

We may also care about the **computational complexity** and **memory complexity**

Unknown (stochastic) environment

Our goal is to learn a policy which minimizes the cumulative discounted cost **in the fewest**

 x_t tells us everything about the state of the system

Knowing *x*₁, ..., *x*_{*t*-1} provides no additional information in determining x_{t+1} or $c(x_t, u_t)$

"Markov" = Complete state

 $x_{t+1} = Ax_t + Bu_t$

 $c(x_t, u_t) = x_t^T Q x_t + u_t^T R u_t$

How can we solve RL?

Approach 1: Model-based

- Step 1: *Learn* a model of the environment using data
- Step 2: *Plan* using this model
- The "system identification" or "certainty equivalence" method

Model-free approaches

- Approach 2: Learn a value function using *approximate dynamic programming*
- Approach 3: Directly learn a policy using *policy gradient*

How can we solve RL?

Model-based approaches

- Intuitive and understandable representation
- Easier to incorporate prior information

- Model-free approaches
- Promises of better theoretical sample complexity

Linear model-based RL

Step 1: Learn a model of the environment using data

• Dataset: $x_1, u_1, x_2, u_2, x_3, u_3, \dots$

• Perform linear regression to learn \hat{A}, \hat{B}

Step 2: Compute the optimal LQR controller $u_{t+1} = \hat{K}x_t$

$$\hat{K} = -(R +$$

 $x_{t+1} = Ax_t + Bu_t$

 $\hat{B}^T \hat{V} \hat{B})^{-1} \hat{B}^T \hat{V} \hat{A}$

Model-free RL

Approach 2: Approximate dynamic programming

- Q-Learning
- Deep Q-Learning [Mnih 2015]

Approach 3: Policy gradient

- REINFORCE [Williams 1992]
- TRPO [Schulman 2015]
- PPO [Schulman 2017]
- DPG [Silver 2014]
- Actor-critic

Approximate dynamic programming methods learn a value function

Value function $Q_{\pi}(x, u)$ is the expected future (discounted) cost if we:

- Start from state *x*
- Take action *u*
- Then follow policy π

 $Q_{\pi}(x,u) = \mathbb{E}_{x' \sim T(x,u)} \left[c(x,u) + \gamma Q_{\pi}(x',\pi(x')) \right]$ The discount factor The discounted The one-step cost future cost

Expectation operator: Weighted average over possible next states s^\prime

Note this is a recursive formula — compute via **dynamic programming**

Approximate dynamic programming methods learn a *value function*

Bellman optimal value function, the value function of the optimal policy

$$Q^*(x,u) = \mathbb{E}_{x' \sim T(x,u)} \left[c(x) \right]$$

The corresponding optimal policy $u_t = \pi^*(x_t) = u_t$

 $f(x, u) + \operatorname{argmin}_{u'} Q^*(x', u') \end{bmatrix}$

Always take the best action

 $u_t = \pi^*(x_t) = \operatorname{argmin}_{u'} Q^*(x_t, u')$

Policy Gradient methods directly learn a policy

Step 1: Parameterize our policy π_{θ} , where θ are the parameters

Ex. In LQR, we consider linear controllers $\pi_{\theta}(s) = \theta s$

Let $J(\theta) = Q_{\pi_{\theta}}(s_0, \pi_{\theta}(s_0))$ be the cumulative cost of this policy starting from the initial state

Step 2: Optimize!

$\operatorname{argmin}_{\theta} J(\theta)$

 $J(\theta)$

 $J(\theta)$

For reference, the REINFORCE gradient is:

 $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p(\tau \mid \theta)} c(\tau) \nabla_{\theta} \log p(\tau \mid \theta)$

 τ : an entire trajectory

$\operatorname{argmin}_{\theta} J(\theta)$

The power of function approximators

- Approximate dynamic programming: Q_{θ}
- Policy gradient: π_A
- Instead of linear or tabular functions, we can use complex, nonlinear function approximators like neural networks!

30

 $Q_{\theta}(s) = 5.2$

The power of function approximators

• Extremely general, requires little domain knowledge

• A fundamental trade-off in machine learning:

The more complex a machine learning model, the more data it needs to train (and not overfit).

Compute in state-of-the-art models is increasing exponentially

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

Robot experiments are expensive

- Training AlphaGo once takes over \$1M in compute resources, and plays 4.9 million games. The sample complexity is enormous!
- Video games are practically free compared to the time and cost of collecting data on a robot

Robot experiments can be dangerous

The Sim-to-Real Dilemma

Robust control and the domain randomization trick

Generality vs. Specificity

- Markov Decision Processes are an extremely general model, and
- model, the less you need to learn. Especially components you can accurately model.
 - Kinematics, rigid body dynamics, gravity, friction
- This often leads to specific, practical solutions (e.g. LQR)

Reinforcement Learning is a general purpose method for solving them.

• The more assumptions and prior knowledge you can incorporate into your

Mujoco: <u>https://www.youtube.com/watch?v=uRVAX_sFT24</u>

Atari [Guo 2014]

Agent	B.Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S.Invaders
DQN	4092	168	470	20	1952	1705	581
-best	5184	225	661	21	4500	1740	1075
			ΟΤ	•			

Deep Q-Learning

Atlas: <u>https://www.youtube.com/watch?v=fRj34o4hN4I</u>

Existing models are a powerful tool

Agent	B.Rider	Breakout	Enduro	Pong	Q^{*bert}	Seaquest	S.Invaders				
UCT	7233	406	788	21	18850	3257	2354				
Online Tree Search											

Recap

• Markov Decision Processes are a very general class of models, which encompass planning and reinforcement learning.

"Markov" means that _____ captures all information about the history x_1, x_2, \ldots, x_t

The most recent state x_t

Recap

_____ are known

transition model / dynamics / environment

Recap

• The difference between planning and reinforcement learning is whether the

Recap

• The three general methods for reinforcement learning are... (1) Model-based (2) Approximate dynamic programming

• (2) and (3) are both _____ methods

- (3) Policy gradient

 - Model-free

Further Reading

Learning

An Introduction second edition

The best introductory textbook on reinforcement learning you'll find anywhere. Beautifully written. Originally written in 1998, and recently updated in 2018. Available for free online: <u>http://incompleteideas.net/book/the-book-2nd.html</u>

Two specific instances of reinforcement learning which have already had massive practical success, or seem to show promise

- **Bandits** what if our MDP only has a single state? (Wednesday)
- Imitation learning what if we have help from a (human) expert? (Friday)

Preview of the next two lectures