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What did we learn ....

ILLUSTRATION®AADAAILLUSTRATION SOURCE

... and why was there no learning?!



If machine learning is the process
of building models about the world...

...then we were talking about
learning the whole time



How do
we build
the model?

Model




Three questions you should ask

1. What are we trying model?

2. What defines a good model?

3. What model should I use for my robot?



Bayes filter is a powerful tool

Localization Mapping SLAM POMDP
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Observations

How do
we build
the model?

Model

Bayes

Filter

State



Model predictive control (MPC)

t+H—1
min E J CEk,uk+1>

Ut41,---Ut+H

(plan till horizon H) (Cost)

(Predict next state

ajk—|—1 — f(xk7 /U/k;_|_1) with dynamics)

g ($ ks Uk 1 ) < 0 (Constraints)



Observations

How do
we build
the model?

Bayes
Filter

Model

State

Control

Action



General framework for motion planning
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Interleave
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Observations

How do
we build
the model?

Planning

Model

Plan

Bayes
Filter
State
Control —»
Action
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What are the models?

RoLsR,

12



Are heuristics models?

Are graphs models?
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The Piano Mover's Problem




everywhere

Planners search

Problem
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and | mean everywhere

Vanilla search Search with common sense
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Are heuristics models?

Are graphs models?

YES! They are models of
the spatial structure of the world



The Experienced Piano Movers Problem

e 1 B 1)

| A
S New Piano.

L
= ;I New House.

Same Mover.




How do we learn good models
to iImprove
real-time planning?
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s there ONE
universal model for all scenarios?
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No! Depends on the environment

Flight tests montage

(from 700 hours of testing)

|AHS’14, ICRA’15, ICRA’16, ICRA’17|



Real-time performance of a planning
strategy varies across problem instances

A planning module needs to adapt to the
distribution of problems the robot encounters
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Planning problem

Start

Trajectory

o(t)

Minimize cost

Start / Goal constraints

Dynamics constraints

Obstacle constraints
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Performance of a planner

Planning

Problem (F)

— Planner P —>

Planning

Solution (o)

The performance is the cost of the solution .J (0‘) computed

by the planner in a finite time budget T

We use the following notation to represent this performance:

J(I',P) €0, Jmax]
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What do we want?

Let P (F) be the distribution of planning problem parameters
(distribution of start/goal, obstacles, dynamics)

P* — arg min ﬂP(I‘) [J(F,P)]
} P v 2

(create a (distribution of (cost of solution
planner) planning problems)  computed in real-time)
Problem:

How do we tractably search over the space of all planners?

25



Approach outline

Q1. Framework to assemble real-time planners?

Planner
Planning > Planning
Problem o Solution
Q2. (Black-box adaptation) Q3. (White-box adaptation)
Select planners from a library? Directly learn planning policies?
Library Planner with tunable policy
Planner 1 Train Train Train
Planner 2 meta-planner heuristic edge-evaluation
. >
licies policies
‘P Po
’ ‘P ‘2
Planner N o o
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Approach outline

Q1. Framework to assemble real-time planners?

Planner

Planning Planning
> (/ —

Problem Solution

Expert planner with custom implicit graphs

Q2. (Black-box adaptation) Q3. (White-box adaptation)
Select planners from a library? Directly learn planning policies?
Library Planner with tunable policy
Planner 1 Train Train Train
Planner 2 meta-planner heuristic edge-evaluation
° >
licies policies
? po
: ? ?
Planner N o o
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Black-box adaptive planning paradigm

I . ‘ T Library of Meta Motion
| / 8ge] (380 > >
1 Black Box Planner Planner
| Domain Informatlon
- - _l ________ Planners
- — = ¥_ _ _ - Planner 1
| | >
I |4 . Planner 2
| ' | Designer appends
| = | any potentially :
| . | ‘good’ planner to Planner N
Human Designer :
| T e | library

Design a meta-planner that, given a planning problem distribution,
adaptively selects planners from a library of black-box planners

Black-box implies planners are atomic operations
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Library of diverse black-box planners

BIT* RRT-Connect

1 A (Gammel et al.) (Kuffner et al.)

Foctis sampling
\\ in a\volume
>

0
Planning problem (I')
General purpose planners Precision planners
Solves large number of problems, Solves small number of problems,
small fraction has high score large fraction has high score

(not overfit on any problem) (designed to overfit)
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General purpose vs Precision planner

O
i}& O Q#(OO

O
"~

Samples from planning problem distribution

General purpose planner samples

Precision planner focuses sampling,

everywhere, finds a high cost solution finds a low cost solution
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Meta-planner classifies a problem to a planner

Planning problem

(')
S ||

Planner 1

Planner 2

Planner N

Library of planners

(£)

Extract context Meta
- Planner
. l > Planner >
1 ( f) (1) in library
- P el

V(T,P)

PN

Objective: Maximize the

expected score of selection

1M ax ‘CTNP(P) V(F, W(F))

T
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Difficulty in classifying precision planners

1A —
. Planner 1 Planner 2
Al
=
~

0 7 \ >

Re *s Planning problem (I")
L 4 ’ ‘~ L
X 4 s T " i * 5
Y 4 A Y
Planner 1 conducts > _ Planner 1 cant

a focussed search (

\
ffffff O

A 3
<
find solution ( \

< OF '
| Small shift
Planner 2 finds Planner 2 still ‘1 obstacle
worse solution finds solution

Planner 1 = 1.0, Planner 2 = 0.3 Planner 1 = 0.0, Planner 2 = 0.6
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Key ldea: Predict an ensemble of planners

Since predicting a single planner is difficult,

hedge our bets by predicting an ensemble of planners

Meta-planner

Ensemble

Predictor 1

Planner 1

Predictor 3

Planner 3

N AN AN AN

—>

Run
planners
1n

parallel
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Simple setting: Select a static ensemble of size 3

ﬂFNP(F) maX(V(F, 7)1)7 V(Fa 7)2)7 V(Fa 7)3))
C D

IMax
7’-)1 77)2 77:)3

14
&
=

s

=

Selected
Ensemble (&)
Planner C

P]

anner B

P]

anner D

>

Let P(I") be uniform on this interval

——

(')

Algorithm: Greedily select planners that maximize gain in score

Theorem: Greedy maximization of monotone submodular function is near-optimal

<11I’NP(I‘) |4 (ggreedy)

o

rpm) V(EY) (

Krause et al.’12)
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Greedily stack cost-sensitive classifiers [ICRA'15,'16]

3 [

training data, predictor 1

2
AE EE
2

- [+] Train predictor 1 to
@

[*.] classify on all problems

|
&
I

training data, predictor 2

Train predictor 2 to

[7] on problems predictor 1
m E fails to solve
solved by predictor 2 Deep er pl”ediCtOTS

| focus on unsolved

lraining data, prediclor 3

(hard) problems

Theorem |Dey et al.’13] Greedily training

predictors leads to a near-optimal sequence
35



List prediction significantly reduces empirical risk

Single Ensemble
Learner ,
Element (size: 3)

hinge-loss + linear 0.1073 0.0715
square-loss + linear 0.1106 0.0721
hinge-loss + linear 15.454 3.6085
square-loss + linear 13.013 3.6799
hinge-loss + linear 0.0976 0.0325
square-loss + linear 0.0933 0.0360
hinge-loss + linear 0.2222 0.0222
square-loss + linear 0.2281 0.0281
hinge-loss + linear 0.104 0.035
square-loss + linear 0.120 0.055

random forest 0.101 0.021

|
|
|
|
e ]

2D traj opt J*

seed prediction *«= ¢

7D traj opt
seed prediction

4D arm planner

heuristic prediction ——

2D geometric

planner prediction

Helicopter

planner

d . . y RRT*Tunnel? succeeds
p r e ]. C t ]. O n as less aggressive
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Application: Large UAV ftlying long durations

Total Total Top o
Missions

Time Distance  Speed

151.9 min 15.833 km 10 m/s 45

Success: 95.56% (compared to 64% for baseline) 37



Training in simulation

Planner library Training performance
48]
é ) rrtstar  tunnel 1 Data 1000
=, &) rristar_tunnel 2 (Train / Test) (70 / 30)
TS E@ bitstar 1
g & - Number of planners 8
3 informed rrtstar 1
single detour 1 Feature dim 10
3 & ) single_detour_2
L g Risk (ensemble: 1) 0.20
$ 5 ) double_detour_1
~ o —
" =\ double_detour_2  Risk (ensemble: 2) 0.08
(Monte-carlo sampling of planning problems)
rrtstar tunnel 1 (general purpose) double detour 1 (precision planner)

g,

Edge-cases which only a precision planner solves



Active

single detour 1
single detour 2

double detour 1

double detour 2 P II

Analysis of test time performance

—
)
g ..'.m‘... V vvvvvvvvvv ‘ vvvvv . ,. o0 . ... o 0® O
% N MRS ) g cme ol @ ww censss, s o 6w e bty ity W Ey o

Timesteps

rrtstar  tunnel 1 -r1_l_|m | I o rrtstar  tunnel 1 ¢ I I " .-

rrtstar tunnel 2 ! rrtstar  tunnel 2

s 11| ]I I N T TR AT ]
informed rrtstar 1 | 1 informed rrtstar 1

II 1 single detour 1 ¢ I I I
I’l H : single detour 2 .
wl rR / + double detour 1 “ * I ﬂ
double detour 2

_ Edge-case
Conventional
problem
problem
(goal too close
solved by :
| to pillar)
senera solved by
PUrpose precision
planner
planner 39




Platform 2: Small UAV ftlying in diverse scenarios

(Choudhury, Maeta, Dugar, MacAllister, Scherer)

(Higher speed, curvature constraints, more clearance)

(Lower speed, unconstrained, less clearance)

Ensemble: double detour 1, rrtstar tunnel 1 Ensemble: astar 3, bitstar 3
40



Approach outline

Q1. Framework to assemble real-time planners?

Planning
Problem

Planner

v/

Q2. (Black-box adaptation)
Select planners from a library?

Library
Pl 1
anner ——
Planner 2 meta-planner
° > /
Planner N

Greedily train an ensemble

Planning

Solution

Expert planner with custom implicit graphs

Q3. (White-box adaptation)
Directly learn planning policies?

Planner with tunable policy

Train
heuristic

policies

?

Train
edge-evaluation

policies

?

41




White-box adaptive planning paradigm

___________ ! White Box Planner

I/{+ TTK: . q Motion
]

| Domain Informatlon Algorithm Learnt Policy Planner

D

of white-box

|
|
One time desipn I
|
|

planner with

_Hlimin_D e_s,lg_nei | tunable policy IPlanning Problem Dlstrlbutlo

How can we train a planning policy?

(E.g. a heuristic policy, a sampling policy, a collision-checking policy ..)

42



Approach outline

Q1. Framework to assemble real-time planners?

Planner

Planning Planning
> (/ —

Problem Solution

Expert planner with custom implicit graphs

Q2. (Black-box adaptation) Q3. (White-box adaptation)
Select planners from a library? Directly learn planning policies?
Library Planner with tunable policy
Planner 1 Train Train Train
Planner 2 meta-planner heuristic edge-evaluation
: d / policies policies
Planner N ? ?

Greedily train an ensemble
43



Heuristic policies in search based planning

Goal

Start

Objective: Guide a search tree from start to goal to find a feasible path

44



Why does a heuristic need to be adaptive?’

Prior work has mainly focussed on bounding solution quality
by defining heuristics as distance estimate of cost-to-go (PohI'70, Pearl’s4)

Compute estimates using relaxation-based (Likhachev et al.’09, Dolgov et al.’03)

or learning-based (Xu et al.'07, Garrett et al.’16, Aine et al.’15, Paden et al.’16) approaches

Problem: Small estimation error leads to excessive expansions

INFLATED EUCLIDEAN HEURISTIC LEARNT HEURISTIC POLICY
0
2 ||
[ N
Oulln
| i
i ~1[3)
Heuristic gets trapped Worlds with Heuristic does not get trapped,
in ‘bug trap’ due to greediness ‘bug traps’ searches along periphery

45



Problem: Minimize expansions in BFS

Open List

Invalid List

(0) =

= (Z)

Start(vs)—pl ¥

Goal (vg)

d

Closed List

World Map

(¢)

(C)

>

Bl e

£io

Algorithm BestFirstSearch(vs, v, @)

1
2
3
4.
5
6

v < Select(O)

. Return Path (v, v,)

O+ v, C+ 0, T+
: while (o §§ @O do |[Goal not found|

[Select node to expand|

(Vsucm ginv) A EXPaﬂd(Ua ¢)
O+ OUViyee, C—CUv, L+ TUE

|Expand node|

|Update list]
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Problem: Minimize expansions in BFS

Open List Invalid List
(0) = = (I)
Start (vs ) —l ¥ 4— Goal (vg)

~
Closed List| World Map
o (9)

Compute a heuristic policy that 7_‘_(07 C’ T ) —Sve @

maps search state to node to expand

Objective: min “3¢NP<¢) C(?T, ¢)
‘W/ \
Distribution over Number of BFS

world maps expansions
47



Sequential decision making under uncertainty

>7T —» »7-‘-—» >7T >
t=0 t=1 t=12 t =23

£ioiiee

Cast as a Partially Observable Markov Decision Process (POMDP)

..............................................................................................

e Cost | 9 5
1 otherw1se History wt : {0y, Cy, L }

Action ay : v € Oy

POMDP solvers such as POMCP (Silver et al’10) or DESPOT (Somani et al.’13)
require a lot of online effort - we want cheap policies!

Model-free approaches such as Q-learning (Watkins et al.’92) OT

REINFORCE (williams et a1.92) are sample inefficient

48



Key ldea: Imitate a clairvoyant oracle

Learner (Q-estimator) Oracle (Backwards Dijkstra)
Goal Goal
1 Imitate!
N
Fht
Start Start
Estimates action Solves full problem to
value from history oget true expansions-to-go

Oracle is “clairvoyant” as it can process the whole world map

We have shown this to be an effective strategy applicable to other
POMDP problems such as information gathering [[CRA’16, RSS’17] "



SAIL: Search as Imitation Learning [CoRL"17]

1

Sample a world

from database

P(¢)

it

Roll-in a

mixture of

learner + oracle

Execute ranc

action and
7T
extract features (Q"CR

to get search state (s, a:} = [y Aggregate data
wt : {Otactazt}

om (Query oracl

€

to get value

{ft7 QWOR}

Update learner

Using no-regret analysis (Ross and Bagnell 2014)

we can bound learner performance |[RSS’17

50



SAIL outperforms baselines on several datasets

Learning Non-learning approaches

Dataset Sample Worlds SL CEM QL heve  hMaN A* MHA*
Alternating Gaps I 1} 1 0432 0042  1.000  1.000  1.000  1.000  1.000
Single Bugtrap M e 0.214  0.057  1.000 0.184 0.192 1.000 0.286
Shifting Gaps l I I 0.464 1.000 1.000 0.506 0.589 1.000 0.804
Forest 57 [ N 0.043 0.048 0.121 0.041 0.043 1.000 0.075
Bugtrap+Forest ]| el T 0.384 0182  1.000 0410 0337  1.000  0.467
Gaps-+Forest ﬂ EiI T‘[ 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Mazes Lﬁ J‘I Jﬂ— 0.238 0.479 0.399 0.185 0.171 1.000 0.279
Multiple Bugtraps 177 7] 1 0.480 1.000 0.835 0.648 0.617 1.000 0.876

Table shows average normalized expansions
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Applying SAIL on real world problems

High speed no-fly-zone avoidance requires

real-time nonholonomic path planning




A* with Dubins heuristic times out

‘AA&" I IR R

- W Vot Vsl Vil Vil Vil Vil Vil Vil Vel Vol V‘W‘W""VA‘ ?‘

20,

'4 UA&‘AA’C’C’CI"ZM’; }ED,.MQ&E
299444444 AREPNDD.D.D.D.D. V.S,
!!M.!!M! s'uzamzzwnm

"z CECUECUINCNI ISP S SOOI

7

Expands 1910 states in time budget (1000 ms)

Dubins distance is a poor estimate of expansions-to-go



SAIL learns to follow maze wall

Train a policy on maze worlds

LD

Learnt policy expands
180 states 1n 120ms

AU NANT NANNNINININININININ
D T, ral raVaVa\raWalve
A408aaaa=2" 222000000

v

A

S

f D
EIQE IS s



Flight test with onboard execution

(Choudhury, Bhardwaj, Maeta, Scherer)

mini_sacus_flight.rriz* - RViz ;R A 2nePM 8

O ™3 mini_ascus_flight.rviz¥ « RViz

M Lleeal 5 Wowe Camers " Selzet % FocsComera S Moasw: # 1JPosc =t nate »

<



Can we directly learn graphs?

Conditional Variational

Auto-encoder

4 0
A
410
fIN

|In submission, TIROS 19|
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White-box or black-box

White-box framework Black-box framework
Pro: Con:
Efficient single planner Explicit context extraction
Minimal human involvement Human to design library
Con: Pro:
Powertul policy class Handle edge-cases via ensemble
Restricted to underlying graph Arbitrary precision planners

/2



Unified framework for adaptive planners

Planning database

Library of Planners

White-box

General

purpose

planners

>
Planner 1

White-box

o

Human designer

>
Planner 2

— 47‘ Precision Planner 1 ‘

*‘ Precision Planner 2 ‘

4
Black-box ‘ Planner 1 ‘
Meta-
‘ Planner 2 ‘
planner

' I

Ensemble of Planners
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Thank you!

Acknowledgements
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