
Introduction to
Reinforcement Learning

Matt Barnes

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle
!1

!2

[Tesauro 1995]

!3

!4

!5

The elephant in the room:
Should we use deep reinforcement

learning to solve all our robotics problems?

!6

Today’s Goals

1. Be able to define a Markov Decision Process is, and how it relates
planning and reinforcement learning

2. Understand the high-level idea behind each of the 3 general approaches to
reinforcement learning

3. How powerful function approximators like neural networks have
contributed to recent successes in RL, and what their trade-offs are

!7

Markov Decision Processes

• Agent and environment interact at discrete time steps: t = 0, 1, 2, ….

• Agent observes state xt at time t

• Agent takes action

• Environment produces cost and next state

ut ∼ π(xt)

st+1 ∼ T(st, ut)ct ∼ c(st, ut)

xt

xt

ct

ct ut

Cost

The transition function / the dynamics

!8

Markov Decision Processes

Our goal is to learn a policy which minimizes the cumulative cost

xt

xt

ct

ct ut

Cost

J(π) = 𝔼 [
H

∑
t=1

c(xt, π(xt))]
The time horizon

!9

Planning as an MDP

Known (deterministic) environment

xt

xt

ct

ct ut

Cost

!10

Planning as an MDP

Known (deterministic) environment

xt+1 = Axt + But

c(xt, ut) = xT
t Qxt + uT

t Rut

xt

xt

ct

ct ut

Cost

!11

Reinforcement Learning as an MDP

Unknown (stochastic) environment

We must learn about the environment by interacting with it.

xt xt+1

ut + opponent move
Unknown & stochastic

xt

xt

ct

ct ut

Cost

!12

Reinforcement Learning as an MDP

Unknown (stochastic) environment

xt

xt

ct

ct ut

Cost

Our goal is to learn a policy which minimizes the cumulative discounted cost in the fewest
interactions with the environment

This is generally referred to as the sample complexity of the algorithm

We may also care about the computational complexity and memory complexity

!13

“Markov” = Complete state

xt tells us everything about the state of the system

Knowing x1, …, xt-1 provides no additional information
in determining xt+1 or c(xt, ut)

xt+1 = Axt + But

c(xt, ut) = xT
t Qxt + uT

t Rut

!14

How can we solve RL?
Approach 1: Model-based

• Step 1: Learn a model of the
environment using data

• Step 2: Plan using this model

• The “system identification” or
“certainty equivalence” method

Model-free approaches

• Approach 2: Learn a value function
using approximate dynamic
programming

• Approach 3: Directly learn a policy
using policy gradient

!15

How can we solve RL?
Model-based approaches

• Intuitive and understandable
representation

• Easier to incorporate prior
information

Model-free approaches

• Promises of better theoretical
sample complexity

!16

Linear model-based RL
Step 1: Learn a model of the environment using data

• Dataset: x1, u1, x2, u2, x3, u3, …..

• Perform linear regression to learn ̂A, B̂

xt+1 = Axt + But

Step 2: Compute the optimal LQR controller

!17

K̂ = − (R + B̂T ̂VB̂)−1B̂T ̂V ̂A

ut+1 = K̂xt

Model-free RL
Approach 2: Approximate dynamic
programming

• Q-Learning

• Deep Q-Learning [Mnih 2015]

Approach 3: Policy gradient

• REINFORCE [Williams 1992]

• TRPO [Schulman 2015]

• PPO [Schulman 2017]

• DPG [Silver 2014]

• Actor-critic

!18

Approximate dynamic programming
methods learn a value function

Value function is the expected future (discounted) cost if we:
• Start from state x
• Take action u
• Then follow policy

Expectation operator: Weighted
average over possible next states s’

Qπ(x, u) = 𝔼x′�∼T(x,u) [c(x, u) + γQπ(x′�, π(x′�))]

The one-step cost The discounted
future cost

Note this is a recursive formula — compute via dynamic programming

π

The discount factor

Qπ(x, u)

!19

Approximate dynamic programming
methods learn a value function

Bellman optimal value function, the value function of the optimal policy

Q*(x, u) = 𝔼x′�∼T(x,u) [c(x, u) + argminu′�Q*(x′�, u′�)]

Always take the best action

!20

ut = π*(xt) = argminu′�Q*(xt, u′�)

The corresponding optimal policy

Policy Gradient methods directly learn a policy

Step 1: Parameterize our policy , where are the parameters

Ex. In LQR, we consider linear controllers

Let be the cumulative cost of this policy starting from the
initial state

πθ θ

πθ(s) = θs

J(θ) = Qπθ
(s0, πθ(s0))

argminθJ(θ)
Step 2: Optimize!

!21

A brief overview of optimization

argminθJ(θ)

J(θ)

θ

!22

A brief overview of optimization

J(θ)

θ

πθt

!23

A brief overview of optimization

J(θ)

θ

∇θJ(θ)

!24

A brief overview of optimization

J(θ)

θ

−α∇θJ(θ)

The learning rate

!25

∇θJ(θ) = 𝔼τ∼p(τ|θ)c(τ)∇θlog p(τ |θ)
For reference, the REINFORCE gradient is:

𝜏: an entire trajectory

A brief overview of optimization

J(θ)

θ

πθt

πθt+1

!26

A brief overview of optimization

J(θ)

θ

!27

A brief overview of optimization

J(θ)

θ

!28

A brief overview of optimization

J(θ)

θ

argminθJ(θ)

πθ*
∇θJ(θ) = 0

First order condition for optimality

!29

The power of function approximators
• Approximate dynamic programming:

• Policy gradient:

• Instead of linear or tabular functions, we can use complex, nonlinear
function approximators like neural networks!

Qθ

πθ

Qθ(s) = 5.2

!30

The power of function approximators
• Extremely general, requires little domain knowledge

• A fundamental trade-off in machine learning:

The more complex a machine learning model,
the more data it needs to train (and not overfit).

!31

Compute in state-of-the-art
models is increasing exponentially

!32

Robot experiments are expensive
• Training AlphaGo once takes over $1M in compute resources, and plays 4.9

million games. The sample complexity is enormous!

• Video games are practically free compared to the time and cost of
collecting data on a robot

!33

Robot experiments can be dangerous

!34

The Sim-to-Real Dilemma

≠
!35

Robust control and the
domain randomization trick

∈
!36

Generality vs. Specificity

• Markov Decision Processes are an extremely general model, and
Reinforcement Learning is a general purpose method for solving them.

• The more assumptions and prior knowledge you can incorporate into your
model, the less you need to learn. Especially components you can
accurately model.

• Kinematics, rigid body dynamics, gravity, friction

• This often leads to specific, practical solutions (e.g. LQR)

!37

Existing models are a powerful tool
Mujoco: https://www.youtube.com/watch?v=uRVAX_sFT24

Atari [Guo 2014]

Deep Q-Learning Online Tree Search

Atlas: https://www.youtube.com/watch?v=fRj34o4hN4I

!38

https://www.youtube.com/watch?v=uRVAX_sFT24
https://www.youtube.com/watch?v=fRj34o4hN4I

Recap
• Markov Decision Processes are a very general class of models, which

encompass planning and reinforcement learning.

xt

xt

ct

ct ut

Cost

!39

Recap

“Markov” means that _____ captures all information about the history
x1, x2, …, xt

The most recent state xt

!40

Recap
• The difference between planning and reinforcement learning is whether the

__________ are known

transition model / dynamics / environment

!41

Recap
• The three general methods for reinforcement learning are…

(1) Model-based

(2) Approximate dynamic programming

(3) Policy gradient

• (2) and (3) are both _______ methods

Model-free

!42

Further Reading

The best introductory textbook on reinforcement learning you’ll find anywhere. Beautifully written.
Originally written in 1998, and recently updated in 2018. Available for free online: http://incompleteideas.net/book/the-book-2nd.html

!43

http://incompleteideas.net/book/the-book-2nd.html

Preview of the next two lectures

Two specific instances of reinforcement learning which have already had
massive practical success, or seem to show promise

• Bandits — what if our MDP only has a single state? (Wednesday)

• Imitation learning — what if we have help from a (human) expert?
(Friday)

!44

