CSE 490R: Mobile Robots

Instructor: Sanjiban Choudhury

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle

What did we learn

ILLUSTRATION/KAADAA/ILLUSTRATION SOURCE

... and why was there no learning?! 2

If machine learning is the process of building models about the world...

...then we were talking about learning the whole time

How do we build the model?

Model

Three questions you should ask

1. What are we trying model?

2. What defines a good model?

3. What model should I use for my robot?

Bayes filter is a powerful tool

Localization

Mapping

SLAM

Model predictive control (MPC)

$$\min_{\substack{u_{t+1},\ldots,u_{t+H}\\ \text{(plan till horizon H)}}} \sum_{k=t}^{t+H-1} J(x_k, u_{k+1})$$

$$x_{k+1} = f(x_k, u_{k+1})$$
 (Predict next state
with dynamics)

$$g(x_k, u_{k+1}) \leq 0$$
 (Constraints)

General framework for motion planning

Create a graph

Search the graph

Interleave

What are the models?

Are heuristics models?

Are graphs models?

The Piano Mover's Problem

Problem: Planners search everywhere

... and I mean everywhere

Search with common sense

Are heuristics models?

Are graphs models?

YES! They are models of the spatial structure of the world

The Experienced Piano Movers' Problem

New Piano. New House. Same Mover.

How do we learn good models to improve real-time planning?

Is there ONE universal model for all scenarios?

No! Depends on the environment

Flight tests montage (from 700 hours of testing)

[AHS'14, ICRA'15, ICRA'16, ICRA'17]

Real-time performance of a planning strategy varies across problem instances

A planning module needs to adapt to the distribution of problems the robot encounters

Planning problem

 $\begin{array}{ll} \min_{\sigma \in \Sigma} & J(\sigma) & \text{Minimize cost} \\ \text{s.t} & \sigma(0) \in \Sigma_{\text{start}} & \\ & \sigma(t_f) \in \Sigma_{\text{goal}} & \\ & \mathcal{F}(\sigma(t)) = 0 & \\ & \mathcal{H}(\sigma(t)) \leq 0 & \\ & \sigma(t) \in \Sigma_{\text{valid}} & \end{array} \right] \begin{array}{l} \text{Start / Goal constraints} \\ & \text{Dynamics constraints} \\ & \text{Obstacle constraints} \end{array}$

Performance of a planner Planning Problem (Γ) \downarrow Planner \mathcal{P} \downarrow Planning Solution (σ)

The performance is the cost of the solution $J(\sigma)$ computed by the planner in a finite time budget T

We use the following notation to represent this performance:

$$J(\Gamma, \mathcal{P}) \in [0, J_{\max}]$$

What do we want?

Let $P(\Gamma)$ be the distribution of planning problem parameters (distribution of start/goal, obstacles, dynamics)

Problem:

How do we tractably search over the space of all planners?

Approach outline

Q1. Framework to assemble real-time planners?

Approach outline

Black-box adaptive planning paradigm

Design a meta-planner that, given a planning problem distribution, adaptively selects planners from a library of black-box planners

Black-box implies planners are atomic operations

Library of diverse black-box planners

General purpose planners

Solves large number of problems, small fraction has high score

(not overfit on any problem)

Precision planners

Solves small number of problems, large fraction has high score

(designed to overfit)

General purpose vs Precision planner

Samples from planning problem distribution

General purpose planner samples everywhere, finds a high cost solution

Precision planner focuses sampling, finds a low cost solution

Meta-planner classifies a problem to a planner

Key Idea: Predict an ensemble of planners

Since predicting a single planner is difficult,

hedge our bets by predicting an ensemble of planners

Simple setting: Select a static ensemble of size 3 $\max_{\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3} \mathbb{E}_{\Gamma \sim P(\Gamma)} \max(V(\Gamma, \mathcal{P}_1), V(\Gamma, \mathcal{P}_2), V(\Gamma, \mathcal{P}_3))$ $V(\Gamma, \mathcal{P})$ Selected Ensemble (\mathcal{E}) Planner C Planner B Planner D $\left(\right)$ (Γ) Let $P(\Gamma)$ be uniform on this interval

Algorithm: Greedily select planners that maximize gain in score

Theorem: Greedy maximization of monotone submodular function is near-optimal $\mathbb{E}_{\Gamma \sim P(\Gamma)} V(\mathcal{E}_{\text{greedy}}) \geq \left(1 - \frac{1}{e}\right) \mathbb{E}_{\Gamma \sim P(\Gamma)} V(\mathcal{E}^*) \quad \text{(Krause et al.'12)}$

34

Greedily stack cost-sensitive classifiers [ICRA'15,'16]

Train predictor 1 to classify on all problems

Train predictor 2 to on problems predictor 1 fails to solve

> Deeper predictors focus on unsolved (hard) problems

training data, predictor 1

training data, predictor 3

solved by predictor 1

solved by predictor 2

List prediction significantly reduces empirical risk

Τορημοη	Single	Ensemble	
Learner	Element	(size: 3)	Cost 1:2057 Cost 1:2075 rve that the risk of a list is si
hinge-loss $+$ linear	0.1073	0.0715	2D traj opt
square-loss $+$ linear	0.1106	0.0721	seed prediction application
hinge-loss $+$ linear	15.454	3.6085	7D traj opt
square-loss $+$ linear	13.013	3.6799	seed prediction
hinge-loss $+$ linear	0.0976	0.0325	4D arm planner
square-loss $+$ linear	0.0933	0.0360	heuristic prediction
hinge-loss $+$ linear	0.2222	0.0222	2D geometric
square-loss $+$ linear	0.2281	0.0281	planner prediction
hinge-loss $+$ linear	0.104	0.035	
square-loss $+$ linear	0.120	0.055	Helicopter planner
random forest	0.101	0.021	prediction RRT*Tunnel ² succeeds as less aggressive

Application: Large UAV flying long durations

Total	Total	Top	Missions	
Time	Distance	Speed		
$151.9 \min$	$15.833 \mathrm{\ km}$	$10 \mathrm{~m/s}$	45	

Success: 95.56% (compared to 64% for baseline)

Training in simulation

(Monte-carlo sampling of planning problems)

		Planner library	Training per	formance
pose	70	rrtstar_tunnel_1	Data	1000
pur	ners	$rrtstar_tunnel_2$	(Train / Test)	(70 / 30)
jeneral plan	$bitstar_1$	Number of planners	8	
	$informed_{rrtstar_1}$	Number of planners	0	
0		$single_detour_1$	Feature dim	10
Precision planners	$single_detour_2$	Disk (manula, 1)	0.90	
	$double_detour_1$	RISK (ensemble: 1)	0.20	
	$double_detour_2$	Risk (ensemble: 2)	0.08	
`				

rrtstar tunnel 1 (general purpose)

double detour 1 (precision planner)

Edge-cases which only a precision planner solves

Analysis of test time performance

Platform 2: Small UAV flying in diverse scenarios

(Choudhury, Maeta, Dugar, MacAllister, Scherer)

(Higher speed, curvature constraints, more clearance) Ensemble: double_detour_1, rrtstar_tunnel_1

(Lower speed, unconstrained, less clearance) Ensemble: astar_3, bitstar_3

Approach outline

Q1. Framework to assemble real-time planners?

Expert planner with custom implicit graphs

Q2. (Black-box adaptation) Select planners from a library?

Greedily train an ensemble

Q3. (White-box adaptation) Directly learn planning policies? Planner with tunable policy Train heuristic policies ?

White-box adaptive planning paradigm

How can we train a planning policy?

(E.g. a heuristic policy, a sampling policy, a collision-checking policy ..)

Approach outline

Q1. Framework to assemble real-time planners?

Expert planner with custom implicit graphs

Q2. (Black-box adaptation) Select planners from a library?

Greedily train an ensemble

Q3. (White-box adaptation) Directly learn planning policies?

Heuristic policies in search based planning

Objective: Guide a search tree from start to goal to find a feasible path

Why does a heuristic need to be adaptive?

Prior work has mainly focussed on bounding solution quality by defining heuristics as distance estimate of cost-to-go (Pohl'70, Pearl'84)

Compute estimates using relaxation-based (Likhachev et al.'09, Dolgov et al.'08) or learning-based (Xu et al.'07, Garrett et al.'16, Aine et al.'15, Paden et al.'16) approaches

Problem: Small estimation error leads to excessive expansions

INFLATED EUCLIDEAN HEURISTIC

Heuristic gets trapped in 'bug trap' due to greediness

Worlds with 'bug traps'

Heuristic does not get trapped, searches along periphery

LEARNT HEURISTIC POLICY

Problem: Minimize expansions in BFS

Problem: Minimize expansions in BFS

Compute a heuristic policy that maps search state to node to expand

 $\pi(\mathcal{O}, \mathcal{C}, \mathcal{I}) \to v \in \mathcal{O}$

 $\min \mathbb{E}_{\phi \sim P(\phi)} c(\pi, \phi)$ Objective: π Number of BFS Distribution over world maps expansions

Sequential decision making under uncertainty

Cast as a Partially Observable Markov Decision Process (POMDP)

State
$$s_t : \{\mathcal{O}_t, \phi\}$$
Cost $\begin{cases} 0 & \text{if } v_g \in \mathcal{O}_t \\ 1 & \text{otherwise} \end{cases}$ Observation $o_t : \{\mathcal{V}_{\text{succ}}, \mathcal{E}_{\text{inv}}\}$ Action $a_t : v \in \mathcal{O}_t$ Cost $\begin{cases} 1 & \text{otherwise} \end{cases}$ History $\psi_t : \{\mathcal{O}_t, \mathcal{C}_t, \mathcal{I}_t\}$

POMDP solvers such as POMCP (Silver et al.'10) or DESPOT (Somani et al.'13) require a lot of online effort - we want cheap policies!

Model-free approaches such as Q-learning (Watkins et al.'92) or REINFORCE (Williams et al.'92) are sample inefficient

Key Idea: Imitate a clairvoyant oracle

Oracle is "clairvoyant" as it can process the whole world map

We have shown this to be an effective strategy applicable to other POMDP problems such as information gathering [ICRA'16, RSS'17]

SAIL: Search as Imitation Learning [CoRL'17]

Using no-regret analysis (Ross and Bagnell 2014) we can bound learner performance [RSS'17]

SAL outperforms baselines on several datasets

			Learning			Non-learning approaches			
Dataset	Sample Worlds	SAIL	SL	CEM	\mathbf{QL}	$h_{\mathbf{EUC}}$	$h_{\mathbf{MAN}}$	A*	MHA*
Alternating Gaps		0.039	0.432	0.042	1.000	1.000	1.000	1.000	1.000
Single Bugtrap		0.158	0.214	0.057	1.000	0.184	0.192	1.000	0.286
Shifting Gaps		0.104	0.464	1.000	1.000	0.506	0.589	1.000	0.804
Forest		0.036	0.043	0.048	0.121	0.041	0.043	1.000	0.075
Bugtrap+Forest		0.147	0.384	0.182	1.000	0.410	0.337	1.000	0.467
Gaps+Forest		0.221	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mazes		0.103	0.238	0.479	0.399	0.185	0.171	1.000	0.279
Multiple Bugtraps		0.479	0.480	1.000	0.835	0.648	0.617	1.000	0.876

Table shows average normalized expansions

Applying SAIL on real world problems

High speed no-fly-zone avoidance requires real-time nonholonomic path planning

A* with Dubins heuristic times out

Expands 1910 states in time budget (1000 ms)

Dubins distance is a poor estimate of expansions-to-go

SAIL learns to follow maze wall

Flight test with onboard execution

(Choudhury, Bhardwaj, Maeta, Scherer)

Can we directly learn graphs?

[In submission, IROS '19]

White-box or black-box

White-box framework Pro:

Efficient single planner

Minimal human involvement

Con:

Powerful policy class Restricted to underlying graph Black-box framework Con: Explicit context extraction Human to design library

Pro:

Handle edge-cases via ensemble

Arbitrary precision planners

Unified framework for adaptive planners

Thank you!

Acknowledgements

