
 1

Instructor: Sanjiban Choudhury

CSE 490R:
Mobile Robots

TAs: Matthew Rockett, Gilwoo Lee,
Matt Schmittle

 2

What did we learn ….

… and why was there no learning?!

 3

If machine learning is the process
of building models about the world…

…then we were talking about
 learning the whole time

 4

Model

How do
we build

the model?

Three questions you should ask

 5

1. What are we trying model?

2. What defines a good model?

3. What model should I use for my robot?

Bayes filter is a powerful tool

 6
Localization Mapping SLAM POMDP

 7

Model

Bayes
Filter

Observations

State
How do
we build

the model?

Model predictive control (MPC)

 8

xk+1 = f(xk, uk+1)

min
ut+1,...ut+H

t+H�1X

k=t

J(xk, uk+1)

g(xk, uk+1)  0

(Predict next state
with dynamics)

(Constraints)

(Cost)(plan till horizon H)

 9

Model

Bayes
Filter

Observations

State

Control Action

How do
we build

the model?

 10

Create a graph

General framework for motion planning

Search the graph

Interleave

 11

Model

Bayes
Filter

Observations

State

ControlPlanning Plan Action

How do
we build

the model?

What are the models?

 12

882 S. M. LaValle: Planning Algorithms

α

γ

d
Rα

Sd

Lγ

qGqI
α

γ

Rγ

Rα

qG
qI

Lβ

β

RαSdLγ RαLβRγ

Figure 15.4: The trajectories for two words are shown in W = R2.

To be more precise, the duration of each primitive should also be specified.
For L or R, let a subscript denote the total amount of rotation that accumulates
during the application of the primitive. For S, let a subscript denote the total
distance traveled. Using such subscripts, the Dubins curves can be more precisely
characterized as

{LαRβ Lγ, Rα Lβ Rγ, Lα Sd Lγ, Lα Sd Rγ, Rα Sd Lγ , Rα Sd Rγ}, (15.45)

in which α, γ ∈ [0, 2π), β ∈ (π, 2π), and d ≥ 0. Figure 15.4 illustrates two cases.
Note that β must be greater than π (if it is less, then some other word becomes
optimal).

It will be convenient to invent a compressed form of the words to group together
paths that are qualitatively similar. This will be particularly valuable when Reeds-
Shepp curves are introduced in Section 15.3.2 because there are 46 of them, as
opposed to 6 Dubins curves. Let C denote a symbol that means “curve,” and
represents either R or L. Using C, the six words in (15.44) can be compressed to
only two base words:

{CCC, CSC}. (15.46)

In this compressed form, remember that two consecutive Cs must be filled in by
distinct turns (RR and LL are not allowed as subsequences). In compressed form,
the base words can be specified more precisely as

{CαCβ Cγ, Cα Sd Cγ}, (15.47)

in which α, γ ∈ [0, 2π), β ∈ (π, 2π), and d ≥ 0.
Powerful information has been provided so far for characterizing the shortest

paths; however, for a given qI and qG, two problems remain:

1. Which of the six words in (15.45) yields the shortest path between qI and
qG?

Are heuristics models?

 13

Are graphs models?

The Piano Mover’s Problem

 15

Problem: Planners search everywhere

 16

… and I mean everywhere

Vanilla search Search with common sense

Are heuristics models?

 17

Are graphs models?

YES! They are models of
the spatial structure of the world

The Experienced Piano Movers’ Problem

New Piano.
New House.
Same Mover.

 19

How do we learn good models
to improve

real-time planning?

 20

Is there ONE
universal model for all scenarios?

 21

No! Depends on the environment

[AHS’14, ICRA’15, ICRA’16, ICRA’17]

Real-time performance of a planning
strategy varies across problem instances

 22

A planning module needs to adapt to the
distribution of problems the robot encounters

Planning problem
Goal

Trajectory

- a set of equality constraints F(�(t)) = 0, a set of inequality constraints H(�(t))  0 and a valid
regime �(t) 2 ⌃valid. In addition to this the trajectory also has to satisfy boundary constraints, i.e.,
�(0) 2 ⌃start and �(t

f

) 2 ⌃goal.

Let J : ⌃ ! [0, Jmax] be a cost functional that measures solution quality by penalizing traversal
time and proximity to unsafe regions. The cost function is capped at a user specified threshold
Jmax. We also follow the convention that an empty solution has a cost of J (;) = Jmax.

The planning problem is then defined as the following constrained optimization problem
Problem 1 (Kinodynamic Planning). The kinodynamic planning problem is then formally defined
as the search for the trajectory, �⇤, that minimizes a given cost function, while satisfying boundary
and trajectory wide constraints

min

�2⌃
J(�)

s.t �(0) 2 ⌃start

�(t
f

) 2 ⌃goal

F(�(t)) = 0

H(�(t))  0

�(t) 2 ⌃valid

8t 2 [0, t
f

]

(2.1)

Appendix A specifies the details for an autonomous helicopter.

We will now define what we mean by real time kinodynamic planning. Let � be a planning prob-
lem. We define a motion planner, P as an operator that takes a planning problem as input and
produces a trajectory as output, i.e., � = P (�).
Definition 2.1 (Real Time Kinodynamic Planning). A real time kinodynamic planning algorithm
is an operator that can run for a time budget of at most T . If a planner is unable to find a feasible,
collision free trajectory within this time budget, it returns an empty trajectory � = ;. Hence the
cost of the output of the planner operator is always defined, i.e. J (P (�)) 2 [0, Jmax] for all
planning problems �.

2.2 Planning problem distribution

We represent the distribution over planning problems P (�) using a database of finite samples. This
can be done in one of two ways.

In the first paradigm, we assume we have a complex generative distribution that we can sample
worlds from. The robot’s start and goal is kept invariant, while worlds are sampled from. This
process is repeated N times to get a database of {�}N

i=1 problems.

12

Minimize cost

Start / Goal constraints

Dynamics constraints

Obstacle constraints 23

�(t)

Start

Performance of a planner

 24

 Planning
Problem

 Planning
SolutionPlanner P(�) (�)

The performance is the cost of the solution computed
by the planner in a finite time budget T

We use the following notation to represent this performance:

J(�)

J(�,P) 2 [0, J
max

]

What do we want?

 25

(create a
planner)

P⇤ = argmin
P

EP (�)[J(�,P)]

(distribution of
planning problems)

(cost of solution
computed in real-time)

Problem:
How do we tractably search over the space of all planners?

Let P(T) be the distribution of planning problem parameters
(distribution of start/goal, obstacles, dynamics)

P (�)

 26

Approach outline
Q1. Framework to assemble real-time planners?

Planning
Problem

Planner
Planning
Solution?

Planner 1

Planner 2

Planner N

Library

Train
meta-planner

?

Q2. (Black-box adaptation)
Select planners from a library?

Train
heuristic
policies

Train
edge-evaluation

policies

Planner with tunable policy

? ?

Q3. (White-box adaptation)
Directly learn planning policies?

 27

Approach outline

Train
heuristic
policies

Train
edge-evaluation

policies

Planning
Problem

Planner
Planning
Solution

Planner 1

Planner 2

Planner N

Planner with tunable policyLibrary

Train
meta-planner

? ? ?

Q1. Framework to assemble real-time planners?

Expert planner with custom implicit graphs

Q3. (White-box adaptation)
Directly learn planning policies?

Q2. (Black-box adaptation)
Select planners from a library?

Black-box adaptive planning paradigm

Planning Problem Distribution

Motion
Planner

Human Designer

Meta
PlannerDomain Information

+

Planner 1

Planner 2

Planner N

...

Library of
Black Box
Planners

Designer appends
any potentially

‘good’ planner to
library

 28

Design a meta-planner that, given a planning problem distribution,
adaptively selects planners from a library of black-box planners

Black-box implies planners are atomic operations

Library of diverse black-box planners

 29

Planning problem
0

1

…

BIT*
(Gammel et al.)

RRT-Connect
(Kuffner et al.)

…

State Lattice A*
(Pivtoraiko et al.)

Sc
or

e

:

V
(�

,P
)

(�)

General purpose planners
Solves large number of problems,

small fraction has high score

(not overfit on any problem)

Precision planners
Solves small number of problems,

large fraction has high score

(designed to overfit)

Focus sampling
in a volume

1
�

J
(�

,P
)

J
m
a
x

General purpose vs Precision planner

 30

4.3. General purpose planners versus precision planners 53

(a)

(b) (c)

General purpose planner samples
everywhere, finds a high cost solution

Precision planner focuses sampling,
finds a low cost solution

Samples from planning problem distribution

Figure 4.2: Designing expert planners for a planning problem distribution. (a) An example planning problem
distribution encountered by a UAV. There are 4 convex objects occurring in various configurations. Since the
space appears to have good connectivity, one expects general purpose sampling based planners to do well. (b)
The general purpose planner samples everywhere and is not able to sample in the right homotopy class within
the time budget. (c) One can design a precision planner that focuses its sampling in the yellow volume and hence
is able to eventually find an edge through the gap and reach the goal.

(within the prescribed time budget). Examples are algorithms such as RRT* [Karaman and
Frazzoli, 2011], BIT* [Gammell et al., 2015], RRT-Connect [Ku�ner and LaValle, 2000], A*
on state lattice [Likhachev and Ferguson, 2009], etc. Precision planners are those that finds
near-optimal solutions on a small number of problems but fail to produce any solution on most
problems. Examples are approaches using local trajectory optimization [Ratli� et al., 2009a,
Schulman et al., 2013], shooting methods [Bryson and Ho, 1975] or custom samplers as illustrated
just now.

We can try to formalize this. Let � be the support of the planning problem distribution. We
define the normalized score of a planner as

V (P, �) = Jmax ≠ J (P (�))
Jmax ≠ Jmin

Every planner P corresponds to a score function defined on the domain �, where the range
of the function is bounded [0, 1]. For randomized planners, this function will be noisy - in such

Meta-planner classifies a problem to a planner

Meta
Planner

Extract contextPlanning problem

i, if all planners in the library fail to solve �

i

, a new planner is designed by the human operator to
solve the problem and this planner is then added to the list. This technique was used to create a
library of trajectory optimization planners in [178].

Refer to Appendix C for a library of expert planners used by an autonomous helicopter.

3.4.3 Extracting context

The feature vector f is representative of context extracted from a planning problem. Policies to
select an ensemble are defined on the space of contexts. Hence the context f must be able to
capture sufficient statistics to characterize the performance of planners. In this section, we will
define different context extractors used and the shortcomings of each such approach.

Coarse global bitmap Coarse global gradients Dense local gradients

Workspace sampled at coarse
resolution

Approximates global connectivity of

Distance map sampled at coarse
resolution

More detailed global obstacle

Distance map sampled densely around start
goal line

Encodes local convexity information

Figure 3.23: Different feature extractors (a) Coarse bitmap created by sampling workspace at lattice points (b) Coarse
gradients obtained by sampling a distance field function at lattice points. (c) Dense gradients by sampling points from
a dense lattice focused about the straight line joining start and goal.

1. Bitmap: A workspace lattice is created at a fixed resolution, rotated and translated between
start and goal locations. At each location of the lattice, a check is performed to see if the
point is in collision or not. There exist two variants - coarse and dense. Coarse implies the
lattice has a lower resolution but covers a larger area. Dense implies a higher resolution but
the lattice is focuses in a volume around the straight line joining start and goal.

2. Gradients: While the bitmap only provided a binary signal, a distance field gradient provides
more information. At every query point, the direction and distance to the nearest obstacle is
obtained. This also has coarse and dense fidelities.

3. Graph: A connectivity graph can provide information about connectedness of space. This
is similar to the bitmap lattice except each edge is checked for collision. Hence this is more
expensive to compute.

4. Pyramid: The bitmap can be used as input to a spatial pyramid (Lazebnik et al. [118]). This
can serve as a multi-resolution source of bitmap information.

5. Histogram of Gradients (HOG): The gradients can be used as input to a histogram binning
technique (Dalal and Triggs [43]).

53

Library of planners

Planning Problem Distribution

Motion
Planner

Human Designer

Meta
PlannerDomain Information

+

Planner 1

Planner 2

Planner N

...

Library of
Black Box
Planners

Designer appends
any potentially

‘good’ planner to
library

(�)

(L)

 31

(f)
(⇡)

Planner
in library
P 2 L

Objective: Maximize the
expected score of selection

max

⇡
E�⇠P (�) V (�,⇡(�))

Planning Problem Distribution

Motion
Planner

Human Designer

Meta
PlannerDomain Information

+

Planner 1

Planner 2

Planner N

...

Library of
Black Box
Planners

Designer appends
any potentially

‘good’ planner to
library

P (�)

V
(�

,P
) P1 P2 PN

0

1

Difficulty in classifying precision planners

 32

Planning problem
0

1

V
(�

,P
)

(�)

Planner 1 Planner 2

(a) (b)
Small shift
in obstacle

Planner 1 cant
find solution

Planner 2 still
finds solution

Planner 1 conducts
a focussed search

Planner 2 finds
worse solution
Planner 1 = 1.0, Planner 2 = 0.3 Planner 1 = 0.0, Planner 2 = 0.6

(a) (b)
Small shift
in obstacle

Planner 1 cant
find solution

Planner 2 still
finds solution

Planner 1 conducts
a focussed search

Planner 2 finds
worse solution

Key Idea: Predict an ensemble of planners

 33

Since predicting a single planner is difficult,

hedge our bets by predicting an ensemble of planners

Ensemble

Predictor 1

Predictor 2

Predictor 3

Planner 1

Planner 2

Planner 3

Run
planners

in
parallel

Meta-planner

Simple setting: Select a static ensemble of size 3

 34

max

P1,P2,P3

E�⇠P (�) max(V (�,P1), V (�,P2), V (�,P3))

0

1

… …

V
(�

,P
)

(�)Let be uniform on this interval

Planner C
Planner B
Planner D

P (�)

Algorithm: Greedily select planners that maximize gain in score

Selected
Ensemble (E)

Theorem: Greedy maximization of monotone submodular function is near-optimal
(Krause et al.’12)E�⇠P (�) V (Egreedy) �

✓
1� 1

e

◆
E�⇠P (�) V (E⇤)

A B C D E

Greedily stack cost-sensitive classifiers [ICRA’15,’16]

 35

Train predictor 1 to
classify on all problems

Train predictor 2 to
on problems predictor 1

fails to solve

Deeper predictors
focus on unsolved
(hard) problems

Theorem [Dey et al.’13] Greedily training
predictors leads to a near-optimal sequence

List prediction significantly reduces empirical risk

 36

Learner Single
Element

Ensemble
(size: 3)

hinge-loss + linear 0.1073 0.0715
square-loss + linear 0.1106 0.0721

hinge-loss + linear 15.454 3.6085
square-loss + linear 13.013 3.6799

hinge-loss + linear 0.0976 0.0325
square-loss + linear 0.0933 0.0360

hinge-loss + linear 0.2222 0.0222
square-loss + linear 0.2281 0.0281

hinge-loss + linear 0.104 0.035
square-loss + linear 0.120 0.055

random forest 0.101 0.021

therefore CHOMP has a difficult time finding a valid trajectory
using this initial seed.

(a) The default straight-line initialization of CHOMP is marked
in orange. Notice this initial seed goes straight through the
obstacle and causes CHOMP to fail to find a collision-free
trajectory.

(b) The initialization seed for CHOMP found using CONSE-
QOPT is marked in orange. Using this initial seed CHOMP is
able to find a collision free path that also has a relatively short
execution time.

Fig. 2: CHOMP initialization trajectories generated as control
actions for CONSEQOPT. Blue lines trace the end effector path
of each trajectory in the library. Orange lines in each image
trace the initialization seed generated by the default straight-
line approach and by CONSEQOPT, respectively.

In our results we use a small number (1�3) of slots in our
sequence to ensure the overhead of ordering and evaluating the
library is small. When CHOMP fails to find a collision-free
trajectory for multiple initializations seeds, one can always

fall back on slow but complete planners. Thus the contextual
control sequence’s role is to quickly evaluate a few good
options and choose the initialization trajectory that will result
in the minimum execution time. We note that in our experi-
ments, the overhead of ordering and evaluating the library is
negligible as we rely on a fast predictor and features computed
as part of the trajectory optimization, and by choosing a
small sequence length we can effectively compute a motion
plan with expected planning time under 0.5s. We can solve
most manipulation problems that arise in our manipulation
research very quickly, falling back to initializing the trajectory
optimization with a complete motion planner only in the most
difficult of circumstances.

For each initialization trajectory, we calculate 17 simple
feature values which populate a row of the feature matrix Xi.
7 During training time, we evaluate each initialization seed
in our library on all environments in the training set, and
use their performance and features to train each regressor �i
in CONSEQOPT. At test time, we simply run Algorithm 2
without the training step to produce Y�1,...,�N as the sequence
of initialization seeds to be evaluated. Note that while the
first regressor uses only the 17 basic features, the subsequent
regressors also include the difference in feature values between
the remaining actions and the actions chosen by the previous
regressors. These difference features improve the algorithm’s
ability to consider trajectory diversity in the chosen actions.

We compare CONSEQOPT with two methods of ranking the
initialization library: a random ordering of the actions, and an
ordering by sorting the output of the first regressor. Sorting by
the first regressor is functionally the same as maximizing the
absolute benefit rather than the marginal benefit at each slot.
We compare the number of CHOMP failures as well as the
average execution time of the final trajectory. For execution
time, we assume the robot can be actuated at 1 rad/second for
each joint and use the shortest trajectory generated using the
N seeds ranked by CONSEQOPT as the performance. If we
fail to find a collision free trajectory and need to fall back to
a complete planner (RRT [15] plus trajectory optimization),
we apply a maximum execution time penalty of 40 seconds
due to the longer computation time and resulting trajectory.

The results over 212 test environments are summarized
in Figure 3. With only simple straight line initialization,
CHOMP is unable to find a collision free trajectory in 162/212
environments, with a resulting average execution time of 33.4s.
While a single regressor (N = 1) can reduce the number of
CHOMP failures from 162 to 79 and the average execution
time from 33.4s to 18.2s, when we extend the sequence
length, CONSEQOPT is able to reduce both metrics faster
than a ranking by sorting the output of the first regressor.
This is because for N > 1, CONSEQOPT chooses a primitive

7Length of trajectory in joint space; length of trajectory in task space, the
xyz values of the end effector position at the exploration point (3 values), the
distance field values used by CHOMP at the quarter points of the trajectory
(3 values), joint values of the first 4 joints at both the exploration point (4
values) and the target pose (4 values), and whether the initialization seed is
in the same left/right kinematic arm configuration as the target pose.

Level 1 Level 2 Level 3

BIT*

RRT-Connect RRT*-Tunnel

Seed Prediction 2D Seed Prediction 7D Heuristic Prediction Planner Prediction
(a)

(b)
Level 1 Level 2 Level 3

Solved by Level 1 Solved by Level 3

Level 1 Level 2 Level 3

Level 1 Level 2 Level 3

Attractor State Heuristics

Solved by Level 3

Start StateGoal State

Level 1 Level 2 Level 3

BIT* RRT-Connect RRT*-Tunnel

(c)

(d)

(e)

(f)

TABLE II: Seed Trajectory Prediction for 2D Point Robot

List Size Hinge Loss Square Loss

Single Element 0.1073 0.1106
3 Elements 0.0715 0.0721

TABLE III: Seed Trajectory Prediction for 7D Manipulator

List Size Hinge Loss Square Loss

Single Element 15.454 13.013
3 Elements 3.6085 3.6799

TABLE IV: Heuristic Prediction

List Size Hinge Loss Square Loss

Single Element 0.0976 0.0933
3 Elements 0.0325 0.0360

TABLE V: Planner Prediction

List Size Hinge Loss Square Loss

Single Element 0.2222 0.2281
3 Elements 0.0222 0.0281

Fig. 4: Test predictions for Section V-A. The environment on the left is
solved by the level 1 predictor (red) which predicts an initial seed that goes
around the obstacles on optimization. On the other hand, the environment
on the right is solved only by level 3. The optimal trajectory passes through
a narrow gap with a kink while there are many local minima surrounding
this trajectory. Level 1 (red) makes a naive prediction that gets stuck cutting
across obstacles. Level 2 (blue) comes closer to solving it but chooses a
wrong homotopy class. Level 3 (green) solves the environment by predicting
a seed which is optimized into the narrow gap.

4) Costs c(x, �): The element � is used as a heuristic input
to MHA*. MHA* plans on a lattice created by discretizing
each joint space 12 times. c(x, �) is set to be the number
of states expanded when using � (a maximum of 10000
expansions are allowed). The cost is scaled from 0 to 10.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: Under p(x), environments frequently have a
sufficient gap between the two blocks for the arm to pass
through. The predictor at the first level predicts attractor
states corresponding to simple arm ‘tucking’ configurations.
Environments in which the blocks are close together, leading
to a narrow gap, are infrequent. These environments require
a complicated ‘tucking’ attractor state. The subsequent pre-
dictors solve such environments, as seen in Figure 5.

C. Planner Prediction in Adaptive Motion Planning
1) Motivation: The effectiveness of a planning algorithm

to plan a trajectory in an environment within a time constraint
depends on the configuration of obstacles. The notion of

a list of planners to create a planner ensemble has shown
promising results [8].

2) Environment x and distribution p(x): The objective
is to the plan the motion of a 2D point robot from start
to goal. The environment x consists of circular obstacles.
p(x) is such that the positions and radii of the obstacles are
sampled uniformly. See Figure 6.

3) Element � and library L: Each element is a sam-
pling based motion planning algorithm. A library of such
algorithms is generated by varying tree growing strategies,
sampling strategies and heuristics.

4) Costs c(x, �): The planner � is used to plan a trajectory
within a time constraint of 0.05s. c(x, �) is set to be equal
to the path length of the solution. The cost is affinely
transformed to [0, 20]. If no feasible path was found, c(x, �)
is set to 20.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: The first predictor predicts planners such as
BIT*, RRT-Connect and Informed-RRT*. These planners
don’t make strong assumptions about structure in the en-
vironment, which results in good performance over a wide
range of environments. Environments with structure are
infrequent under p(x). We observe that subsequent predictors
predict planners which exploit structure. See Figure 6.

VI. RELATED WORK

With a formulation for list prediction in place, we can
discuss related work in a common language. Jetchev and
Toussaint [9] was an early work on predicting seeds for
trajectory planning. Cost regression, which we defined as
directly regressing from features to costs, and classification
were implemented. Classification was found to perform
better. Our work uses the formalism of loss-sensitive clas-
sification to arrive at both regression and classification. In
IV-B, we also reason about cost regression being a more
difficult task than classification. Dragan et al. [10] predicted
the usefulness of end-effector goals for trajectory planning
on a manipulator. Their work was not limited to using a
library of elements. However, we offer justifications for
some heuristics they considered. For example, [10] used
a threshold on costs to focus on relevant environments in

TABLE II: Seed Trajectory Prediction for 2D Point Robot

List Size Hinge Loss Square Loss

Single Element 0.1073 0.1106
3 Elements 0.0715 0.0721

TABLE III: Seed Trajectory Prediction for 7D Manipulator

List Size Hinge Loss Square Loss

Single Element 15.454 13.013
3 Elements 3.6085 3.6799

TABLE IV: Heuristic Prediction

List Size Hinge Loss Square Loss

Single Element 0.0976 0.0933
3 Elements 0.0325 0.0360

TABLE V: Planner Prediction

List Size Hinge Loss Square Loss

Single Element 0.2222 0.2281
3 Elements 0.0222 0.0281

Fig. 4: Test predictions for Section V-A. The environment on the left is
solved by the level 1 predictor (red) which predicts an initial seed that goes
around the obstacles on optimization. On the other hand, the environment
on the right is solved only by level 3. The optimal trajectory passes through
a narrow gap with a kink while there are many local minima surrounding
this trajectory. Level 1 (red) makes a naive prediction that gets stuck cutting
across obstacles. Level 2 (blue) comes closer to solving it but chooses a
wrong homotopy class. Level 3 (green) solves the environment by predicting
a seed which is optimized into the narrow gap.

4) Costs c(x, �): The element � is used as a heuristic input
to MHA*. MHA* plans on a lattice created by discretizing
each joint space 12 times. c(x, �) is set to be the number
of states expanded when using � (a maximum of 10000
expansions are allowed). The cost is scaled from 0 to 10.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: Under p(x), environments frequently have a
sufficient gap between the two blocks for the arm to pass
through. The predictor at the first level predicts attractor
states corresponding to simple arm ‘tucking’ configurations.
Environments in which the blocks are close together, leading
to a narrow gap, are infrequent. These environments require
a complicated ‘tucking’ attractor state. The subsequent pre-
dictors solve such environments, as seen in Figure 5.

C. Planner Prediction in Adaptive Motion Planning
1) Motivation: The effectiveness of a planning algorithm

to plan a trajectory in an environment within a time constraint
depends on the configuration of obstacles. The notion of

a list of planners to create a planner ensemble has shown
promising results [8].

2) Environment x and distribution p(x): The objective
is to the plan the motion of a 2D point robot from start
to goal. The environment x consists of circular obstacles.
p(x) is such that the positions and radii of the obstacles are
sampled uniformly. See Figure 6.

3) Element � and library L: Each element is a sam-
pling based motion planning algorithm. A library of such
algorithms is generated by varying tree growing strategies,
sampling strategies and heuristics.

4) Costs c(x, �): The planner � is used to plan a trajectory
within a time constraint of 0.05s. c(x, �) is set to be equal
to the path length of the solution. The cost is affinely
transformed to [0, 20]. If no feasible path was found, c(x, �)
is set to 20.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: The first predictor predicts planners such as
BIT*, RRT-Connect and Informed-RRT*. These planners
don’t make strong assumptions about structure in the en-
vironment, which results in good performance over a wide
range of environments. Environments with structure are
infrequent under p(x). We observe that subsequent predictors
predict planners which exploit structure. See Figure 6.

VI. RELATED WORK

With a formulation for list prediction in place, we can
discuss related work in a common language. Jetchev and
Toussaint [9] was an early work on predicting seeds for
trajectory planning. Cost regression, which we defined as
directly regressing from features to costs, and classification
were implemented. Classification was found to perform
better. Our work uses the formalism of loss-sensitive clas-
sification to arrive at both regression and classification. In
IV-B, we also reason about cost regression being a more
difficult task than classification. Dragan et al. [10] predicted
the usefulness of end-effector goals for trajectory planning
on a manipulator. Their work was not limited to using a
library of elements. However, we offer justifications for
some heuristics they considered. For example, [10] used
a threshold on costs to focus on relevant environments in

TABLE II: Seed Trajectory Prediction for 2D Point Robot

List Size Hinge Loss Square Loss

Single Element 0.1073 0.1106
3 Elements 0.0715 0.0721

TABLE III: Seed Trajectory Prediction for 7D Manipulator

List Size Hinge Loss Square Loss

Single Element 15.454 13.013
3 Elements 3.6085 3.6799

TABLE IV: Heuristic Prediction

List Size Hinge Loss Square Loss

Single Element 0.0976 0.0933
3 Elements 0.0325 0.0360

TABLE V: Planner Prediction

List Size Hinge Loss Square Loss

Single Element 0.2222 0.2281
3 Elements 0.0222 0.0281

Fig. 4: Test predictions for Section V-A. The environment on the left is
solved by the level 1 predictor (red) which predicts an initial seed that goes
around the obstacles on optimization. On the other hand, the environment
on the right is solved only by level 3. The optimal trajectory passes through
a narrow gap with a kink while there are many local minima surrounding
this trajectory. Level 1 (red) makes a naive prediction that gets stuck cutting
across obstacles. Level 2 (blue) comes closer to solving it but chooses a
wrong homotopy class. Level 3 (green) solves the environment by predicting
a seed which is optimized into the narrow gap.

4) Costs c(x, �): The element � is used as a heuristic input
to MHA*. MHA* plans on a lattice created by discretizing
each joint space 12 times. c(x, �) is set to be the number
of states expanded when using � (a maximum of 10000
expansions are allowed). The cost is scaled from 0 to 10.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: Under p(x), environments frequently have a
sufficient gap between the two blocks for the arm to pass
through. The predictor at the first level predicts attractor
states corresponding to simple arm ‘tucking’ configurations.
Environments in which the blocks are close together, leading
to a narrow gap, are infrequent. These environments require
a complicated ‘tucking’ attractor state. The subsequent pre-
dictors solve such environments, as seen in Figure 5.

C. Planner Prediction in Adaptive Motion Planning
1) Motivation: The effectiveness of a planning algorithm

to plan a trajectory in an environment within a time constraint
depends on the configuration of obstacles. The notion of

a list of planners to create a planner ensemble has shown
promising results [8].

2) Environment x and distribution p(x): The objective
is to the plan the motion of a 2D point robot from start
to goal. The environment x consists of circular obstacles.
p(x) is such that the positions and radii of the obstacles are
sampled uniformly. See Figure 6.

3) Element � and library L: Each element is a sam-
pling based motion planning algorithm. A library of such
algorithms is generated by varying tree growing strategies,
sampling strategies and heuristics.

4) Costs c(x, �): The planner � is used to plan a trajectory
within a time constraint of 0.05s. c(x, �) is set to be equal
to the path length of the solution. The cost is affinely
transformed to [0, 20]. If no feasible path was found, c(x, �)
is set to 20.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: The first predictor predicts planners such as
BIT*, RRT-Connect and Informed-RRT*. These planners
don’t make strong assumptions about structure in the en-
vironment, which results in good performance over a wide
range of environments. Environments with structure are
infrequent under p(x). We observe that subsequent predictors
predict planners which exploit structure. See Figure 6.

VI. RELATED WORK

With a formulation for list prediction in place, we can
discuss related work in a common language. Jetchev and
Toussaint [9] was an early work on predicting seeds for
trajectory planning. Cost regression, which we defined as
directly regressing from features to costs, and classification
were implemented. Classification was found to perform
better. Our work uses the formalism of loss-sensitive clas-
sification to arrive at both regression and classification. In
IV-B, we also reason about cost regression being a more
difficult task than classification. Dragan et al. [10] predicted
the usefulness of end-effector goals for trajectory planning
on a manipulator. Their work was not limited to using a
library of elements. However, we offer justifications for
some heuristics they considered. For example, [10] used
a threshold on costs to focus on relevant environments in

TABLE II: Seed Trajectory Prediction for 2D Point Robot

List Size Hinge Loss Square Loss

Single Element 0.1073 0.1106
3 Elements 0.0715 0.0721

TABLE III: Seed Trajectory Prediction for 7D Manipulator

List Size Hinge Loss Square Loss

Single Element 15.454 13.013
3 Elements 3.6085 3.6799

TABLE IV: Heuristic Prediction

List Size Hinge Loss Square Loss

Single Element 0.0976 0.0933
3 Elements 0.0325 0.0360

TABLE V: Planner Prediction

List Size Hinge Loss Square Loss

Single Element 0.2222 0.2281
3 Elements 0.0222 0.0281

Fig. 4: Test predictions for Section V-A. The environment on the left is
solved by the level 1 predictor (red) which predicts an initial seed that goes
around the obstacles on optimization. On the other hand, the environment
on the right is solved only by level 3. The optimal trajectory passes through
a narrow gap with a kink while there are many local minima surrounding
this trajectory. Level 1 (red) makes a naive prediction that gets stuck cutting
across obstacles. Level 2 (blue) comes closer to solving it but chooses a
wrong homotopy class. Level 3 (green) solves the environment by predicting
a seed which is optimized into the narrow gap.

4) Costs c(x, �): The element � is used as a heuristic input
to MHA*. MHA* plans on a lattice created by discretizing
each joint space 12 times. c(x, �) is set to be the number
of states expanded when using � (a maximum of 10000
expansions are allowed). The cost is scaled from 0 to 10.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: Under p(x), environments frequently have a
sufficient gap between the two blocks for the arm to pass
through. The predictor at the first level predicts attractor
states corresponding to simple arm ‘tucking’ configurations.
Environments in which the blocks are close together, leading
to a narrow gap, are infrequent. These environments require
a complicated ‘tucking’ attractor state. The subsequent pre-
dictors solve such environments, as seen in Figure 5.

C. Planner Prediction in Adaptive Motion Planning
1) Motivation: The effectiveness of a planning algorithm

to plan a trajectory in an environment within a time constraint
depends on the configuration of obstacles. The notion of

a list of planners to create a planner ensemble has shown
promising results [8].

2) Environment x and distribution p(x): The objective
is to the plan the motion of a 2D point robot from start
to goal. The environment x consists of circular obstacles.
p(x) is such that the positions and radii of the obstacles are
sampled uniformly. See Figure 6.

3) Element � and library L: Each element is a sam-
pling based motion planning algorithm. A library of such
algorithms is generated by varying tree growing strategies,
sampling strategies and heuristics.

4) Costs c(x, �): The planner � is used to plan a trajectory
within a time constraint of 0.05s. c(x, �) is set to be equal
to the path length of the solution. The cost is affinely
transformed to [0, 20]. If no feasible path was found, c(x, �)
is set to 20.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: The first predictor predicts planners such as
BIT*, RRT-Connect and Informed-RRT*. These planners
don’t make strong assumptions about structure in the en-
vironment, which results in good performance over a wide
range of environments. Environments with structure are
infrequent under p(x). We observe that subsequent predictors
predict planners which exploit structure. See Figure 6.

VI. RELATED WORK

With a formulation for list prediction in place, we can
discuss related work in a common language. Jetchev and
Toussaint [9] was an early work on predicting seeds for
trajectory planning. Cost regression, which we defined as
directly regressing from features to costs, and classification
were implemented. Classification was found to perform
better. Our work uses the formalism of loss-sensitive clas-
sification to arrive at both regression and classification. In
IV-B, we also reason about cost regression being a more
difficult task than classification. Dragan et al. [10] predicted
the usefulness of end-effector goals for trajectory planning
on a manipulator. Their work was not limited to using a
library of elements. However, we offer justifications for
some heuristics they considered. For example, [10] used
a threshold on costs to focus on relevant environments in

TABLE I: Application Details

Application Library Length L List Budget B Feature Dimension d Train Data N Validation Data Test Data

Seed Prediction 2D 39 3 73 700 200 100
Seed Prediction 7D 30 3 17 310 112 100
Heuristic Prediction 101 3 1620 675 193 96
Planner Prediction 100 3 1764 579 166 82

Empirical risks for all applications are in Tables II-V. We
observe that the risk of a list is significantly lower than the
risk of a single element, irrespective of the application. In
addition, the risk is lower when using the hinge surrogate
loss compared to the square surrogate loss. Each subsection
is accompanied by figures showing sample lists predicted for
the application.

A. Seed Prediction for Trajectory Optimization of 2D Point
Robot

1) Motivation: For the problem of planning a trajectory
from a start to goal configuration, local trajectory optimiza-
tion is an approach where an initial seed joining the start
to goal is optimized. While these methods are fast, their
solution quality is heavily dependent on the initial seed.
Often these methods converge to a bad local minimum
around the initial seed, e.g, passing through the middle of
obstacles. The effectiveness of a seed is not known apriori.
A computationally expensive approach is to optimize every
element in a library of seed trajectories. List prediction can
be used instead to predict a small set of elements.

2) Environment x and distribution p(x): We consider a
point robot in a 2D environment. The environment x consists
of square obstacles generated from a uniform random distri-
bution p(x), see Figure 3. The start and goal configuration
are fixed for all environments.

3) Element � and library L: An element is a seed trajec-
tory that connects the start to the goal. The library L consists
of diverse trajectories that are optimal on environments
drawn from p(x).

4) Costs c(x, �): A seed � is used as an input to a local
optimizer in environment x. The cost of a trajectory is the
sum of a smoothness term and an obstacle proximity term.
CHOMP [4] was used as the local optimizer. c(x, �) is the
cost of the trajectory that results after the seed � is optimized.

5) Features �: Features �(x, �) are computed on a pair
of environment and seed. The optimization problem for this
case is (15). � is a vector containing information about
downsampled gradients around � and in a local region around
it.

6) Results: The distribution p(x) places large probability
mass on environments where obstacles are clustered. The
predictor at the first level predicts simple seeds that go
around these clusters. But there are environments which
require the optimal seed to be in a complicated homotopy
class. These are infrequent under p(x), so they are ignored
by the first predictor. Subsequent predictors focus on these
environments, making customized predictions. Figures 3
and 4 make this point with specific examples.

Fig. 3: Training phase for Section V-A. The objective is to optimize a trajec-
tory from start to goal (cyan dots) in an obstacle field (grayscale image). The
examples shown are problems solved by predictors at different levels and the
trajectories shown are post-optimization. The level 1 predictor (red) learns
a simple classification rule to solve a large number of problems—it predicts
seeds that simply go around a cluster of obstacles to achieve the lowest cost.
The level 2 predictor (blue) focusses on and solves environments that level 1
did not solve. It learns to predict seeds in better homotopy classes. The level
3 predictor (green) focusses on corner cases, e.g the two instances shown
have the optimal trajectory passing through a narrow gap that is surrounded
by local minima. The level 3 predictor learns seeds that are optimized into
this narrow gap.

B. Heuristic Prediction in Search Based Planning
1) Motivation: Heuristics are essential to improving the

runtime performance of search based planning. Recent ap-
proaches such as MHA* [5] create a framework that allows
the use of an inadmissible heuristic as long as it is anchored
by weighted A*. MHA* allows heuristics to have a lot of
flexibility and effectively act as modules that expand promis-
ing states only. Given a library of inadmissible heuristics, list
prediction can be used to predict a small subset of heuristics.

2) Environment x and distribution p(x): The objective is
to the plan the motion of a 4 link arm from start to goal.
The environment x consists of two rectangular blocks, one
above and one below the arm. p(x) is such that the horizontal
positions of the blocks are uniformly random. See Figure 5.

3) Element � and library L: An element is an inad-
missible heuristic. A heuristic is an exponential kernel on
a chosen state, called an ‘attractor state’. The heuristic
penalizes arm states away from the attractor state 2. A library
of heuristics is generated by randomly sampling attractor
states. We also add an element to the library corresponding
to no heuristic—MHA* reverts to weighted A*.

2The kernel is defined only in 3 out of the 4 dimensions, i.e, the function
is invariant to the base joint.

Figure 3.28: Evaluation of dynamic ensemble meta-planner on a spectrum of motion planner applications - Choosing
seed trajectory for 2D trajectory optimization, 7D trajectory optimization, heuristic prediction for 4D arm planning
and planner prediction for 2D system. (a) Details about the dataset for each application (b) Illustrations of the 4
applications and the average loss of the meta-planner for different ensemble sizes and surrogate losses (c) Training
phase - the examples shown are problems solved by predictors at different levels and the trajectories shown are post-
optimization. (d) Test phase - the environment on the left is easily solved by the level 1 predictor (red) while the
environment on the right is solved only by level 3 predictor (right). (e) The predictor at level 3 predicts a heuristic
(green) that tucks the arm in a non-trivial configuration that allows it to pass through the gap. (f) The predictor at level
3 predicts RRT*-Tunnel, as it concentrates sampling in a tunnel around the initial straightline solution, and finds a
path through the gap in the wall.

67

] 2D traj opt
seed prediction

] 7D traj opt
seed prediction

therefore CHOMP has a difficult time finding a valid trajectory
using this initial seed.

(a) The default straight-line initialization of CHOMP is marked
in orange. Notice this initial seed goes straight through the
obstacle and causes CHOMP to fail to find a collision-free
trajectory.

(b) The initialization seed for CHOMP found using CONSE-
QOPT is marked in orange. Using this initial seed CHOMP is
able to find a collision free path that also has a relatively short
execution time.

Fig. 2: CHOMP initialization trajectories generated as control
actions for CONSEQOPT. Blue lines trace the end effector path
of each trajectory in the library. Orange lines in each image
trace the initialization seed generated by the default straight-
line approach and by CONSEQOPT, respectively.

In our results we use a small number (1�3) of slots in our
sequence to ensure the overhead of ordering and evaluating the
library is small. When CHOMP fails to find a collision-free
trajectory for multiple initializations seeds, one can always

fall back on slow but complete planners. Thus the contextual
control sequence’s role is to quickly evaluate a few good
options and choose the initialization trajectory that will result
in the minimum execution time. We note that in our experi-
ments, the overhead of ordering and evaluating the library is
negligible as we rely on a fast predictor and features computed
as part of the trajectory optimization, and by choosing a
small sequence length we can effectively compute a motion
plan with expected planning time under 0.5s. We can solve
most manipulation problems that arise in our manipulation
research very quickly, falling back to initializing the trajectory
optimization with a complete motion planner only in the most
difficult of circumstances.

For each initialization trajectory, we calculate 17 simple
feature values which populate a row of the feature matrix Xi.
7 During training time, we evaluate each initialization seed
in our library on all environments in the training set, and
use their performance and features to train each regressor �i
in CONSEQOPT. At test time, we simply run Algorithm 2
without the training step to produce Y�1,...,�N as the sequence
of initialization seeds to be evaluated. Note that while the
first regressor uses only the 17 basic features, the subsequent
regressors also include the difference in feature values between
the remaining actions and the actions chosen by the previous
regressors. These difference features improve the algorithm’s
ability to consider trajectory diversity in the chosen actions.

We compare CONSEQOPT with two methods of ranking the
initialization library: a random ordering of the actions, and an
ordering by sorting the output of the first regressor. Sorting by
the first regressor is functionally the same as maximizing the
absolute benefit rather than the marginal benefit at each slot.
We compare the number of CHOMP failures as well as the
average execution time of the final trajectory. For execution
time, we assume the robot can be actuated at 1 rad/second for
each joint and use the shortest trajectory generated using the
N seeds ranked by CONSEQOPT as the performance. If we
fail to find a collision free trajectory and need to fall back to
a complete planner (RRT [15] plus trajectory optimization),
we apply a maximum execution time penalty of 40 seconds
due to the longer computation time and resulting trajectory.

The results over 212 test environments are summarized
in Figure 3. With only simple straight line initialization,
CHOMP is unable to find a collision free trajectory in 162/212
environments, with a resulting average execution time of 33.4s.
While a single regressor (N = 1) can reduce the number of
CHOMP failures from 162 to 79 and the average execution
time from 33.4s to 18.2s, when we extend the sequence
length, CONSEQOPT is able to reduce both metrics faster
than a ranking by sorting the output of the first regressor.
This is because for N > 1, CONSEQOPT chooses a primitive

7Length of trajectory in joint space; length of trajectory in task space, the
xyz values of the end effector position at the exploration point (3 values), the
distance field values used by CHOMP at the quarter points of the trajectory
(3 values), joint values of the first 4 joints at both the exploration point (4
values) and the target pose (4 values), and whether the initialization seed is
in the same left/right kinematic arm configuration as the target pose.

Level 1 Level 2 Level 3

BIT* RRT-Connect RRT*-Tunnel

Seed Prediction 2D Seed Prediction 7D Heuristic Prediction Planner Prediction
(a)

(b)
Level 1 Level 2 Level 3

Solved by Level 1 Solved by Level 3

Level 1 Level 2 Level 3

Level 1 Level 2 Level 3

Attractor State Heuristics

Solved by Level 3

Start StateGoal State

Level 1 Level 2 Level 3

BIT* RRT-Connect RRT*-Tunnel

(c)

(d)

(e)

(f)

TABLE II: Seed Trajectory Prediction for 2D Point Robot

List Size Hinge Loss Square Loss

Single Element 0.1073 0.1106
3 Elements 0.0715 0.0721

TABLE III: Seed Trajectory Prediction for 7D Manipulator

List Size Hinge Loss Square Loss

Single Element 15.454 13.013
3 Elements 3.6085 3.6799

TABLE IV: Heuristic Prediction

List Size Hinge Loss Square Loss

Single Element 0.0976 0.0933
3 Elements 0.0325 0.0360

TABLE V: Planner Prediction

List Size Hinge Loss Square Loss

Single Element 0.2222 0.2281
3 Elements 0.0222 0.0281

Fig. 4: Test predictions for Section V-A. The environment on the left is
solved by the level 1 predictor (red) which predicts an initial seed that goes
around the obstacles on optimization. On the other hand, the environment
on the right is solved only by level 3. The optimal trajectory passes through
a narrow gap with a kink while there are many local minima surrounding
this trajectory. Level 1 (red) makes a naive prediction that gets stuck cutting
across obstacles. Level 2 (blue) comes closer to solving it but chooses a
wrong homotopy class. Level 3 (green) solves the environment by predicting
a seed which is optimized into the narrow gap.

4) Costs c(x, �): The element � is used as a heuristic input
to MHA*. MHA* plans on a lattice created by discretizing
each joint space 12 times. c(x, �) is set to be the number
of states expanded when using � (a maximum of 10000
expansions are allowed). The cost is scaled from 0 to 10.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: Under p(x), environments frequently have a
sufficient gap between the two blocks for the arm to pass
through. The predictor at the first level predicts attractor
states corresponding to simple arm ‘tucking’ configurations.
Environments in which the blocks are close together, leading
to a narrow gap, are infrequent. These environments require
a complicated ‘tucking’ attractor state. The subsequent pre-
dictors solve such environments, as seen in Figure 5.

C. Planner Prediction in Adaptive Motion Planning
1) Motivation: The effectiveness of a planning algorithm

to plan a trajectory in an environment within a time constraint
depends on the configuration of obstacles. The notion of

a list of planners to create a planner ensemble has shown
promising results [8].

2) Environment x and distribution p(x): The objective
is to the plan the motion of a 2D point robot from start
to goal. The environment x consists of circular obstacles.
p(x) is such that the positions and radii of the obstacles are
sampled uniformly. See Figure 6.

3) Element � and library L: Each element is a sam-
pling based motion planning algorithm. A library of such
algorithms is generated by varying tree growing strategies,
sampling strategies and heuristics.

4) Costs c(x, �): The planner � is used to plan a trajectory
within a time constraint of 0.05s. c(x, �) is set to be equal
to the path length of the solution. The cost is affinely
transformed to [0, 20]. If no feasible path was found, c(x, �)
is set to 20.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: The first predictor predicts planners such as
BIT*, RRT-Connect and Informed-RRT*. These planners
don’t make strong assumptions about structure in the en-
vironment, which results in good performance over a wide
range of environments. Environments with structure are
infrequent under p(x). We observe that subsequent predictors
predict planners which exploit structure. See Figure 6.

VI. RELATED WORK

With a formulation for list prediction in place, we can
discuss related work in a common language. Jetchev and
Toussaint [9] was an early work on predicting seeds for
trajectory planning. Cost regression, which we defined as
directly regressing from features to costs, and classification
were implemented. Classification was found to perform
better. Our work uses the formalism of loss-sensitive clas-
sification to arrive at both regression and classification. In
IV-B, we also reason about cost regression being a more
difficult task than classification. Dragan et al. [10] predicted
the usefulness of end-effector goals for trajectory planning
on a manipulator. Their work was not limited to using a
library of elements. However, we offer justifications for
some heuristics they considered. For example, [10] used
a threshold on costs to focus on relevant environments in

TABLE II: Seed Trajectory Prediction for 2D Point Robot

List Size Hinge Loss Square Loss

Single Element 0.1073 0.1106
3 Elements 0.0715 0.0721

TABLE III: Seed Trajectory Prediction for 7D Manipulator

List Size Hinge Loss Square Loss

Single Element 15.454 13.013
3 Elements 3.6085 3.6799

TABLE IV: Heuristic Prediction

List Size Hinge Loss Square Loss

Single Element 0.0976 0.0933
3 Elements 0.0325 0.0360

TABLE V: Planner Prediction

List Size Hinge Loss Square Loss

Single Element 0.2222 0.2281
3 Elements 0.0222 0.0281

Fig. 4: Test predictions for Section V-A. The environment on the left is
solved by the level 1 predictor (red) which predicts an initial seed that goes
around the obstacles on optimization. On the other hand, the environment
on the right is solved only by level 3. The optimal trajectory passes through
a narrow gap with a kink while there are many local minima surrounding
this trajectory. Level 1 (red) makes a naive prediction that gets stuck cutting
across obstacles. Level 2 (blue) comes closer to solving it but chooses a
wrong homotopy class. Level 3 (green) solves the environment by predicting
a seed which is optimized into the narrow gap.

4) Costs c(x, �): The element � is used as a heuristic input
to MHA*. MHA* plans on a lattice created by discretizing
each joint space 12 times. c(x, �) is set to be the number
of states expanded when using � (a maximum of 10000
expansions are allowed). The cost is scaled from 0 to 10.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: Under p(x), environments frequently have a
sufficient gap between the two blocks for the arm to pass
through. The predictor at the first level predicts attractor
states corresponding to simple arm ‘tucking’ configurations.
Environments in which the blocks are close together, leading
to a narrow gap, are infrequent. These environments require
a complicated ‘tucking’ attractor state. The subsequent pre-
dictors solve such environments, as seen in Figure 5.

C. Planner Prediction in Adaptive Motion Planning
1) Motivation: The effectiveness of a planning algorithm

to plan a trajectory in an environment within a time constraint
depends on the configuration of obstacles. The notion of

a list of planners to create a planner ensemble has shown
promising results [8].

2) Environment x and distribution p(x): The objective
is to the plan the motion of a 2D point robot from start
to goal. The environment x consists of circular obstacles.
p(x) is such that the positions and radii of the obstacles are
sampled uniformly. See Figure 6.

3) Element � and library L: Each element is a sam-
pling based motion planning algorithm. A library of such
algorithms is generated by varying tree growing strategies,
sampling strategies and heuristics.

4) Costs c(x, �): The planner � is used to plan a trajectory
within a time constraint of 0.05s. c(x, �) is set to be equal
to the path length of the solution. The cost is affinely
transformed to [0, 20]. If no feasible path was found, c(x, �)
is set to 20.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: The first predictor predicts planners such as
BIT*, RRT-Connect and Informed-RRT*. These planners
don’t make strong assumptions about structure in the en-
vironment, which results in good performance over a wide
range of environments. Environments with structure are
infrequent under p(x). We observe that subsequent predictors
predict planners which exploit structure. See Figure 6.

VI. RELATED WORK

With a formulation for list prediction in place, we can
discuss related work in a common language. Jetchev and
Toussaint [9] was an early work on predicting seeds for
trajectory planning. Cost regression, which we defined as
directly regressing from features to costs, and classification
were implemented. Classification was found to perform
better. Our work uses the formalism of loss-sensitive clas-
sification to arrive at both regression and classification. In
IV-B, we also reason about cost regression being a more
difficult task than classification. Dragan et al. [10] predicted
the usefulness of end-effector goals for trajectory planning
on a manipulator. Their work was not limited to using a
library of elements. However, we offer justifications for
some heuristics they considered. For example, [10] used
a threshold on costs to focus on relevant environments in

TABLE II: Seed Trajectory Prediction for 2D Point Robot

List Size Hinge Loss Square Loss

Single Element 0.1073 0.1106
3 Elements 0.0715 0.0721

TABLE III: Seed Trajectory Prediction for 7D Manipulator

List Size Hinge Loss Square Loss

Single Element 15.454 13.013
3 Elements 3.6085 3.6799

TABLE IV: Heuristic Prediction

List Size Hinge Loss Square Loss

Single Element 0.0976 0.0933
3 Elements 0.0325 0.0360

TABLE V: Planner Prediction

List Size Hinge Loss Square Loss

Single Element 0.2222 0.2281
3 Elements 0.0222 0.0281

Fig. 4: Test predictions for Section V-A. The environment on the left is
solved by the level 1 predictor (red) which predicts an initial seed that goes
around the obstacles on optimization. On the other hand, the environment
on the right is solved only by level 3. The optimal trajectory passes through
a narrow gap with a kink while there are many local minima surrounding
this trajectory. Level 1 (red) makes a naive prediction that gets stuck cutting
across obstacles. Level 2 (blue) comes closer to solving it but chooses a
wrong homotopy class. Level 3 (green) solves the environment by predicting
a seed which is optimized into the narrow gap.

4) Costs c(x, �): The element � is used as a heuristic input
to MHA*. MHA* plans on a lattice created by discretizing
each joint space 12 times. c(x, �) is set to be the number
of states expanded when using � (a maximum of 10000
expansions are allowed). The cost is scaled from 0 to 10.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: Under p(x), environments frequently have a
sufficient gap between the two blocks for the arm to pass
through. The predictor at the first level predicts attractor
states corresponding to simple arm ‘tucking’ configurations.
Environments in which the blocks are close together, leading
to a narrow gap, are infrequent. These environments require
a complicated ‘tucking’ attractor state. The subsequent pre-
dictors solve such environments, as seen in Figure 5.

C. Planner Prediction in Adaptive Motion Planning
1) Motivation: The effectiveness of a planning algorithm

to plan a trajectory in an environment within a time constraint
depends on the configuration of obstacles. The notion of

a list of planners to create a planner ensemble has shown
promising results [8].

2) Environment x and distribution p(x): The objective
is to the plan the motion of a 2D point robot from start
to goal. The environment x consists of circular obstacles.
p(x) is such that the positions and radii of the obstacles are
sampled uniformly. See Figure 6.

3) Element � and library L: Each element is a sam-
pling based motion planning algorithm. A library of such
algorithms is generated by varying tree growing strategies,
sampling strategies and heuristics.

4) Costs c(x, �): The planner � is used to plan a trajectory
within a time constraint of 0.05s. c(x, �) is set to be equal
to the path length of the solution. The cost is affinely
transformed to [0, 20]. If no feasible path was found, c(x, �)
is set to 20.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: The first predictor predicts planners such as
BIT*, RRT-Connect and Informed-RRT*. These planners
don’t make strong assumptions about structure in the en-
vironment, which results in good performance over a wide
range of environments. Environments with structure are
infrequent under p(x). We observe that subsequent predictors
predict planners which exploit structure. See Figure 6.

VI. RELATED WORK

With a formulation for list prediction in place, we can
discuss related work in a common language. Jetchev and
Toussaint [9] was an early work on predicting seeds for
trajectory planning. Cost regression, which we defined as
directly regressing from features to costs, and classification
were implemented. Classification was found to perform
better. Our work uses the formalism of loss-sensitive clas-
sification to arrive at both regression and classification. In
IV-B, we also reason about cost regression being a more
difficult task than classification. Dragan et al. [10] predicted
the usefulness of end-effector goals for trajectory planning
on a manipulator. Their work was not limited to using a
library of elements. However, we offer justifications for
some heuristics they considered. For example, [10] used
a threshold on costs to focus on relevant environments in

TABLE II: Seed Trajectory Prediction for 2D Point Robot

List Size Hinge Loss Square Loss

Single Element 0.1073 0.1106
3 Elements 0.0715 0.0721

TABLE III: Seed Trajectory Prediction for 7D Manipulator

List Size Hinge Loss Square Loss

Single Element 15.454 13.013
3 Elements 3.6085 3.6799

TABLE IV: Heuristic Prediction

List Size Hinge Loss Square Loss

Single Element 0.0976 0.0933
3 Elements 0.0325 0.0360

TABLE V: Planner Prediction

List Size Hinge Loss Square Loss

Single Element 0.2222 0.2281
3 Elements 0.0222 0.0281

Fig. 4: Test predictions for Section V-A. The environment on the left is
solved by the level 1 predictor (red) which predicts an initial seed that goes
around the obstacles on optimization. On the other hand, the environment
on the right is solved only by level 3. The optimal trajectory passes through
a narrow gap with a kink while there are many local minima surrounding
this trajectory. Level 1 (red) makes a naive prediction that gets stuck cutting
across obstacles. Level 2 (blue) comes closer to solving it but chooses a
wrong homotopy class. Level 3 (green) solves the environment by predicting
a seed which is optimized into the narrow gap.

4) Costs c(x, �): The element � is used as a heuristic input
to MHA*. MHA* plans on a lattice created by discretizing
each joint space 12 times. c(x, �) is set to be the number
of states expanded when using � (a maximum of 10000
expansions are allowed). The cost is scaled from 0 to 10.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: Under p(x), environments frequently have a
sufficient gap between the two blocks for the arm to pass
through. The predictor at the first level predicts attractor
states corresponding to simple arm ‘tucking’ configurations.
Environments in which the blocks are close together, leading
to a narrow gap, are infrequent. These environments require
a complicated ‘tucking’ attractor state. The subsequent pre-
dictors solve such environments, as seen in Figure 5.

C. Planner Prediction in Adaptive Motion Planning
1) Motivation: The effectiveness of a planning algorithm

to plan a trajectory in an environment within a time constraint
depends on the configuration of obstacles. The notion of

a list of planners to create a planner ensemble has shown
promising results [8].

2) Environment x and distribution p(x): The objective
is to the plan the motion of a 2D point robot from start
to goal. The environment x consists of circular obstacles.
p(x) is such that the positions and radii of the obstacles are
sampled uniformly. See Figure 6.

3) Element � and library L: Each element is a sam-
pling based motion planning algorithm. A library of such
algorithms is generated by varying tree growing strategies,
sampling strategies and heuristics.

4) Costs c(x, �): The planner � is used to plan a trajectory
within a time constraint of 0.05s. c(x, �) is set to be equal
to the path length of the solution. The cost is affinely
transformed to [0, 20]. If no feasible path was found, c(x, �)
is set to 20.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: The first predictor predicts planners such as
BIT*, RRT-Connect and Informed-RRT*. These planners
don’t make strong assumptions about structure in the en-
vironment, which results in good performance over a wide
range of environments. Environments with structure are
infrequent under p(x). We observe that subsequent predictors
predict planners which exploit structure. See Figure 6.

VI. RELATED WORK

With a formulation for list prediction in place, we can
discuss related work in a common language. Jetchev and
Toussaint [9] was an early work on predicting seeds for
trajectory planning. Cost regression, which we defined as
directly regressing from features to costs, and classification
were implemented. Classification was found to perform
better. Our work uses the formalism of loss-sensitive clas-
sification to arrive at both regression and classification. In
IV-B, we also reason about cost regression being a more
difficult task than classification. Dragan et al. [10] predicted
the usefulness of end-effector goals for trajectory planning
on a manipulator. Their work was not limited to using a
library of elements. However, we offer justifications for
some heuristics they considered. For example, [10] used
a threshold on costs to focus on relevant environments in

TABLE I: Application Details

Application Library Length L List Budget B Feature Dimension d Train Data N Validation Data Test Data

Seed Prediction 2D 39 3 73 700 200 100
Seed Prediction 7D 30 3 17 310 112 100
Heuristic Prediction 101 3 1620 675 193 96
Planner Prediction 100 3 1764 579 166 82

Empirical risks for all applications are in Tables II-V. We
observe that the risk of a list is significantly lower than the
risk of a single element, irrespective of the application. In
addition, the risk is lower when using the hinge surrogate
loss compared to the square surrogate loss. Each subsection
is accompanied by figures showing sample lists predicted for
the application.

A. Seed Prediction for Trajectory Optimization of 2D Point
Robot

1) Motivation: For the problem of planning a trajectory
from a start to goal configuration, local trajectory optimiza-
tion is an approach where an initial seed joining the start
to goal is optimized. While these methods are fast, their
solution quality is heavily dependent on the initial seed.
Often these methods converge to a bad local minimum
around the initial seed, e.g, passing through the middle of
obstacles. The effectiveness of a seed is not known apriori.
A computationally expensive approach is to optimize every
element in a library of seed trajectories. List prediction can
be used instead to predict a small set of elements.

2) Environment x and distribution p(x): We consider a
point robot in a 2D environment. The environment x consists
of square obstacles generated from a uniform random distri-
bution p(x), see Figure 3. The start and goal configuration
are fixed for all environments.

3) Element � and library L: An element is a seed trajec-
tory that connects the start to the goal. The library L consists
of diverse trajectories that are optimal on environments
drawn from p(x).

4) Costs c(x, �): A seed � is used as an input to a local
optimizer in environment x. The cost of a trajectory is the
sum of a smoothness term and an obstacle proximity term.
CHOMP [4] was used as the local optimizer. c(x, �) is the
cost of the trajectory that results after the seed � is optimized.

5) Features �: Features �(x, �) are computed on a pair
of environment and seed. The optimization problem for this
case is (15). � is a vector containing information about
downsampled gradients around � and in a local region around
it.

6) Results: The distribution p(x) places large probability
mass on environments where obstacles are clustered. The
predictor at the first level predicts simple seeds that go
around these clusters. But there are environments which
require the optimal seed to be in a complicated homotopy
class. These are infrequent under p(x), so they are ignored
by the first predictor. Subsequent predictors focus on these
environments, making customized predictions. Figures 3
and 4 make this point with specific examples.

Fig. 3: Training phase for Section V-A. The objective is to optimize a trajec-
tory from start to goal (cyan dots) in an obstacle field (grayscale image). The
examples shown are problems solved by predictors at different levels and the
trajectories shown are post-optimization. The level 1 predictor (red) learns
a simple classification rule to solve a large number of problems—it predicts
seeds that simply go around a cluster of obstacles to achieve the lowest cost.
The level 2 predictor (blue) focusses on and solves environments that level 1
did not solve. It learns to predict seeds in better homotopy classes. The level
3 predictor (green) focusses on corner cases, e.g the two instances shown
have the optimal trajectory passing through a narrow gap that is surrounded
by local minima. The level 3 predictor learns seeds that are optimized into
this narrow gap.

B. Heuristic Prediction in Search Based Planning
1) Motivation: Heuristics are essential to improving the

runtime performance of search based planning. Recent ap-
proaches such as MHA* [5] create a framework that allows
the use of an inadmissible heuristic as long as it is anchored
by weighted A*. MHA* allows heuristics to have a lot of
flexibility and effectively act as modules that expand promis-
ing states only. Given a library of inadmissible heuristics, list
prediction can be used to predict a small subset of heuristics.

2) Environment x and distribution p(x): The objective is
to the plan the motion of a 4 link arm from start to goal.
The environment x consists of two rectangular blocks, one
above and one below the arm. p(x) is such that the horizontal
positions of the blocks are uniformly random. See Figure 5.

3) Element � and library L: An element is an inad-
missible heuristic. A heuristic is an exponential kernel on
a chosen state, called an ‘attractor state’. The heuristic
penalizes arm states away from the attractor state 2. A library
of heuristics is generated by randomly sampling attractor
states. We also add an element to the library corresponding
to no heuristic—MHA* reverts to weighted A*.

2The kernel is defined only in 3 out of the 4 dimensions, i.e, the function
is invariant to the base joint.

Figure 3.28: Evaluation of dynamic ensemble meta-planner on a spectrum of motion planner applications - Choosing
seed trajectory for 2D trajectory optimization, 7D trajectory optimization, heuristic prediction for 4D arm planning
and planner prediction for 2D system. (a) Details about the dataset for each application (b) Illustrations of the 4
applications and the average loss of the meta-planner for different ensemble sizes and surrogate losses (c) Training
phase - the examples shown are problems solved by predictors at different levels and the trajectories shown are post-
optimization. (d) Test phase - the environment on the left is easily solved by the level 1 predictor (red) while the
environment on the right is solved only by level 3 predictor (right). (e) The predictor at level 3 predicts a heuristic
(green) that tucks the arm in a non-trivial configuration that allows it to pass through the gap. (f) The predictor at level
3 predicts RRT*-Tunnel, as it concentrates sampling in a tunnel around the initial straightline solution, and finds a
path through the gap in the wall.

67

] 4D arm planner
heuristic prediction

] 2D geometric
planner prediction

therefore CHOMP has a difficult time finding a valid trajectory
using this initial seed.

(a) The default straight-line initialization of CHOMP is marked
in orange. Notice this initial seed goes straight through the
obstacle and causes CHOMP to fail to find a collision-free
trajectory.

(b) The initialization seed for CHOMP found using CONSE-
QOPT is marked in orange. Using this initial seed CHOMP is
able to find a collision free path that also has a relatively short
execution time.

Fig. 2: CHOMP initialization trajectories generated as control
actions for CONSEQOPT. Blue lines trace the end effector path
of each trajectory in the library. Orange lines in each image
trace the initialization seed generated by the default straight-
line approach and by CONSEQOPT, respectively.

In our results we use a small number (1�3) of slots in our
sequence to ensure the overhead of ordering and evaluating the
library is small. When CHOMP fails to find a collision-free
trajectory for multiple initializations seeds, one can always

fall back on slow but complete planners. Thus the contextual
control sequence’s role is to quickly evaluate a few good
options and choose the initialization trajectory that will result
in the minimum execution time. We note that in our experi-
ments, the overhead of ordering and evaluating the library is
negligible as we rely on a fast predictor and features computed
as part of the trajectory optimization, and by choosing a
small sequence length we can effectively compute a motion
plan with expected planning time under 0.5s. We can solve
most manipulation problems that arise in our manipulation
research very quickly, falling back to initializing the trajectory
optimization with a complete motion planner only in the most
difficult of circumstances.

For each initialization trajectory, we calculate 17 simple
feature values which populate a row of the feature matrix Xi.
7 During training time, we evaluate each initialization seed
in our library on all environments in the training set, and
use their performance and features to train each regressor �i
in CONSEQOPT. At test time, we simply run Algorithm 2
without the training step to produce Y�1,...,�N as the sequence
of initialization seeds to be evaluated. Note that while the
first regressor uses only the 17 basic features, the subsequent
regressors also include the difference in feature values between
the remaining actions and the actions chosen by the previous
regressors. These difference features improve the algorithm’s
ability to consider trajectory diversity in the chosen actions.

We compare CONSEQOPT with two methods of ranking the
initialization library: a random ordering of the actions, and an
ordering by sorting the output of the first regressor. Sorting by
the first regressor is functionally the same as maximizing the
absolute benefit rather than the marginal benefit at each slot.
We compare the number of CHOMP failures as well as the
average execution time of the final trajectory. For execution
time, we assume the robot can be actuated at 1 rad/second for
each joint and use the shortest trajectory generated using the
N seeds ranked by CONSEQOPT as the performance. If we
fail to find a collision free trajectory and need to fall back to
a complete planner (RRT [15] plus trajectory optimization),
we apply a maximum execution time penalty of 40 seconds
due to the longer computation time and resulting trajectory.

The results over 212 test environments are summarized
in Figure 3. With only simple straight line initialization,
CHOMP is unable to find a collision free trajectory in 162/212
environments, with a resulting average execution time of 33.4s.
While a single regressor (N = 1) can reduce the number of
CHOMP failures from 162 to 79 and the average execution
time from 33.4s to 18.2s, when we extend the sequence
length, CONSEQOPT is able to reduce both metrics faster
than a ranking by sorting the output of the first regressor.
This is because for N > 1, CONSEQOPT chooses a primitive

7Length of trajectory in joint space; length of trajectory in task space, the
xyz values of the end effector position at the exploration point (3 values), the
distance field values used by CHOMP at the quarter points of the trajectory
(3 values), joint values of the first 4 joints at both the exploration point (4
values) and the target pose (4 values), and whether the initialization seed is
in the same left/right kinematic arm configuration as the target pose.

Level 1 Level 2 Level 3

BIT* RRT-Connect RRT*-Tunnel

Seed Prediction 2D Seed Prediction 7D Heuristic Prediction Planner Prediction
(a)

(b)
Level 1 Level 2 Level 3

Solved by Level 1 Solved by Level 3

Level 1 Level 2 Level 3

Level 1 Level 2 Level 3

Attractor State Heuristics

Solved by Level 3

Start StateGoal State

Level 1 Level 2 Level 3

BIT* RRT-Connect RRT*-Tunnel

(c)

(d)

(e)

(f)

TABLE II: Seed Trajectory Prediction for 2D Point Robot

List Size Hinge Loss Square Loss

Single Element 0.1073 0.1106
3 Elements 0.0715 0.0721

TABLE III: Seed Trajectory Prediction for 7D Manipulator

List Size Hinge Loss Square Loss

Single Element 15.454 13.013
3 Elements 3.6085 3.6799

TABLE IV: Heuristic Prediction

List Size Hinge Loss Square Loss

Single Element 0.0976 0.0933
3 Elements 0.0325 0.0360

TABLE V: Planner Prediction

List Size Hinge Loss Square Loss

Single Element 0.2222 0.2281
3 Elements 0.0222 0.0281

Fig. 4: Test predictions for Section V-A. The environment on the left is
solved by the level 1 predictor (red) which predicts an initial seed that goes
around the obstacles on optimization. On the other hand, the environment
on the right is solved only by level 3. The optimal trajectory passes through
a narrow gap with a kink while there are many local minima surrounding
this trajectory. Level 1 (red) makes a naive prediction that gets stuck cutting
across obstacles. Level 2 (blue) comes closer to solving it but chooses a
wrong homotopy class. Level 3 (green) solves the environment by predicting
a seed which is optimized into the narrow gap.

4) Costs c(x, �): The element � is used as a heuristic input
to MHA*. MHA* plans on a lattice created by discretizing
each joint space 12 times. c(x, �) is set to be the number
of states expanded when using � (a maximum of 10000
expansions are allowed). The cost is scaled from 0 to 10.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: Under p(x), environments frequently have a
sufficient gap between the two blocks for the arm to pass
through. The predictor at the first level predicts attractor
states corresponding to simple arm ‘tucking’ configurations.
Environments in which the blocks are close together, leading
to a narrow gap, are infrequent. These environments require
a complicated ‘tucking’ attractor state. The subsequent pre-
dictors solve such environments, as seen in Figure 5.

C. Planner Prediction in Adaptive Motion Planning
1) Motivation: The effectiveness of a planning algorithm

to plan a trajectory in an environment within a time constraint
depends on the configuration of obstacles. The notion of

a list of planners to create a planner ensemble has shown
promising results [8].

2) Environment x and distribution p(x): The objective
is to the plan the motion of a 2D point robot from start
to goal. The environment x consists of circular obstacles.
p(x) is such that the positions and radii of the obstacles are
sampled uniformly. See Figure 6.

3) Element � and library L: Each element is a sam-
pling based motion planning algorithm. A library of such
algorithms is generated by varying tree growing strategies,
sampling strategies and heuristics.

4) Costs c(x, �): The planner � is used to plan a trajectory
within a time constraint of 0.05s. c(x, �) is set to be equal
to the path length of the solution. The cost is affinely
transformed to [0, 20]. If no feasible path was found, c(x, �)
is set to 20.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: The first predictor predicts planners such as
BIT*, RRT-Connect and Informed-RRT*. These planners
don’t make strong assumptions about structure in the en-
vironment, which results in good performance over a wide
range of environments. Environments with structure are
infrequent under p(x). We observe that subsequent predictors
predict planners which exploit structure. See Figure 6.

VI. RELATED WORK

With a formulation for list prediction in place, we can
discuss related work in a common language. Jetchev and
Toussaint [9] was an early work on predicting seeds for
trajectory planning. Cost regression, which we defined as
directly regressing from features to costs, and classification
were implemented. Classification was found to perform
better. Our work uses the formalism of loss-sensitive clas-
sification to arrive at both regression and classification. In
IV-B, we also reason about cost regression being a more
difficult task than classification. Dragan et al. [10] predicted
the usefulness of end-effector goals for trajectory planning
on a manipulator. Their work was not limited to using a
library of elements. However, we offer justifications for
some heuristics they considered. For example, [10] used
a threshold on costs to focus on relevant environments in

TABLE II: Seed Trajectory Prediction for 2D Point Robot

List Size Hinge Loss Square Loss

Single Element 0.1073 0.1106
3 Elements 0.0715 0.0721

TABLE III: Seed Trajectory Prediction for 7D Manipulator

List Size Hinge Loss Square Loss

Single Element 15.454 13.013
3 Elements 3.6085 3.6799

TABLE IV: Heuristic Prediction

List Size Hinge Loss Square Loss

Single Element 0.0976 0.0933
3 Elements 0.0325 0.0360

TABLE V: Planner Prediction

List Size Hinge Loss Square Loss

Single Element 0.2222 0.2281
3 Elements 0.0222 0.0281

Fig. 4: Test predictions for Section V-A. The environment on the left is
solved by the level 1 predictor (red) which predicts an initial seed that goes
around the obstacles on optimization. On the other hand, the environment
on the right is solved only by level 3. The optimal trajectory passes through
a narrow gap with a kink while there are many local minima surrounding
this trajectory. Level 1 (red) makes a naive prediction that gets stuck cutting
across obstacles. Level 2 (blue) comes closer to solving it but chooses a
wrong homotopy class. Level 3 (green) solves the environment by predicting
a seed which is optimized into the narrow gap.

4) Costs c(x, �): The element � is used as a heuristic input
to MHA*. MHA* plans on a lattice created by discretizing
each joint space 12 times. c(x, �) is set to be the number
of states expanded when using � (a maximum of 10000
expansions are allowed). The cost is scaled from 0 to 10.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: Under p(x), environments frequently have a
sufficient gap between the two blocks for the arm to pass
through. The predictor at the first level predicts attractor
states corresponding to simple arm ‘tucking’ configurations.
Environments in which the blocks are close together, leading
to a narrow gap, are infrequent. These environments require
a complicated ‘tucking’ attractor state. The subsequent pre-
dictors solve such environments, as seen in Figure 5.

C. Planner Prediction in Adaptive Motion Planning
1) Motivation: The effectiveness of a planning algorithm

to plan a trajectory in an environment within a time constraint
depends on the configuration of obstacles. The notion of

a list of planners to create a planner ensemble has shown
promising results [8].

2) Environment x and distribution p(x): The objective
is to the plan the motion of a 2D point robot from start
to goal. The environment x consists of circular obstacles.
p(x) is such that the positions and radii of the obstacles are
sampled uniformly. See Figure 6.

3) Element � and library L: Each element is a sam-
pling based motion planning algorithm. A library of such
algorithms is generated by varying tree growing strategies,
sampling strategies and heuristics.

4) Costs c(x, �): The planner � is used to plan a trajectory
within a time constraint of 0.05s. c(x, �) is set to be equal
to the path length of the solution. The cost is affinely
transformed to [0, 20]. If no feasible path was found, c(x, �)
is set to 20.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: The first predictor predicts planners such as
BIT*, RRT-Connect and Informed-RRT*. These planners
don’t make strong assumptions about structure in the en-
vironment, which results in good performance over a wide
range of environments. Environments with structure are
infrequent under p(x). We observe that subsequent predictors
predict planners which exploit structure. See Figure 6.

VI. RELATED WORK

With a formulation for list prediction in place, we can
discuss related work in a common language. Jetchev and
Toussaint [9] was an early work on predicting seeds for
trajectory planning. Cost regression, which we defined as
directly regressing from features to costs, and classification
were implemented. Classification was found to perform
better. Our work uses the formalism of loss-sensitive clas-
sification to arrive at both regression and classification. In
IV-B, we also reason about cost regression being a more
difficult task than classification. Dragan et al. [10] predicted
the usefulness of end-effector goals for trajectory planning
on a manipulator. Their work was not limited to using a
library of elements. However, we offer justifications for
some heuristics they considered. For example, [10] used
a threshold on costs to focus on relevant environments in

TABLE II: Seed Trajectory Prediction for 2D Point Robot

List Size Hinge Loss Square Loss

Single Element 0.1073 0.1106
3 Elements 0.0715 0.0721

TABLE III: Seed Trajectory Prediction for 7D Manipulator

List Size Hinge Loss Square Loss

Single Element 15.454 13.013
3 Elements 3.6085 3.6799

TABLE IV: Heuristic Prediction

List Size Hinge Loss Square Loss

Single Element 0.0976 0.0933
3 Elements 0.0325 0.0360

TABLE V: Planner Prediction

List Size Hinge Loss Square Loss

Single Element 0.2222 0.2281
3 Elements 0.0222 0.0281

Fig. 4: Test predictions for Section V-A. The environment on the left is
solved by the level 1 predictor (red) which predicts an initial seed that goes
around the obstacles on optimization. On the other hand, the environment
on the right is solved only by level 3. The optimal trajectory passes through
a narrow gap with a kink while there are many local minima surrounding
this trajectory. Level 1 (red) makes a naive prediction that gets stuck cutting
across obstacles. Level 2 (blue) comes closer to solving it but chooses a
wrong homotopy class. Level 3 (green) solves the environment by predicting
a seed which is optimized into the narrow gap.

4) Costs c(x, �): The element � is used as a heuristic input
to MHA*. MHA* plans on a lattice created by discretizing
each joint space 12 times. c(x, �) is set to be the number
of states expanded when using � (a maximum of 10000
expansions are allowed). The cost is scaled from 0 to 10.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: Under p(x), environments frequently have a
sufficient gap between the two blocks for the arm to pass
through. The predictor at the first level predicts attractor
states corresponding to simple arm ‘tucking’ configurations.
Environments in which the blocks are close together, leading
to a narrow gap, are infrequent. These environments require
a complicated ‘tucking’ attractor state. The subsequent pre-
dictors solve such environments, as seen in Figure 5.

C. Planner Prediction in Adaptive Motion Planning
1) Motivation: The effectiveness of a planning algorithm

to plan a trajectory in an environment within a time constraint
depends on the configuration of obstacles. The notion of

a list of planners to create a planner ensemble has shown
promising results [8].

2) Environment x and distribution p(x): The objective
is to the plan the motion of a 2D point robot from start
to goal. The environment x consists of circular obstacles.
p(x) is such that the positions and radii of the obstacles are
sampled uniformly. See Figure 6.

3) Element � and library L: Each element is a sam-
pling based motion planning algorithm. A library of such
algorithms is generated by varying tree growing strategies,
sampling strategies and heuristics.

4) Costs c(x, �): The planner � is used to plan a trajectory
within a time constraint of 0.05s. c(x, �) is set to be equal
to the path length of the solution. The cost is affinely
transformed to [0, 20]. If no feasible path was found, c(x, �)
is set to 20.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: The first predictor predicts planners such as
BIT*, RRT-Connect and Informed-RRT*. These planners
don’t make strong assumptions about structure in the en-
vironment, which results in good performance over a wide
range of environments. Environments with structure are
infrequent under p(x). We observe that subsequent predictors
predict planners which exploit structure. See Figure 6.

VI. RELATED WORK

With a formulation for list prediction in place, we can
discuss related work in a common language. Jetchev and
Toussaint [9] was an early work on predicting seeds for
trajectory planning. Cost regression, which we defined as
directly regressing from features to costs, and classification
were implemented. Classification was found to perform
better. Our work uses the formalism of loss-sensitive clas-
sification to arrive at both regression and classification. In
IV-B, we also reason about cost regression being a more
difficult task than classification. Dragan et al. [10] predicted
the usefulness of end-effector goals for trajectory planning
on a manipulator. Their work was not limited to using a
library of elements. However, we offer justifications for
some heuristics they considered. For example, [10] used
a threshold on costs to focus on relevant environments in

TABLE II: Seed Trajectory Prediction for 2D Point Robot

List Size Hinge Loss Square Loss

Single Element 0.1073 0.1106
3 Elements 0.0715 0.0721

TABLE III: Seed Trajectory Prediction for 7D Manipulator

List Size Hinge Loss Square Loss

Single Element 15.454 13.013
3 Elements 3.6085 3.6799

TABLE IV: Heuristic Prediction

List Size Hinge Loss Square Loss

Single Element 0.0976 0.0933
3 Elements 0.0325 0.0360

TABLE V: Planner Prediction

List Size Hinge Loss Square Loss

Single Element 0.2222 0.2281
3 Elements 0.0222 0.0281

Fig. 4: Test predictions for Section V-A. The environment on the left is
solved by the level 1 predictor (red) which predicts an initial seed that goes
around the obstacles on optimization. On the other hand, the environment
on the right is solved only by level 3. The optimal trajectory passes through
a narrow gap with a kink while there are many local minima surrounding
this trajectory. Level 1 (red) makes a naive prediction that gets stuck cutting
across obstacles. Level 2 (blue) comes closer to solving it but chooses a
wrong homotopy class. Level 3 (green) solves the environment by predicting
a seed which is optimized into the narrow gap.

4) Costs c(x, �): The element � is used as a heuristic input
to MHA*. MHA* plans on a lattice created by discretizing
each joint space 12 times. c(x, �) is set to be the number
of states expanded when using � (a maximum of 10000
expansions are allowed). The cost is scaled from 0 to 10.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: Under p(x), environments frequently have a
sufficient gap between the two blocks for the arm to pass
through. The predictor at the first level predicts attractor
states corresponding to simple arm ‘tucking’ configurations.
Environments in which the blocks are close together, leading
to a narrow gap, are infrequent. These environments require
a complicated ‘tucking’ attractor state. The subsequent pre-
dictors solve such environments, as seen in Figure 5.

C. Planner Prediction in Adaptive Motion Planning
1) Motivation: The effectiveness of a planning algorithm

to plan a trajectory in an environment within a time constraint
depends on the configuration of obstacles. The notion of

a list of planners to create a planner ensemble has shown
promising results [8].

2) Environment x and distribution p(x): The objective
is to the plan the motion of a 2D point robot from start
to goal. The environment x consists of circular obstacles.
p(x) is such that the positions and radii of the obstacles are
sampled uniformly. See Figure 6.

3) Element � and library L: Each element is a sam-
pling based motion planning algorithm. A library of such
algorithms is generated by varying tree growing strategies,
sampling strategies and heuristics.

4) Costs c(x, �): The planner � is used to plan a trajectory
within a time constraint of 0.05s. c(x, �) is set to be equal
to the path length of the solution. The cost is affinely
transformed to [0, 20]. If no feasible path was found, c(x, �)
is set to 20.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: The first predictor predicts planners such as
BIT*, RRT-Connect and Informed-RRT*. These planners
don’t make strong assumptions about structure in the en-
vironment, which results in good performance over a wide
range of environments. Environments with structure are
infrequent under p(x). We observe that subsequent predictors
predict planners which exploit structure. See Figure 6.

VI. RELATED WORK

With a formulation for list prediction in place, we can
discuss related work in a common language. Jetchev and
Toussaint [9] was an early work on predicting seeds for
trajectory planning. Cost regression, which we defined as
directly regressing from features to costs, and classification
were implemented. Classification was found to perform
better. Our work uses the formalism of loss-sensitive clas-
sification to arrive at both regression and classification. In
IV-B, we also reason about cost regression being a more
difficult task than classification. Dragan et al. [10] predicted
the usefulness of end-effector goals for trajectory planning
on a manipulator. Their work was not limited to using a
library of elements. However, we offer justifications for
some heuristics they considered. For example, [10] used
a threshold on costs to focus on relevant environments in

TABLE I: Application Details

Application Library Length L List Budget B Feature Dimension d Train Data N Validation Data Test Data

Seed Prediction 2D 39 3 73 700 200 100
Seed Prediction 7D 30 3 17 310 112 100
Heuristic Prediction 101 3 1620 675 193 96
Planner Prediction 100 3 1764 579 166 82

Empirical risks for all applications are in Tables II-V. We
observe that the risk of a list is significantly lower than the
risk of a single element, irrespective of the application. In
addition, the risk is lower when using the hinge surrogate
loss compared to the square surrogate loss. Each subsection
is accompanied by figures showing sample lists predicted for
the application.

A. Seed Prediction for Trajectory Optimization of 2D Point
Robot

1) Motivation: For the problem of planning a trajectory
from a start to goal configuration, local trajectory optimiza-
tion is an approach where an initial seed joining the start
to goal is optimized. While these methods are fast, their
solution quality is heavily dependent on the initial seed.
Often these methods converge to a bad local minimum
around the initial seed, e.g, passing through the middle of
obstacles. The effectiveness of a seed is not known apriori.
A computationally expensive approach is to optimize every
element in a library of seed trajectories. List prediction can
be used instead to predict a small set of elements.

2) Environment x and distribution p(x): We consider a
point robot in a 2D environment. The environment x consists
of square obstacles generated from a uniform random distri-
bution p(x), see Figure 3. The start and goal configuration
are fixed for all environments.

3) Element � and library L: An element is a seed trajec-
tory that connects the start to the goal. The library L consists
of diverse trajectories that are optimal on environments
drawn from p(x).

4) Costs c(x, �): A seed � is used as an input to a local
optimizer in environment x. The cost of a trajectory is the
sum of a smoothness term and an obstacle proximity term.
CHOMP [4] was used as the local optimizer. c(x, �) is the
cost of the trajectory that results after the seed � is optimized.

5) Features �: Features �(x, �) are computed on a pair
of environment and seed. The optimization problem for this
case is (15). � is a vector containing information about
downsampled gradients around � and in a local region around
it.

6) Results: The distribution p(x) places large probability
mass on environments where obstacles are clustered. The
predictor at the first level predicts simple seeds that go
around these clusters. But there are environments which
require the optimal seed to be in a complicated homotopy
class. These are infrequent under p(x), so they are ignored
by the first predictor. Subsequent predictors focus on these
environments, making customized predictions. Figures 3
and 4 make this point with specific examples.

Fig. 3: Training phase for Section V-A. The objective is to optimize a trajec-
tory from start to goal (cyan dots) in an obstacle field (grayscale image). The
examples shown are problems solved by predictors at different levels and the
trajectories shown are post-optimization. The level 1 predictor (red) learns
a simple classification rule to solve a large number of problems—it predicts
seeds that simply go around a cluster of obstacles to achieve the lowest cost.
The level 2 predictor (blue) focusses on and solves environments that level 1
did not solve. It learns to predict seeds in better homotopy classes. The level
3 predictor (green) focusses on corner cases, e.g the two instances shown
have the optimal trajectory passing through a narrow gap that is surrounded
by local minima. The level 3 predictor learns seeds that are optimized into
this narrow gap.

B. Heuristic Prediction in Search Based Planning
1) Motivation: Heuristics are essential to improving the

runtime performance of search based planning. Recent ap-
proaches such as MHA* [5] create a framework that allows
the use of an inadmissible heuristic as long as it is anchored
by weighted A*. MHA* allows heuristics to have a lot of
flexibility and effectively act as modules that expand promis-
ing states only. Given a library of inadmissible heuristics, list
prediction can be used to predict a small subset of heuristics.

2) Environment x and distribution p(x): The objective is
to the plan the motion of a 4 link arm from start to goal.
The environment x consists of two rectangular blocks, one
above and one below the arm. p(x) is such that the horizontal
positions of the blocks are uniformly random. See Figure 5.

3) Element � and library L: An element is an inad-
missible heuristic. A heuristic is an exponential kernel on
a chosen state, called an ‘attractor state’. The heuristic
penalizes arm states away from the attractor state 2. A library
of heuristics is generated by randomly sampling attractor
states. We also add an element to the library corresponding
to no heuristic—MHA* reverts to weighted A*.

2The kernel is defined only in 3 out of the 4 dimensions, i.e, the function
is invariant to the base joint.

Figure 3.28: Evaluation of dynamic ensemble meta-planner on a spectrum of motion planner applications - Choosing
seed trajectory for 2D trajectory optimization, 7D trajectory optimization, heuristic prediction for 4D arm planning
and planner prediction for 2D system. (a) Details about the dataset for each application (b) Illustrations of the 4
applications and the average loss of the meta-planner for different ensemble sizes and surrogate losses (c) Training
phase - the examples shown are problems solved by predictors at different levels and the trajectories shown are post-
optimization. (d) Test phase - the environment on the left is easily solved by the level 1 predictor (red) while the
environment on the right is solved only by level 3 predictor (right). (e) The predictor at level 3 predicts a heuristic
(green) that tucks the arm in a non-trivial configuration that allows it to pass through the gap. (f) The predictor at level
3 predicts RRT*-Tunnel, as it concentrates sampling in a tunnel around the initial straightline solution, and finds a
path through the gap in the wall.

67

] Helicopter
planner

prediction

Random
No Fly Zones

Start

Goal

Table 3.2: Perf

Expert Planner Failure Cost Cost
Fraction (overall) (if success)

RRT*Uniform1
0.786 0.890 0.487

RRT*Workspace1
0.213 0.364 0.193

RRT*Workspace2
0.181 0.332 0.185

RRT*Tunnel1
0.167 0.256 0.107

RRT*Tunnel2
0.391 0.432 0.068

BIT*1
0.707 0.881 0.596

BIT*2
0.948 0.981 0.636

RRTConnect1
0.186 0.876 0.848

T-RRT1
0.248 0.744 0.660

T-RRT2
0.235 0.732 0.650

LBT-RRT1
0.925 0.963 0.506

LBT-RRT2
0.941 0.970 0.496

InformedRRT*1
0.996 0.996 0.000

STRIDE1
0.668 0.893 0.677

EST1
0.352 0.854 0.775

FixedDescent1
0.694 0.743 0.161

FixedDescent2
0.946 0.964 0.339

FixedDescent3
0.973 0.973 0.009

FixedDescent4
0.983 0.983 0.000

FixedDescent5
0.987 0.992 0.403

LatPrim1
0.223 0.448 0.289

47

Table 3.2: Perf

Expert Planner Failure Cost Cost
Fraction (overall) (if success)

RRT*Uniform1
0.786 0.890 0.487

RRT*Workspace1
0.213 0.364 0.193

RRT*Workspace2
0.181 0.332 0.185

RRT*Tunnel1
0.167 0.256 0.107

RRT*Tunnel2
0.391 0.432 0.068

BIT*1
0.707 0.881 0.596

BIT*2
0.948 0.981 0.636

RRTConnect1
0.186 0.876 0.848

T-RRT1
0.248 0.744 0.660

T-RRT2
0.235 0.732 0.650

LBT-RRT1
0.925 0.963 0.506

LBT-RRT2
0.941 0.970 0.496

InformedRRT*1
0.996 0.996 0.000

STRIDE1
0.668 0.893 0.677

EST1
0.352 0.854 0.775

FixedDescent1
0.694 0.743 0.161

FixedDescent2
0.946 0.964 0.339

FixedDescent3
0.973 0.973 0.009

FixedDescent4
0.983 0.983 0.000

FixedDescent5
0.987 0.992 0.403

LatPrim1
0.223 0.448 0.289

Table 3.3: Perf

Learner Ensemble Ensemble
Budget = 1 Budget = 3

Hinge Loss + Linear 0.104 0.035

Square Loss + Linear 0.120 0.055

Unweighted Loss + Random Forest 0.101 0.021

47

(a)

(b)

(c) (d)

RRT*Tunnel1 fails
due to aggressive

sampling
RRT*Tunnel2 succeeds

as less aggressive

Application: Large UAV flying long durations

 37

Training

Total
Time

Total
Distance

Top
Speed Missions

151.9 min 15.833 km 10 m/s 45

Success: 95.56% (compared to 64% for baseline)

5x

Training in simulation

 38

5.8. Closed-loop evaluation of dynamic ensemble on di�erent UAV platforms 89

rrtstar_tunnel_1
rrtstar_tunnel_2
bitstar_1
informed_rrtstar_1
single_detour_1
single_detour_2
double_detour_1
double_detour_2

Data
(Train / Test)

1000
(70 / 30)

Number of planners 8

Feature dim 10

Risk (ensemble: 1) 0.20

Risk (ensemble: 2) 0.08

Training data (Monte-carlo) Planner library Training performance

�
�

�

1 5 8
0 2 4
3 3 -8

�
�

�

�
�

�

1 5 8
0 2 4
3 3 -8

�
�

�

Pr
ec

isi
on

pl

an
ne

rs
G

en
er

al
 p

ur
po

se

pl
an

ne
rs

(a) (b) (c)

bitstar_1 rrtstar_tunnel_1 double_detour_2

Example where general purpose planners match precision planners
(d)

rrtstar_tunnel_1 bitstar_1

Example where only rrtstar_tunnel_1 solves
(e)

rrtstar_tunnel_1 double_detour_1

Example where only double_detour_1 solves
(f)

Planner Cost
rrtstar_tunnel_1 ∞
rrtstar_tunnel_2 ∞

bitstar_1 ∞
informed_rrtstar_1 ∞

single_detour_1 ∞
single_detour_2 ∞
double_detour_1 25.35
double_detour_2 ∞

Planner Cost
rrtstar_tunnel_1 16.09
rrtstar_tunnel_2 ∞

bitstar_1 17.47
informed_rrtstar_1 ∞

single_detour_1 ∞
single_detour_2 15.87
double_detour_1 ∞
double_detour_2 20.49

Planner Cost
rrtstar_tunnel_1 18.21
rrtstar_tunnel_2 ∞

bitstar_1 ∞
informed_rrtstar_1 ∞

single_detour_1 ∞
single_detour_2 ∞
double_detour_1 ∞
double_detour_2 ∞

Figure 5.10: Details for training the adaptive ensemble meta-planner that was executed during the flight test.

ensemble cycling through di�erent planners at di�erent timesteps is shown in Fig 5.11(a). A
zoomed in version is shown in Fig 5.11(b)(c). Interestingly, RRT*Tunnel2 is never selected as

(Monte-carlo sampling of planning problems)

rrtstar_tunnel_1 (general purpose) double_detour_1 (precision planner)

Edge-cases which only a precision planner solves

Analysis of test time performance

 39

nz = 462
0 50 100 150 200

0
5

Ac
tiv

e

pl
an

ne
r

Timesteps

5 10 15 20 25 30 35 40 45 50

1

2

3

4

5

6

7

8

rrtstar_tunnel_1

rrtstar_tunnel_2
bitstar_1

informed_rrtstar_1
single_detour_1
single_detour_2
double_detour_1
double_detour_2

Conventional
problem
solved by
general
purpose
planner

5 10 15 20 25 30 35 40 45 50

1

2

3

4

5

6

7

8

rrtstar_tunnel_1

rrtstar_tunnel_2
bitstar_1

informed_rrtstar_1
single_detour_1
single_detour_2
double_detour_1
double_detour_2

Edge-case
problem

(goal too close
to pillar)
solved by
precision
planner

Platform 2: Small UAV flying in diverse scenarios

 40

(Higher speed, curvature constraints, more clearance) (Lower speed, unconstrained, less clearance)
Ensemble: double_detour_1, rrtstar_tunnel_1 Ensemble: astar_3, bitstar_3

(Choudhury, Maeta, Dugar, MacAllister, Scherer)

 41

Approach outline

Train
heuristic
policies

Train
edge-evaluation

policies

Planning
Problem

Planner
Planning
Solution

Planner 1

Planner 2

Planner N

Planner with tunable policyLibrary

Train
meta-planner

? ?

Q1. Framework to assemble real-time planners?

Expert planner with custom implicit graphs

Greedily train an ensemble

Q2. (Black-box adaptation)
Select planners from a library?

Q3. (White-box adaptation)
Directly learn planning policies?

White-box adaptive planning paradigm

Planning Problem Distribution

Motion
Planner

Human Designer

Domain Information
+

Algorithm

White Box Planner

Learnt Policy

One time design
of white-box
planner with
tunable policy

How can we train a planning policy?

 42

(E.g. a heuristic policy, a sampling policy, a collision-checking policy ..)

 43

Approach outline

Train
heuristic
policies

Train
edge-evaluation

policies

Planning
Problem

Planner
Planning
Solution

Planner 1

Planner 2

Planner N

Planner with tunable policyLibrary

Train
meta-planner

? ?

Q1. Framework to assemble real-time planners?

Expert planner with custom implicit graphs

Greedily train an ensemble

Q2. (Black-box adaptation)
Select planners from a library?

Q3. (White-box adaptation)
Directly learn planning policies?

Heuristic policies in search based planning

 44

Start

Goal

Objective: Guide a search tree from start to goal to find a feasible path

Why does a heuristic need to be adaptive?

 45

2 Journal Title XX(X)

Training Dataset

⇡

Learnt Policy

Learns
concentrated
spiral motion

Learns
large sweeping

motion

⇡

Learnt Policy

Training Dataset

(a)

(b)

Worlds with
‘bug traps’

Heuristic does not get trapped,
searches along periphery

Worlds with paths
around centre line

Heuristic greedily searches
around centre line

LEARNT HEURISTIC POLICYINFLATED EUCLIDEAN HEURISTIC

Heuristic gets trapped
in ‘bug trap’ due to greediness

Heuristic is not greedy enough
and expands more states

Figure 1. Sequential decision making in informative path planning and search based planning. The implicit structure of the
environment affects the performance of policies in both tasks. (a) The effectiveness of a policy to gather information depends on
the distribution of worlds. (left) When the distribution corresponds to a scene containing ladders, the learnt policy executes a helical
motion around parts of the ladder already observed as it is unlikely that there is information elsewhere. (right) When the distribution
corresponds to a scene from a construction site, the learnt policy executes a large sweeping motion as information is likely to be
dispersed. (b) A learnt heuristic policy adapts to different obstacle configurations to minimize search effort. All schematics show the
evolution of a search algorithm as the expansion of a search wavefront (expanded(white), invalid(black), unexpanded(grey)) from
start (green) to goal (blue). A commonly used inflated Euclidean heuristic cannot adapt to different environments, e.g it gets stuck
in bugtraps. On the other hand, the learnt policy is able to infer the presence of a bug trap when trained on such a distribution and
switch to greedy behaviour when trained on other distributions.

accordingly. Moreover, this must occur in a pure data-
driven fashion without the need for human intervention.
Fortunately, recent advances in affordable sensors and
actuators have enabled mass deployment of robots that
navigate, interact and collect real data. This motivates us to
examine the following question:

How can we design planning algorithms
that, subject to on-board computation and
sensing constraints, maximize their expected
performance on the actual distribution of
problems that a robot encounters?

1.1 Motivation
We look at two domains - informative path planning
and search based planning. We briefly delve into these
motivations and make the case for data-driven approaches
in both.

1.1.1 Informative Path Planning We consider the follow-
ing information gathering problem - given a hidden world
map, sampled from a prior distribution, the goal is to succes-
sively visit sensing locations such that the amount of relevant
information uncovered is maximized while not exceeding
a specified fuel budget. This problem fundamentally recurs

Prepared using sagej.cls

Prior work has mainly focussed on bounding solution quality  
by defining heuristics as distance estimate of cost-to-go (Pohl’70, Pearl’84)

Problem: Small estimation error leads to excessive expansions

Compute estimates using relaxation-based (Likhachev et al.’09, Dolgov et al.’08)
or learning-based (Xu et al.’07, Garrett et al.’16, Aine et al.’15, Paden et al.’16) approaches

2 Journal Title XX(X)

Training Dataset

⇡

Learnt Policy

Learns
concentrated
spiral motion

Learns
large sweeping

motion

⇡

Learnt Policy

Training Dataset

(a)

(b)

Worlds with
‘bug traps’

Heuristic does not get trapped,
searches along periphery

Worlds with paths
around centre line

Heuristic greedily searches
around centre line

LEARNT HEURISTIC POLICYINFLATED EUCLIDEAN HEURISTIC

Heuristic gets trapped
in ‘bug trap’ due to greediness

Heuristic is not greedy enough
and expands more states

Figure 1. Sequential decision making in informative path planning and search based planning. The implicit structure of the
environment affects the performance of policies in both tasks. (a) The effectiveness of a policy to gather information depends on
the distribution of worlds. (left) When the distribution corresponds to a scene containing ladders, the learnt policy executes a helical
motion around parts of the ladder already observed as it is unlikely that there is information elsewhere. (right) When the distribution
corresponds to a scene from a construction site, the learnt policy executes a large sweeping motion as information is likely to be
dispersed. (b) A learnt heuristic policy adapts to different obstacle configurations to minimize search effort. All schematics show the
evolution of a search algorithm as the expansion of a search wavefront (expanded(white), invalid(black), unexpanded(grey)) from
start (green) to goal (blue). A commonly used inflated Euclidean heuristic cannot adapt to different environments, e.g it gets stuck
in bugtraps. On the other hand, the learnt policy is able to infer the presence of a bug trap when trained on such a distribution and
switch to greedy behaviour when trained on other distributions.

accordingly. Moreover, this must occur in a pure data-
driven fashion without the need for human intervention.
Fortunately, recent advances in affordable sensors and
actuators have enabled mass deployment of robots that
navigate, interact and collect real data. This motivates us to
examine the following question:

How can we design planning algorithms
that, subject to on-board computation and
sensing constraints, maximize their expected
performance on the actual distribution of
problems that a robot encounters?

1.1 Motivation
We look at two domains - informative path planning
and search based planning. We briefly delve into these
motivations and make the case for data-driven approaches
in both.

1.1.1 Informative Path Planning We consider the follow-
ing information gathering problem - given a hidden world
map, sampled from a prior distribution, the goal is to succes-
sively visit sensing locations such that the amount of relevant
information uncovered is maximized while not exceeding
a specified fuel budget. This problem fundamentally recurs

Prepared using sagej.cls

Problem: Minimize expansions in BFS

 46

6 Journal Title XX(X)

2010; Javdani et al. 2013, 2014; Chen et al. 2015, 2016b)
). However, these strategies require explicitly sampling from
the posterior distribution over � which make it intractable to
apply for our setting.

Problem 4. HIDDEN-CON: Hidden World Map; Constrained
Travel Cost. Given a distribution of world maps, P (�), a
time horizon T , and a travel cost budget B, find a policy
that at time t, maps the history of nodes visited {vi}t

i=1 and
measurements received {yi}t

i=1 to compute the next node
vt+1 to visit at time t + 1, such that the expected utility is
maximized.

Such problems crop up in a wide number of areas
such as sensor planning for 3D surface reconstruction Isler
et al. (2016) and indoor mapping with UAVs Charrow
et al. (2015); Nelson and Michael (2015). Problem 4 does
not enjoy the adaptive submodularity property due to the
introduction of travel constraints. Hollinger et al. (2017,
2012) propose a heuristic based approach to select a subset
of informative nodes and perform minimum cost tours.
Singh et al. (2009) replan every step using a non-adaptive
information path planning algorithm. Inspired by adaptive
TSP approaches by Gupta et al. (2010), Lim et al. (2016,
2015) propose recursive coverage algorithms to learn policy
trees. However such methods cannot scale well to large state
and observation spaces. Heng et al. (2015) make a modular
approximation of the objective function. Isler et al. (2016)
survey a broad number of myopic information gain based
heuristics that work well in practice but have no formal
guarantees.

2.2 Search Based Planning
We now present a framework for search based planning
where the objective is to find a feasible path from start to
goal while minimizing search effort. We use this framework
to pose the problem of learning the optimal heuristic for a
given distribution over worlds and briefly discuss prior work
on this topic.

2.2.1 Framework We consider the problem of search on
a graph, G = (V, E), where vertices V represent robot
configurations and edges E represent potentially valid
movements of the robot between these configurations. Given
a pair of start and goal vertices, (vs, vg) 2 V , the objective
is to compute a path ⇠ ✓ E - a connected sequence of valid
edges. The implicit graph G can be compactly represented
by (vs, vg) and a successor function Succ(v) which returns
a list of outgoing edges and child vertices for a vertex
v 2 V . Hence a graph G is constructed during search by
repeatedly expanding vertices using Succ(v). Let � 2 M be
a representation of the world that is used to ascertain the
validity of an edge. An edge e 2 E is checked for validity
by invoking an evaluation function Eval(e, �) which is an
expensive operation and may require complex geometric
intersection operations (Dellin and Srinivasa 2016).

Alg. 1 defines a general search based planning
algorithm Search which takes as input the tuple
hvs, vg, Succ, Eval, �, Selecti and returns a valid path ⇠.
To ensure systematic search, the algorithm maintains the
following lists - an open list O ⇢ V of candidate vertices to
be expanded and a closed list C ⇢ V of vertices which have

World Map
(�)

Goal (vg)(vs)Start

Open List
(O)

(C)

(I)

Closed List

Invalid List

Figure 3. The search based planning problem. Given a world
map �, the agent has to guide a search tree from start vs to goal
vg by expanding vertices. At any given iteration, the open list O
represents the set of candidate vertices that can be expanded.
The closed list C represents the set of vertices already expanded.
The invalid list represents the set of edges that were found to be
in collision with the world. The status of every other vertex is
unknown. The search continues till the goal belongs to the open
list, i.e. a feasible path to goal has been found.

already been expanded. It also retains an additional invalid
list I ⇢ E of edges found to be in collision. These 3 lists
together represent the complete information available to the
algorithm at any given point of time. At a given iteration,
the algorithm uses this information to select a vertex v 2 O
to expand by invoking Select(O). It then expands v by
invoking Succ(v) and checking validity of edges using
Eval(e, �) to get a set of valid successor vertices Vsucc as
well as invalid edges Einv. The lists are then updated and the
process repeated till the goal vertex vg is uncovered. Fig. 3
illustrates this framework.

2.2.2 The Optimal Heuristic Problem In this work, we
focus on the feasible path problem and ignore the optimality
of the path. Although this is a restrictive setting, quickly
finding the feasible path is a very important problem in
robotics. Efficient feasible path planners such as RRT-
Connect (Kuffner and LaValle 2000) has proven highly
effective in high dimensional motion planning applications
such as robotic arm planning (LaValle 2006) and mobile
robot planning (Laumond et al. 1998). Hence we ignore the
traversal cost of an edge and deal with unweighted graphs.
We defer discussions on how to relax this restriction to
Section 8.2.

We view a heuristic policy as a selection function (Alg. 1,
Line 3) that selects a vertex v from the open list O.
The objective of the policy is to minimize the number
of expansions until the search terminates. Note that the
evolution of the open list O depends on the underlying world
map � which is hidden. Given a prior distribution over world
maps P (�), it can be inferred only via the outcome of the
expansion operation (Vsucc, Einv). The history of outcomes
is captured by the state of the search, i.e. the combination of
the 3 lists {O, C, I}.

Problem 5. OPT-HEUR. Given a distribution of world
maps, P (�), find a heuristic policy that at time t, maps the
state of the search {Ot, Ct, It} to select a vertex vt 2 Ot

to expand, such that the expected number of expansions till
termination is minimized.

The problem of heuristic design has a lot of historical
significance. A common theme is “Optimism Under
Uncertainty”. A spectrum of techniques exist to manually

Prepared using sagej.cls

measurements received {yi}t
i=1 to compute the next node vt+1

to visit at time t+1, such that the expected utility is maximized.

Such problems crop up in a wide number of areas such as
sensor planning for 3D surface reconstruction [50] and indoor
mapping with UAVs [13, 87]. Problem 4 does not enjoy the
adaptive submodularity property due to the introduction of
travel constraints. Hollinger et al. [47, 46] propose a heuristic
based approach to select a subset of informative nodes and
perform minimum cost tours. Singh et al. [106] replan every
step using a non-adaptive information path planning algorithm.
Inspired by adaptive TSP approaches by Gupta et al. [39], Lim
et al. [79, 78] propose recursive coverage algorithms to learn
policy trees. However such methods cannot scale well to large
state and observation spaces. Heng et al. [43] make a modular
approximation of the objective function. Isler et al. [50] survey
a broad number of myopic information gain based heuristics
that work well in practice but have no formal guarantees.

B. Search Based Planning
We now present a framework for search based planning

where the objective is to find a feasible path from start to
goal while minimizing search effort. We use this framework
to pose the problem of learning the optimal heuristic for a
given distribution over worlds and briefly discuss prior work
on this topic.

1) Framework: We consider the problem of search on a
graph, G = (V, E), where vertices V represent robot configu-
rations and edges E represent potentially valid movements of
the robot between these configurations. Given a pair of start
and goal vertices, (vs, vg) 2 V , the objective is to compute
a path ⇠ ✓ E - a connected sequence of valid edges. The
implicit graph G can be compactly represented by (vs, vg) and
a successor function Succ(v) which returns a list of outgoing
edges and child vertices for a vertex v 2 V . Hence a graph G
is constructed during search by repeatedly expanding vertices
using Succ(v). Let � 2 M be a representation of the world
that is used to ascertain the validity of an edge. An edge e 2 E
is checked for validity by invoking an evaluation function
Eval(e, �) which is an expensive operation and may require
complex geometric intersection operations [26].

Alg. 1 defines a general search based planning
algorithm Search which takes as input the tuple
hvs, vg, Succ, Eval, �, Selecti and returns a valid path
⇠. To ensure systematic search, the algorithm maintains the
following lists - an open list O ⇢ V of candidate vertices to
be expanded and a closed list C ⇢ V of vertices which have
already been expanded. It also retains an additional invalid list
I ⇢ E of edges found to be in collision. These 3 lists together
represent the complete information available to the algorithm
at any given point of time. At a given iteration, the algorithm
uses this information to select a vertex v 2 O to expand by
invoking Select(O). It then expands v by invoking Succ(v)

and checking validity of edges using Eval(e, �) to get a set
of valid successor vertices Vsucc as well as invalid edges Einv.
The lists are then updated and the process repeated till the
goal vertex vg is uncovered. Fig. 3 illustrates this framework.

World Map
(�)

Goal (vg)(vs)Start

Open List
(O)

(C)

(I)

Closed List

Invalid List

Fig. 3. The search based planning problem. Given a world map �, the agent
has to guide a search tree from start vs to goal vg by expanding vertices. At
any given iteration, the open list O represents the set of candidate vertices
that can be expanded. The closed list C represents the set of vertices already
expanded. The invalid list represents the set of edges that were found to be
in collision with the world. The status of every other vertex is unknown. The
search continues till the goal belongs to the open list, i.e. a feasible path to
goal has been found.

Algorithm 1 BestFirstSearch(vs, vg, �)

1: O vs, C ;, I ;
2: while vg /2 O do
3: v Select(O)

4: (Vsucc, Einv) Expand(v, �)

5: O O [Vsucc, C C [v, I I [Einv

6: Return Path (vs, vg)

2) The Optimal Heuristic Problem: In this work, we focus
on the feasible path problem and ignore the optimality of the
path. Although this is a restrictive setting, quickly finding
the feasible path is a very important problem in robotics.
Efficient feasible path planners such as RRT-Connect [67] has
proven highly effective in high dimensional motion planning
applications such as robotic arm planning [71] and mobile
robot planning [70]. Hence we ignore the traversal cost of an
edge and deal with unweighted graphs. We defer discussions
on how to relax this restriction to Section VIII-B.

We view a heuristic policy as a selection function (Alg. 1,
Line 3) that selects a vertex v from the open list O. The
objective of the policy is to minimize the number of expan-
sions until the search terminates. Note that the evolution of the
open list O depends on the underlying world map � which is
hidden. Given a prior distribution over world maps P (�), it can
be inferred only via the outcome of the expansion operation
(Vsucc, Einv). The history of outcomes is captured by the state
of the search, i.e. the combination of the 3 lists {O, C, I}.

Problem 5 (OPT-HEUR). Given a distribution of world maps,
P (�), find a heuristic policy that at time t, maps the state of
the search {Ot, Ct, It} to select a vertex vt 2 Ot to expand,
such that the expected number of expansions till termination
is minimized.

The problem of heuristic design has a lot of historical signif-
icance. A common theme is “Optimism Under Uncertainty”.
A spectrum of techniques exist to manually design good
heuristics by relaxing the problem to obtain guarantees with
respect to optimality and search effort [91]. To get practical

[Goal not found]
[Select node to expand]

[Expand node]
[Update list]

 47

6 Journal Title XX(X)

2010; Javdani et al. 2013, 2014; Chen et al. 2015, 2016b)
). However, these strategies require explicitly sampling from
the posterior distribution over � which make it intractable to
apply for our setting.

Problem 4. HIDDEN-CON: Hidden World Map; Constrained
Travel Cost. Given a distribution of world maps, P (�), a
time horizon T , and a travel cost budget B, find a policy
that at time t, maps the history of nodes visited {vi}t

i=1 and
measurements received {yi}t

i=1 to compute the next node
vt+1 to visit at time t + 1, such that the expected utility is
maximized.

Such problems crop up in a wide number of areas
such as sensor planning for 3D surface reconstruction Isler
et al. (2016) and indoor mapping with UAVs Charrow
et al. (2015); Nelson and Michael (2015). Problem 4 does
not enjoy the adaptive submodularity property due to the
introduction of travel constraints. Hollinger et al. (2017,
2012) propose a heuristic based approach to select a subset
of informative nodes and perform minimum cost tours.
Singh et al. (2009) replan every step using a non-adaptive
information path planning algorithm. Inspired by adaptive
TSP approaches by Gupta et al. (2010), Lim et al. (2016,
2015) propose recursive coverage algorithms to learn policy
trees. However such methods cannot scale well to large state
and observation spaces. Heng et al. (2015) make a modular
approximation of the objective function. Isler et al. (2016)
survey a broad number of myopic information gain based
heuristics that work well in practice but have no formal
guarantees.

2.2 Search Based Planning
We now present a framework for search based planning
where the objective is to find a feasible path from start to
goal while minimizing search effort. We use this framework
to pose the problem of learning the optimal heuristic for a
given distribution over worlds and briefly discuss prior work
on this topic.

2.2.1 Framework We consider the problem of search on
a graph, G = (V, E), where vertices V represent robot
configurations and edges E represent potentially valid
movements of the robot between these configurations. Given
a pair of start and goal vertices, (vs, vg) 2 V , the objective
is to compute a path ⇠ ✓ E - a connected sequence of valid
edges. The implicit graph G can be compactly represented
by (vs, vg) and a successor function Succ(v) which returns
a list of outgoing edges and child vertices for a vertex
v 2 V . Hence a graph G is constructed during search by
repeatedly expanding vertices using Succ(v). Let � 2 M be
a representation of the world that is used to ascertain the
validity of an edge. An edge e 2 E is checked for validity
by invoking an evaluation function Eval(e, �) which is an
expensive operation and may require complex geometric
intersection operations (Dellin and Srinivasa 2016).

Alg. 1 defines a general search based planning
algorithm Search which takes as input the tuple
hvs, vg, Succ, Eval, �, Selecti and returns a valid path ⇠.
To ensure systematic search, the algorithm maintains the
following lists - an open list O ⇢ V of candidate vertices to
be expanded and a closed list C ⇢ V of vertices which have

World Map
(�)

Goal (vg)(vs)Start

Open List
(O)

(C)

(I)

Closed List

Invalid List

Figure 3. The search based planning problem. Given a world
map �, the agent has to guide a search tree from start vs to goal
vg by expanding vertices. At any given iteration, the open list O
represents the set of candidate vertices that can be expanded.
The closed list C represents the set of vertices already expanded.
The invalid list represents the set of edges that were found to be
in collision with the world. The status of every other vertex is
unknown. The search continues till the goal belongs to the open
list, i.e. a feasible path to goal has been found.

already been expanded. It also retains an additional invalid
list I ⇢ E of edges found to be in collision. These 3 lists
together represent the complete information available to the
algorithm at any given point of time. At a given iteration,
the algorithm uses this information to select a vertex v 2 O
to expand by invoking Select(O). It then expands v by
invoking Succ(v) and checking validity of edges using
Eval(e, �) to get a set of valid successor vertices Vsucc as
well as invalid edges Einv. The lists are then updated and the
process repeated till the goal vertex vg is uncovered. Fig. 3
illustrates this framework.

2.2.2 The Optimal Heuristic Problem In this work, we
focus on the feasible path problem and ignore the optimality
of the path. Although this is a restrictive setting, quickly
finding the feasible path is a very important problem in
robotics. Efficient feasible path planners such as RRT-
Connect (Kuffner and LaValle 2000) has proven highly
effective in high dimensional motion planning applications
such as robotic arm planning (LaValle 2006) and mobile
robot planning (Laumond et al. 1998). Hence we ignore the
traversal cost of an edge and deal with unweighted graphs.
We defer discussions on how to relax this restriction to
Section 8.2.

We view a heuristic policy as a selection function (Alg. 1,
Line 3) that selects a vertex v from the open list O.
The objective of the policy is to minimize the number
of expansions until the search terminates. Note that the
evolution of the open list O depends on the underlying world
map � which is hidden. Given a prior distribution over world
maps P (�), it can be inferred only via the outcome of the
expansion operation (Vsucc, Einv). The history of outcomes
is captured by the state of the search, i.e. the combination of
the 3 lists {O, C, I}.

Problem 5. OPT-HEUR. Given a distribution of world
maps, P (�), find a heuristic policy that at time t, maps the
state of the search {Ot, Ct, It} to select a vertex vt 2 Ot

to expand, such that the expected number of expansions till
termination is minimized.

The problem of heuristic design has a lot of historical
significance. A common theme is “Optimism Under
Uncertainty”. A spectrum of techniques exist to manually

Prepared using sagej.cls

Compute a heuristic policy that
maps search state to node to expand ⇡(O, C, I) ! v 2 O

min
⇡

E�⇠P (�) c(⇡,�)Objective:

Distribution over
world maps

Number of BFS
expansions

Problem: Minimize expansions in BFS

 48

Model-free approaches such as Q-learning (Watkins et al.’92) or
REINFORCE (Williams et al.’92) are sample inefficient

POMDP solvers such as POMCP (Silver et al.’10) or DESPOT (Somani et al.’13)
 require a lot of online effort - we want cheap policies!

Sequential decision making under uncertainty

Cast as a Partially Observable Markov Decision Process (POMDP)

State Observation

Action Historyat : v 2 Ot

st : {Ot,�}
Cost

(
0 if vg 2 Ot

1 otherwise

ot : {Vsucc, Einv}

 t : {Ot, Ct, It}

⇡ ⇡ ⇡
t = 0 t = 1 t = 12 t = 23

 49

Key Idea: Imitate a clairvoyant oracle

We have shown this to be an effective strategy applicable to other
POMDP problems such as information gathering [ICRA’16, RSS’17]

add {ft, Q
⇡OR} to data

Sample a world �

from database P (�)

Roll-in with policy ⇡mix

to get history t

Execute a random action at

and featurize (t, at) as ft

Roll out with oracle ⇡OR

at

Fig. 6. An overview of SAIL in search based planning where a learner ⇡̂ is trained to imitate a clairvoyant oracle ⇡OR. There are 4 key steps. Step 1: A
world map � is sampled from database representing P (�) along with start goal pair (vs, vg). Step 2: A mixture policy ⇡mix, of the learner and oracle is
used to roll-in on � to a timestep t to get history t which is the combination of open list, closed list and invalid edges. Step 3: A random vertex at from
the open list is chosen and (t, at) is featurized as ft. Step 4: A clairvoyant oracle ⇡OR is given full access to world map � to compute the cumulative
cost to go Q⇡OR . The pair (ft, Q⇡OR) is added to data to update the learner. This process is repeated to train a sequence of learners.

allows us a better roll-in procedure where the oracle and
learner are interleaved. We adapt the AGGREVATE framework
to present an algorithm, Search as Imitation Learning (SAIL).

Algorithm 5 SAIL (P (�), P (vs, vg), k)

1: Initialize D ;, ⇡̂1 to any policy in ⇧

2: for i = 1 to N do
3: Initialize sub dataset Di ;
4: Collect mk data points as follows:
5: for j = 1 to m do
6: Sample world map � ⇠ P (�)

7: Sample (vs, vg) ⇠ P (vs, vg)

8: Invoke clairvoyant oracle planner
to compute Q⇡OR

(�, v) 8 v 2 V
9: Sample uniformly k timesteps {t1, t2, . . . , tk}

where each ti 2 {1, . . . , T}
10: Rollout search with

⇡mix,i = �i⇡OR + (1� �i)⇡̂i

11: At each t 2 {t1, t2, . . . , tk} pick a random
action at to get corresponding (t, v)

12: Query oracle for QOR
(�, at)

13: Di Di [{ t, at, t, Q
OR

(�, at)}
14: Aggregate datasets: D D

S
Di

15: Train cost-sensitive classifier ⇡̂i+1 on D
16: Return best ⇡̂i on validation

Alg. 5, describes the SAIL framework which iteratively
trains a sequence of policies (⇡̂1, ⇡̂2, . . . , ⇡̂N). For training
the learner, we collect a dataset D as follows - At every
iteration i, the agent executed m different searches (Alg. 1).
For every search, a different world � and the pair (vs, vg) is
sampled from a database. The agent then rolls-out a search
with a mixture policy ⇡mix,i which blends the learner’s cur-
rent policy, ⇡̂i and the oracle’s policy, ⇡OR using blending
parameter �i. During the search execution, at every timestep
in a set of k uniformly sampled timesteps, we select a random

action from the set of feasible actions and collect a datapoint
{ t, at, t, Q

OR
(�, at)}. The policy ⇡mix,i is rolled out till the

end of the episode and all the collected data is aggregated with
dataset D. At the end of N iterations, the algorithm returns
the best performing policy on a set of held-out validation
environment or alternatively, a mixture of (⇡̂1, ⇡̂2, . . . , ⇡̂N).
Fig. 6 illustrates the SAIL framework.

Note that while the oracle is invoked once per �, we obtain
k datapoints - this is critical for speeding up training. We
also note that even though the time complexity of Select

is O (|Ot|) at timestep t, SAIL can have better overall com-
plexity if it can achieve a squared reduction in number of
expansions compared to uninformed search as discussed more
in Appendix G.

VI. EXPERIMENTS ON INFORMATIVE PATH PLANNING

In this section, we extensively evaluate our approach on
a set of 2D and 3D informative path planning problems
across a spectrum of synthetic and real world environments.
We examine a class of informative path planning problem
where a robot, equipped with a range limited sensor, pos-
sibly constrained by time and fuel resources, is tasked with
3D reconstruction of structures in the world. We choose a
variety of environments to highlight the importance of adaptive
behaviours for information gathering. Our implementation is
open sourced for both MATLAB and C++ (https://bitbucket.
org/sanjiban/matlab learning info gain).

A. Problem Details
We consider both 2D and 3D informative path planning

problems. The world map � is represented as a 2D or 3D
binary grid, i.e. a grid cell is either occupied or free. The
candidate set of sensing locations V is generated by uniformly
randomly sampling nodes in the configuration space of the
robot. For 2D problems, the configuration space of the robot
is SE(2), for 3D it is SE(3). We assume for simplicity that
the robot can teleport between any two nodes vi and vj and

add {ft, Q
⇡OR} to data

Sample a world �

from database P (�)

Roll-in with policy ⇡mix

to get history t

Execute a random action at

and featurize (t, at) as ft

Roll out with oracle ⇡OR

at

Fig. 6. An overview of SAIL in search based planning where a learner ⇡̂ is trained to imitate a clairvoyant oracle ⇡OR. There are 4 key steps. Step 1: A
world map � is sampled from database representing P (�) along with start goal pair (vs, vg). Step 2: A mixture policy ⇡mix, of the learner and oracle is
used to roll-in on � to a timestep t to get history t which is the combination of open list, closed list and invalid edges. Step 3: A random vertex at from
the open list is chosen and (t, at) is featurized as ft. Step 4: A clairvoyant oracle ⇡OR is given full access to world map � to compute the cumulative
cost to go Q⇡OR . The pair (ft, Q⇡OR) is added to data to update the learner. This process is repeated to train a sequence of learners.

allows us a better roll-in procedure where the oracle and
learner are interleaved. We adapt the AGGREVATE framework
to present an algorithm, Search as Imitation Learning (SAIL).

Algorithm 5 SAIL (P (�), P (vs, vg), k)

1: Initialize D ;, ⇡̂1 to any policy in ⇧

2: for i = 1 to N do
3: Initialize sub dataset Di ;
4: Collect mk data points as follows:
5: for j = 1 to m do
6: Sample world map � ⇠ P (�)

7: Sample (vs, vg) ⇠ P (vs, vg)

8: Invoke clairvoyant oracle planner
to compute Q⇡OR

(�, v) 8 v 2 V
9: Sample uniformly k timesteps {t1, t2, . . . , tk}

where each ti 2 {1, . . . , T}
10: Rollout search with

⇡mix,i = �i⇡OR + (1� �i)⇡̂i

11: At each t 2 {t1, t2, . . . , tk} pick a random
action at to get corresponding (t, v)

12: Query oracle for QOR
(�, at)

13: Di Di [{ t, at, t, Q
OR

(�, at)}
14: Aggregate datasets: D D

S
Di

15: Train cost-sensitive classifier ⇡̂i+1 on D
16: Return best ⇡̂i on validation

Alg. 5, describes the SAIL framework which iteratively
trains a sequence of policies (⇡̂1, ⇡̂2, . . . , ⇡̂N). For training
the learner, we collect a dataset D as follows - At every
iteration i, the agent executed m different searches (Alg. 1).
For every search, a different world � and the pair (vs, vg) is
sampled from a database. The agent then rolls-out a search
with a mixture policy ⇡mix,i which blends the learner’s cur-
rent policy, ⇡̂i and the oracle’s policy, ⇡OR using blending
parameter �i. During the search execution, at every timestep
in a set of k uniformly sampled timesteps, we select a random

action from the set of feasible actions and collect a datapoint
{ t, at, t, Q

OR
(�, at)}. The policy ⇡mix,i is rolled out till the

end of the episode and all the collected data is aggregated with
dataset D. At the end of N iterations, the algorithm returns
the best performing policy on a set of held-out validation
environment or alternatively, a mixture of (⇡̂1, ⇡̂2, . . . , ⇡̂N).
Fig. 6 illustrates the SAIL framework.

Note that while the oracle is invoked once per �, we obtain
k datapoints - this is critical for speeding up training. We
also note that even though the time complexity of Select

is O (|Ot|) at timestep t, SAIL can have better overall com-
plexity if it can achieve a squared reduction in number of
expansions compared to uninformed search as discussed more
in Appendix G.

VI. EXPERIMENTS ON INFORMATIVE PATH PLANNING

In this section, we extensively evaluate our approach on
a set of 2D and 3D informative path planning problems
across a spectrum of synthetic and real world environments.
We examine a class of informative path planning problem
where a robot, equipped with a range limited sensor, pos-
sibly constrained by time and fuel resources, is tasked with
3D reconstruction of structures in the world. We choose a
variety of environments to highlight the importance of adaptive
behaviours for information gathering. Our implementation is
open sourced for both MATLAB and C++ (https://bitbucket.
org/sanjiban/matlab learning info gain).

A. Problem Details
We consider both 2D and 3D informative path planning

problems. The world map � is represented as a 2D or 3D
binary grid, i.e. a grid cell is either occupied or free. The
candidate set of sensing locations V is generated by uniformly
randomly sampling nodes in the configuration space of the
robot. For 2D problems, the configuration space of the robot
is SE(2), for 3D it is SE(3). We assume for simplicity that
the robot can teleport between any two nodes vi and vj and

Learner (Q-estimator) Oracle (Backwards Dijkstra)

Imitate!

Start

Goal Goal

Start

Estimates action
value from history

Solves full problem to
get true expansions-to-go

Oracle is “clairvoyant” as it can process the whole world map

 50

SAIL: Search as Imitation Learning [CoRL’17]

add {ft, Q
⇡OR} to data

Sample a world �

from database P (�)

Roll-in with policy ⇡mix

to get history t

Execute a random action at

and featurize (t, at) as ft

Roll out with oracle ⇡OR

at

Fig. 6. An overview of SAIL in search based planning where a learner ⇡̂ is trained to imitate a clairvoyant oracle ⇡OR. There are 4 key steps. Step 1: A
world map � is sampled from database representing P (�) along with start goal pair (vs, vg). Step 2: A mixture policy ⇡mix, of the learner and oracle is
used to roll-in on � to a timestep t to get history t which is the combination of open list, closed list and invalid edges. Step 3: A random vertex at from
the open list is chosen and (t, at) is featurized as ft. Step 4: A clairvoyant oracle ⇡OR is given full access to world map � to compute the cumulative
cost to go Q⇡OR . The pair (ft, Q⇡OR) is added to data to update the learner. This process is repeated to train a sequence of learners.

allows us a better roll-in procedure where the oracle and
learner are interleaved. We adapt the AGGREVATE framework
to present an algorithm, Search as Imitation Learning (SAIL).

Algorithm 5 SAIL (P (�), P (vs, vg), k)

1: Initialize D ;, ⇡̂1 to any policy in ⇧

2: for i = 1 to N do
3: Initialize sub dataset Di ;
4: Collect mk data points as follows:
5: for j = 1 to m do
6: Sample world map � ⇠ P (�)

7: Sample (vs, vg) ⇠ P (vs, vg)

8: Invoke clairvoyant oracle planner
to compute Q⇡OR

(�, v) 8 v 2 V
9: Sample uniformly k timesteps {t1, t2, . . . , tk}

where each ti 2 {1, . . . , T}
10: Rollout search with

⇡mix,i = �i⇡OR + (1� �i)⇡̂i

11: At each t 2 {t1, t2, . . . , tk} pick a random
action at to get corresponding (t, v)

12: Query oracle for QOR
(�, at)

13: Di Di [{ t, at, t, Q
OR

(�, at)}
14: Aggregate datasets: D D

S
Di

15: Train cost-sensitive classifier ⇡̂i+1 on D
16: Return best ⇡̂i on validation

Alg. 5, describes the SAIL framework which iteratively
trains a sequence of policies (⇡̂1, ⇡̂2, . . . , ⇡̂N). For training
the learner, we collect a dataset D as follows - At every
iteration i, the agent executed m different searches (Alg. 1).
For every search, a different world � and the pair (vs, vg) is
sampled from a database. The agent then rolls-out a search
with a mixture policy ⇡mix,i which blends the learner’s cur-
rent policy, ⇡̂i and the oracle’s policy, ⇡OR using blending
parameter �i. During the search execution, at every timestep
in a set of k uniformly sampled timesteps, we select a random

action from the set of feasible actions and collect a datapoint
{ t, at, t, Q

OR
(�, at)}. The policy ⇡mix,i is rolled out till the

end of the episode and all the collected data is aggregated with
dataset D. At the end of N iterations, the algorithm returns
the best performing policy on a set of held-out validation
environment or alternatively, a mixture of (⇡̂1, ⇡̂2, . . . , ⇡̂N).
Fig. 6 illustrates the SAIL framework.

Note that while the oracle is invoked once per �, we obtain
k datapoints - this is critical for speeding up training. We
also note that even though the time complexity of Select

is O (|Ot|) at timestep t, SAIL can have better overall com-
plexity if it can achieve a squared reduction in number of
expansions compared to uninformed search as discussed more
in Appendix G.

VI. EXPERIMENTS ON INFORMATIVE PATH PLANNING

In this section, we extensively evaluate our approach on
a set of 2D and 3D informative path planning problems
across a spectrum of synthetic and real world environments.
We examine a class of informative path planning problem
where a robot, equipped with a range limited sensor, pos-
sibly constrained by time and fuel resources, is tasked with
3D reconstruction of structures in the world. We choose a
variety of environments to highlight the importance of adaptive
behaviours for information gathering. Our implementation is
open sourced for both MATLAB and C++ (https://bitbucket.
org/sanjiban/matlab learning info gain).

A. Problem Details
We consider both 2D and 3D informative path planning

problems. The world map � is represented as a 2D or 3D
binary grid, i.e. a grid cell is either occupied or free. The
candidate set of sensing locations V is generated by uniformly
randomly sampling nodes in the configuration space of the
robot. For 2D problems, the configuration space of the robot
is SE(2), for 3D it is SE(3). We assume for simplicity that
the robot can teleport between any two nodes vi and vj and

Sample a world
from database

Roll-in a
mixture of

learner + oracle
to get search state
 t : {Ot, Ct, It}

P (�)

Execute random
action and

extract features
{ t, at} ! ft

Query oracle
to get value

Aggregate data
Q⇡OR

{ft, Q⇡OR}
Update learner

Using no-regret analysis (Ross and Bagnell 2014)
we can bound learner performance [RSS’17]

SAIL outperforms baselines on several datasets

 51

Learning Non-learning approaches

Table shows average normalized expansions

No-fly-zones

Applying SAIL on real world problems
High speed no-fly-zone avoidance requires

real-time nonholonomic path planning

A* with Dubins heuristic times out

Expands 1910 states in time budget (1000 ms)

Dubins distance is a poor estimate of expansions-to-go

SAIL learns to follow maze wall
(a) (b)

(c) (d)

(e) (f)

(g)
Time: 0 sec Time: 7 sec Time: 19 sec

Learnt policy expands
180 states in 120ms

Train a policy on maze worlds

Flight test with onboard execution

2x

(Choudhury, Bhardwaj, Maeta, Scherer)

LEGO: Leveraging Experience in Roadmap Generation for
Sampling-Based Planning

Rahul Kumar1, Aditya Mandalika2, Sanjiban Choudhury2 and Siddhartha S. Srinivasa2

Abstract—We consider the problem of leveraging prior experi-
ence to generate roadmaps in sampling-based motion planning.
A good roadmap is one that is sparse, to allow for efficient
search, and places nodes at critical locations to ensure that a low-
cost feasible path exists. The state-of-the-art tackles this prob-
lem by training a generative model, a conditional variational
auto-encoder (CVAE), on the prior dataset with the shortest
paths as target input. While this is quite effective on many
problems, we show it can fail in the face of complex obstacle
configurations or mismatch between training and testing.

We present an algorithm LEGO that addresses these issues by
training the CVAE with target samples that satisfy two impor-
tant criteria. Firstly, these samples belong only to bottleneck

regions along near-optimal paths that are otherwise difficult-
to-sample with a uniform sampler. Secondly, these samples are
spread out across diverse regions to maximize the likelihood
of a feasible path existing. We formally define these properties
and prove performance guarantees for LEGO. We extensively
evaluate LEGO on a range of planning problems, including
robot arm planning, and report significant gains over baselines.

I. INTRODUCTION

We examine the problem of leveraging prior experience in
sampling-based motion planning. In this framework, the
continuous configuration space of a robot is sampled to
construct a graph or roadmap [1, 2] where vertices represent
robot configurations and edges represent potential movements
of the robot. A shortest path algorithm [3] is then run to
compute a path between any two vertices on the roadmap.
The main challenge is to place a small set of samples in key
locations such that the algorithm can find a high quality path
with small computational effort as shown in Fig. 1b.

Typically, low dispersion samplers such as Halton se-
quences [4] are quite effective in uniformly covering the space
and thus bounding the solution quality [5]. However, they are
vulnerable to artifacts such as narrow passages that require
more samples in bottleneck regions [6]. On the other hand,
several approaches exploit the geometry of the workspace to
bias sampling [7–10]. However, its unclear how well, if at
all, these approaches generalize to new scenarios.

Interestingly, the different scenarios that a robot operates in
do in fact share a lot of structural similarity. For example, a
mobile manipulator operating indoors can expect to regularly
deal with artifacts like tables and chairs. Information extracted
from planning on one such environment can be useful for
deciding how to search on another, and can be used to learn

1Department of Computer Science, Indian Institute of Technology, Kharag-
pur {vernwalrahul}@iitkgp.ac.in

2Paul G. Allen School of Computer Science and Engineering, University of
Washington {adityavk, sanjibac, siddh}@cs.uw.edu

(a) (b)
Fig. 1: Comparison of roadmaps using generative models from two training
schemes: (a) SHORTESTPATH (Ichter et al. [11]) and (b) LEGO (ours). The
task is to plan in a 2D environment which contains unexpected obstacles
(triangles) that don’t occur in training data. SHORTESTPATH fails to find a
path while LEGO does.

an efficient sampler. Hence, we address the following research
question:

How can we leverage prior, i.e., the history of worlds
encountered, to bias our sampling in a new world?

The challenging problem is to decide which samples the
learner should try to predict. This is combinatorially hard as
the utility of a sample depends on other samples that together
create a path from start to goal. Ichter et al. [11] propose an
excellent approximation by training a conditional variational
auto-encoder (CVAE) to learn a sampling distribution. Their
insight is to use a prior dataset of worlds and corresponding
shortest path pairs to learn a distribution that is highly biased
along the path that is expected to be the shortest. After all,
the best a generative model can do, is to sample only along
the true shortest path. However, this puts all of the burden
on the learner. Any amount of prediction error, be it due to
approximation errors or train-test mismatch, results in the
planner being unable to find even a feasible path as shown
in Fig. 1a.

Instead, we propose a different set of criteria for selecting
samples to train the learner with. Firstly, the samples should
only lie in regions through which near-optimal paths pass, but
are in fact difficult for a uniform sampler to reach. Secondly,
since the test data can have additional obstacles not present in
training data, it has to ensure samples are spread out enough
to approximate diverse alternate paths. Fig. 1b shows such
a predicted roadmap that possesses both characteristics. Our
key insight is:

Learn to sample in diverse bottleneck regions.

We present an algorithmic framework, Leveraging Experience
with Graph Oracles (LEGO) summarized in Fig. 2, for
training a CVAE on a prior database of worlds to learn a

Can we directly learn graphs?

 71

(a) (b) (c)

Fig. 7: Example learned distributions for the narrow passage problem for
different values of regularization paramer (�), (a) 2⇥ 10�8 (b) 2⇥ 10�2

(c) 2⇥ 10�4 (chosen value of �).

A. Training Procedure

a) 2D Point Robot Planning: The training data consisted
of 20 randomly generated environments as shown in Fig.8
with 20 planning problems (start-goal pairs) in each of
the environments. The environments were modified in the
positions of the vertical and horizontal walls as well as the
position of the narrow passages through them. The CVAE
was conditioned upon a vector of 102 features which included
the start-goal pair (4 features) as well the 10 ⇥ 10 occupancy
grid (100 features). The dataset generation took 4-5 hours
while the training time was around 25 minutes. The CVAE
was trained using samples from G

dense

with 3000 samples.
The CVAE was trained to sample configurations (in R2) of
the point robot.

(a) (b) (c)

Fig. 8: Environments sampled in R2 to train the CVAE.

b) Snake Robot Planning: For R5, the training procedure was
similar to that in the R2 problems. The training procedure
for the robot in R9 consisted of a G

dense

with 6000 samples
which was used to plan for 20 planning problems in each
of 20 randomly generated 2D environments. Fig.9 visualizes
some of the environments sampled to train the CVAE. The red
and blue positions show the start and goal states respectively.
The environments were modified in the wall being horizontal
or vertical, the offset in its position, and the position of
the narrow passage through it. The CVAE was conditioned
on a vector of 118 features which included the start-goal
pair (18 features) as well the 10 ⇥ 10 occupancy grid (100
features). The dataset generation took 6-7 hours while the
training time was close to 30 minutes. The CVAE was trained
to sample configurations of the snake robot that included the
base location as well as the revolute joint angles between
each of the links.

c) Manipulator Arm Planning: The training data consisted
of 20 random environments where the obstacles in the

(a) (b) (c)

Fig. 9: Environments sampled in R9 to train the CVAE.

environment were arbitrarily repositioned. In each of the
randomly generated environment, 50 planning problems were
considered as an input to the train the CVAE model. Fig.10
visualized three such environments, where the positions of
the table and that of the obstacle on the table are modified
along with start and goal configurations. The CVAE in the
constrained problem was conditioned on a vector of 465

features which included the start and goal configurations
(14 features) and the poses of the table and the obstacle
represented as 4 ⇥ 4 homogeneous matrices (32 features).
The dataset was generated in 7-8 hours while the training
took around an hour. Samples from a G

dense

with 30,000
configurations were used to train the CVAE. The CVAE
learned to sample the robot configurations which included
the joint angles at the seven revolute joints of the arm in the
constrained example. The unconstrained R8 example consisted
of an additional prismatic joint value denoting where the stick
is held in the hand.

(a) (b) (c)

Fig. 10: Manipulator arm environments sampled to train the CVAE. The
solutions obtained using samples generated by LEGO are also visualized.

B. Additional Experiment Results

a) BOTTLENECKNODE and DIVERSEPATHSET: In addition
to the qualitative observations presented in Section VII
(O1 and O2) and Fig.4, we present here the analysis of
the performance of the foundational algorithms of LEGO,
namely BOTTLENECKNODE and DIVERSEPATHSET when
compared to SHORTESTPATH. Fig.12a shows that on a
R2 world, BOTTLENECKNODE has a significantly higher
success rate that SHORTESTPATH, almost converging to 1.0

by 400 samples. Fig.12b shows that in terms of path length,
SHORTESTPATH is initially better but both are eventually
comparable. This is expected because of the near-optimality
objective of BOTTLENECKNODE (4). Fig.12c shows that
DIVERSEPATHSET has a better success rate. Fig.12d shows

548 in the unconstrained problem since the configuration of the robot
includes an additional degree of freedom.

(a) (b) (c)

Fig. 7: Example learned distributions for the narrow passage problem for
different values of regularization paramer (�), (a) 2⇥ 10�8 (b) 2⇥ 10�2

(c) 2⇥ 10�4 (chosen value of �).

A. Training Procedure

a) 2D Point Robot Planning: The training data consisted
of 20 randomly generated environments as shown in Fig.8
with 20 planning problems (start-goal pairs) in each of
the environments. The environments were modified in the
positions of the vertical and horizontal walls as well as the
position of the narrow passages through them. The CVAE
was conditioned upon a vector of 102 features which included
the start-goal pair (4 features) as well the 10 ⇥ 10 occupancy
grid (100 features). The dataset generation took 4-5 hours
while the training time was around 25 minutes. The CVAE
was trained using samples from G

dense

with 3000 samples.
The CVAE was trained to sample configurations (in R2) of
the point robot.

(a) (b) (c)

Fig. 8: Environments sampled in R2 to train the CVAE.

b) Snake Robot Planning: For R5, the training procedure was
similar to that in the R2 problems. The training procedure
for the robot in R9 consisted of a G

dense

with 6000 samples
which was used to plan for 20 planning problems in each
of 20 randomly generated 2D environments. Fig.9 visualizes
some of the environments sampled to train the CVAE. The red
and blue positions show the start and goal states respectively.
The environments were modified in the wall being horizontal
or vertical, the offset in its position, and the position of
the narrow passage through it. The CVAE was conditioned
on a vector of 118 features which included the start-goal
pair (18 features) as well the 10 ⇥ 10 occupancy grid (100
features). The dataset generation took 6-7 hours while the
training time was close to 30 minutes. The CVAE was trained
to sample configurations of the snake robot that included the
base location as well as the revolute joint angles between
each of the links.

c) Manipulator Arm Planning: The training data consisted
of 20 random environments where the obstacles in the

(a) (b) (c)

Fig. 9: Environments sampled in R9 to train the CVAE.

environment were arbitrarily repositioned. In each of the
randomly generated environment, 50 planning problems were
considered as an input to the train the CVAE model. Fig.10
visualized three such environments, where the positions of
the table and that of the obstacle on the table are modified
along with start and goal configurations. The CVAE in the
constrained problem was conditioned on a vector of 465

features which included the start and goal configurations
(14 features) and the poses of the table and the obstacle
represented as 4 ⇥ 4 homogeneous matrices (32 features).
The dataset was generated in 7-8 hours while the training
took around an hour. Samples from a G

dense

with 30,000
configurations were used to train the CVAE. The CVAE
learned to sample the robot configurations which included
the joint angles at the seven revolute joints of the arm in the
constrained example. The unconstrained R8 example consisted
of an additional prismatic joint value denoting where the stick
is held in the hand.

(a) (b) (c)

Fig. 10: Manipulator arm environments sampled to train the CVAE. The
solutions obtained using samples generated by LEGO are also visualized.

B. Additional Experiment Results

a) BOTTLENECKNODE and DIVERSEPATHSET: In addition
to the qualitative observations presented in Section VII
(O1 and O2) and Fig.4, we present here the analysis of
the performance of the foundational algorithms of LEGO,
namely BOTTLENECKNODE and DIVERSEPATHSET when
compared to SHORTESTPATH. Fig.12a shows that on a
R2 world, BOTTLENECKNODE has a significantly higher
success rate that SHORTESTPATH, almost converging to 1.0

by 400 samples. Fig.12b shows that in terms of path length,
SHORTESTPATH is initially better but both are eventually
comparable. This is expected because of the near-optimality
objective of BOTTLENECKNODE (4). Fig.12c shows that
DIVERSEPATHSET has a better success rate. Fig.12d shows

548 in the unconstrained problem since the configuration of the robot
includes an additional degree of freedom.

[In submission, IROS ’19]

(a)

Input: 
Target samples
Feature vector

Training framework of LEGO
Conditional Variational

Auto-encoder

Output: 
Sampling distribution

Latent
space

�

(b)

Test time roadmap generation

Pr
ed

ict
ed

sa

m
pl

es
Co

ns
ta

nt

sp
ar

se
 g

ra
ph

⇡(G

dense

, y)

(X)
(y) Final roadmap

Fig. 2: The LEGO framework for training a CVAE to predict a roadmap. (a) The training process for learning a generative sampling distribution using a
CVAE. The input is a pair of candidate samples and feature vector. (b) At test time, the model is sampled to get vertices which are then composed with a
constant sparse graph to get a final roadmap.

generative model that can be used for roadmap construction.
During training (Fig. 2a), LEGO processes a uniform dense
graph to identify a sparse subset of vertices. These vertices are
a diverse set of bottleneck nodes through which a near-optimal
path must pass. These are then fed into a CVAE [12] to learn a
generative model. At test time (Fig. 2b), the model is sampled
to get a set of vertices which is additionally composed with
a sparse uniform graph to get a final roadmap. This roadmap
is then used by the search algorithm to find the shortest path.

We make the following contributions:

1) We present a framework for training a CVAE to predict
a roadmap with different target inputs. We identify
two main shortcomings of the state-of-the-art [11] that
uses the shortest path as the target input - failures in
approximation, and failures due to train-test mismatch
(Section IV).

2) We present an algorithm LEGO that tackles both of these
issues. It first generates multiple diverse shortest paths,
and then extracts bottleneck nodes along such paths to
use as the target input for the CVAE (Section V).

3) We show that LEGO outperforms several learning and
heuristic sampling baselines on a set of R2,R5, R7, R8

and R9 problems. In particular, we show that it is robust
to changes in training and test distribution (Section VI).

II. RELATED WORK

The seminal work of Hsu et al. [6] provides a crisp analysis
of the shortcomings of uniform sampling techniques in the
presence of artifacts such as narrow passages. This has
led to a plethora of heuristic approaches for non-uniform
sampling [13, 14], however such methods have unpredictable
performance. On the other hand, informed sampling [15, 16]
techniques which densify around the shortest paths have
formal guarantees but do not exploit any structure present in
the environment.

Adaptive sampling in the context of roadmaps aims to
exploit structure of the environment to place samples in
promising areas. A number of works exploited structure of
the workspace to achieve this. While some of them attempt
to sample between regions of collision to identify narrow
passages [7, 17–20], others sample near or on the obstacles
[13, 21]. There are approaches that divide the configuration
space into regions and either select different region-specific
planning strategies [22] or use entropy of samples in a
particular region to refine sampling [23]. Other methods try to
model the free space to speed up planning [24–26]. However,
all of these methods rely on some form of domain knowledge
instead of relying on statistical techniques to generalize across
possible environments or planning instances.

A different class of solutions look at adapting sampling
distributions online during the planning cycle. This requires
a trade-off between exploration of the configuration space
and exploitation of the current best solution. Preliminary
approaches define a utility function to do so [27, 28] or
use online learning [10] however these are not amenable to
using priors. Diankov and Kuffner [29] employs statistical
techniques without any such formal guarantees. Interestingly,
Zucker et al. [30] formalize sampling as a model-free rein-
forcement learning problem and learn a parametric distribution.
However, such techniques suffer from poor convergence rates
and are at best locally optimal. More recent works such as
[31] take advantage of information regarding the environment
obtained online to determine the next sample in the tree search.
This is akin to [6] in determining samples based on local
features and information.

There has been a lot of recent effort on finding low dimen-
sional structure in planning [32]. In particular, generative
modeling tools like variational autoencoders [33] have been
used to great success [34–37]. We base our work on Ichter
et al. [11] where a CVAE is trained to learn the shortest path
distribution.

White-box or black-box

 72

Black-box frameworkWhite-box framework
Pro:

Efficient single planner

Minimal human involvement

Con:

Explicit context extraction

Human to design library

Con:

Powerful policy class

Restricted to underlying graph

Pro:

Handle edge-cases via ensemble

Arbitrary precision planners

Unified framework for adaptive planners

 73

Library of Planners

Planning database

Dataset 1

Dataset 2

Human designer

White-box
Planner 1

White-box
Planner 2

Precision Planner 1

Precision Planner 2

…
…

Black-box
Meta-

planner

Ensemble of Planners

Planner 1

Planner 2

…

General
purpose
planners

…

 74

Thank you!

Acknowledgements

Matt Schmittle
- P.h.D. Student in PRL & RSE Labs

- Advised by Dieter Fox and Sidd Srinivasa

- Interested in mobile robot navigation,
learning and vision

- Current Research: Learning online from
corrective feedback

