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Partially known environment
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Motion Planning assumes the world 
is sufficiently known

What happens in a partially known 
world?



Two central questions
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1. How do we gather information about the world?

2. How do we guarantee safety in a partially known world?



Information Gathering

 7



Autonomous indoor exploration
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[1] Benjamin Charrow, Gregory Kahn, Sachin Patil, Sikang Liu, Ken Goldberg, Pieter Abbeel, Nathan Michael, and Vijay 
Kumar. Information-theoretic planning with trajectory optimization for dense 3d mapping. In RSS, 2015 



Exploration of Subterranean Environment
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Contextual Information Gathering
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Informative Path Planning Problem

Plan a path to maximize the amount of information gathered  
while respecting the total fuel constraints 

and time constraints



What is information in this context?
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Informative Path Planning Problem

Plan a path to maximize the amount of information gathered  
while respecting the total fuel constraints 

and time constraints



Let’s look at a simpler problem

 14

What if robot had infinite fuel  
and  

could teleport to any node?

Can we maximize the amount of information discovered 
by the robot?



Sensor Placement Problem
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[2] Stefan Isler, Reza Sabzevari, Jeffrey Delmerico, and Davide Scara- muzza. An information gain formulation for active 
volumetric 3d reconstruction. In ICRA, 2016. 



Sensor Placement Problem
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maximize

{v1,...,vn}
F (v1, . . . , vn)



Sensor Placement Problem
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F (v1) = 3



Sensor Placement Problem
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Sensor Placement Problem
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{v1,...,vn}
F (v1, . . . , vn)

F (v1, v2, v3) = 8



Can’t we run dynamic programming 
and get the optimal answer?

 20

No! Lack of optimal substructure



Optimal substructure in Search
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g(s) = min
s02pred(s)

(g(s0) + c(s0, s))
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Optimal substructure in LQR

J(xt, t) = min
ut

c(xt, ut) + J(xt+1, t+ 1)

= min
ut

x

T
t Qxt + u

T
t Rut + J(xt+1, t+ 1)

Recall the Bellman function that relates value at consecutive time steps



No optimal substructure in IPP
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maximize

{v1,...,vn}
F (v1, . . . , vn)

Here F is a set function.  
The utility of adding a vertex depends on the vertices 

already added.



Utility is a set function
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v1

F (v1) = 3

increases the utility by 3; seems informativev1

F (;) = 0



Utility is a set function
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v1

v2

F (v2) = 2

Now let’s say we have already visited v2



Utility is a set function
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v1

v2

F (v2) = 2 F (v2, v1) = 3

Additional contribution of v1is only 1
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Utility of a vertex depends on the  
path we took to get there

Need to reason over all combination 
of paths!

NP-hard
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The provable virtue of  
greediness



Submodular Functions

 29
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1 Submodular functions

Submodularity is a property of set functions, i.e., functions f : 2V ! R that assign each
subset S ✓ V a value f(S). Hereby V is a finite set, commonly called the ground set. In our
example, V may refer to the locations where sensors can be placed, and f(S) the utility
(e.g., detection performance) obtained when placing sensors at locations S. In the following,
we will also assume that f(;) = 0, i.e., the empty set carries no value. Submodularity has
two equivalent definitions, which we will now describe. The first definition relies on a notion
of discrete derivative, often also called the marginal gain.

Definition 1.1 (Discrete derivative) For a set function f : 2V ! R, S ✓ V , and e 2 V ,
let �f (e | S) := f(S [ {e})� f(S) be the discrete derivative of f at S with respect to e.

Where the function f is clear from the context, we drop the subscript and simply write
�(e | S).

Definition 1.2 (Submodularity) A function f : 2V ! R is submodular if for every
A ✓ B ✓ V and e 2 V \B it holds that

�(e | A) � �(e | B) .

Equivalently, a function f : 2V ! R is submodular if for every A,B ✓ V ,

f(A \B) + f(A [B)  f(A) + f(B).

For submodular maximization, the intuition provided by the first definition is often help-
ful: Suppose we interpret S ⇢ V as a set of actions which provide some benefit f(S). Then
the first definition says that for a submodular function f , after performing a set A of ac-
tions, the marginal benefit of any action e does not increase as we perform the actions in
B \A. Therefore, submodular set functions exhibit a natural diminishing returns property.
Figure 1 illustrates this e↵ect in our sensor placement application. In this example, the
marginal benefit provided by placing a sensor at a fixed location s0 given that we deployed
sensors at locations s

1

, s
2

does not increase as we deploy more sensors (s
3

and s
4

).

An important subclass of submodular functions are those which are monotone, where
enlarging the argument set cannot cause the function to decrease.

Definition 1.3 (Monotonicity) A function f : 2V ! R is monotone if for every A ✓ B ✓

V , f(A)  f(B).

Note that a function f is monotone i↵ all its discrete derivatives are nonnegative, i.e., i↵
for every A ✓ V and e 2 V it holds that �(e | A) � 0. Further note that the important
subclass of monotone submodular functions can be characterized by requiring that for all
A ✓ B ✓ V and e 2 V it holds that �(e | A) � �(e | B). This is slightly di↵erent from
Definition 1.2 in that we do not require e /2 B.

Typically, and in most of this chapter, we will assume that f is given in terms of a value

oracle, a black box that computes4 f(S) on any input set S.
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Example: Set cover
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Set cover is submodular
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Submodular Function Maximization 3

S’ 

S2 

S1 

(a) Adding s0 to set {s1, s2}

S’ 

S2 

S1 

S3 

S4 

(b) Adding s0 to superset {s1, . . . , s4}

Figure 1 Illustration of the diminishing returns e↵ect in context of placing sensors in a water dis-

tribution network to detect contaminations. The blue regions indicate nodes where contamination

is detected quickly using the existing sensors S. The red region indicates the additional coverage

by adding a new sensor s0. If more sensors are already placed (b), there is more overlap, hence

less gain in utility: �(s0 | {s1, s2}) � �(s0 | {s1, . . . , s4}).

1.1 Examples

Submodular functions comprise a broad class of functions that arise in several applications.
Here are some examples.

Modular functions and generalizations. The simplest example of submodular func-
tions are modular functions, those for which the inequalities characterizing submodularity
hold with equality, i.e., for all A,B ✓ V it holds that f(A) + f(B) = f(A[B) + f(A\B).
Such functions are analogous to linear functions, insofar as their discrete derivatives are
constant: �(e | B) = �(e | A) for all A,B and e /2 A [ B. Assuming f(;) = 0, they can
always be expressed in the form f(S) =

P

e2S w(e) for some weight function w : V ! R.
Another example is the composition of any monotone modular function g : 2V ! R and
any concave function h : R ! R — for example, f(S) =

p

|S|.

Weighted coverage functions. An important example of a submodular function is the
weighted coverage of a collection of sets: Fix a set X, a nonnegative modular function
g : 2X ! R, and a collection V of subsets of X. Then for a subcollection S ✓ V , the
function

f(S) := g
⇣

[

v2S

v
⌘

=
X

x2
S

v2S v

w(x),

is monotone submodular. Hereby w : X ! R is the weight function representing g. In our
example, X may refer to a set of contamination events, w(x) quantifies the severity of event
x, and with each possible sensor location v 2 V we associate the subset v ✓ X of events
detected. Perhaps the simplest example is where g(A) = |A| is the cardinality function
(which is modular), in which case the problem of maximizing f(S) is the well-known max-
cover problem. In fact, f(S) is submodular even for arbitrary submodular functions g. It is
monotone i↵ g is monotone.

Example: Sensor placement



Theorem: Greedy is near-optimal
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6

functions f
min

(S) = min(f
1

(S), f
2

(S)) and f
max

(S) = max(f
1

(S), f
2

(S)) are not necessarily
submodular.

Interestingly, there are many natural connections between submodular functions and
both convex and concave functions. For example, for a function g : N ! R, the set function
f(S) = g(|S|) is submodular if and only if g is concave. In contrast, similar to convex
functions, which can be minimized e�ciently, (unconstrained) submodular minimization
is possible in (strongly) polynomial time (c.f., Schrijver 2003). See (Lovasz, 1983) for a
discussion about the relationship between submodular, concave and convex functions.

Submodular set functions can also be extended to continuous functions (defined over
the unit cube [0, 1]|V |) in several natural ways. See Section 3.2 for more details on such
extensions.

2 Greedy maximization of submodular functions

As argued in Section 1.1, submodular functions arise in many applications, and therefore it
is natural to study submodular optimization. There is a large amount of work on minimizing
submodular functions (c.f., Fujishige 2005; Schrijver 2003). In this chapter, we will focus
on the problem of maximizing submodular functions. That is, we are interested in solving
problems of the form

max
S✓V

f(S) subject to some constraints on S. (1)

The simplest example are cardinality constraints, where we require that |S|  k for some k.
In our example, we may wish to identify the k best locations to place sensors. Unfortunately,
even this simple problem is NP-hard, for many classes of submodular functions, such as
weighted coverage (Feige, 1998) or mutual information (Krause and Guestrin, 2005). While
there are specialized branch and bound algorithms for maximizing submodular functions
(Nemhauser and Wolsey, 1981; Goldengorin et al., 1999; Kawahara et al., 2009), ultimately
their scalability is limited by the hardness of Problem 1. Therefore, in the remaining of this
chapter we focus on e�cient algorithms with theoretical approximation guarantees.

The greedy algorithm. In the following, we will consider the problem of approximately
maximizing monotone submodular functions. A simple approach towards solving Problem 1
in the case of cardinality constraints is the greedy algorithm, which starts with the empty
set S

0

, and in iteration i, adds the element maximizing the discrete derivative �(e | Si�1

)
(ties broken arbitrarily):

Si = Si�1

[ {argmax
e

�(e | Si�1

)}. (2)

A celebrated result by Nemhauser et al. (1978) proves that the greedy algorithm provides
a good approximation to the optimal solution of the NP-hard optimization problem.

Theorem 1.5 (Nemhauser et al. 1978) Fix a nonnegative monotone submodular function

f : 2V ! R
+

and let {Si}i�0

be the greedily selected sets defined in Eq. (2). Then for all
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Back to our problem …
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maximize

{v1,...,vn}
F (v1, . . . , vn)

Greedily visit nodes with highest marginal utility



Informative Path Planning Problem
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Fig. 1: The adaptive information gathering problem. Given a
world map �, the robot plans a path ⇠ which visits a node
vi 2 V and receives measurement yi, such that information
gathered (utility) F (⇠, �) is maximized.

B. Problems with Known World Maps
We define four variants of the information gathering prob-

lem. For the first two variants, the world map � is known and
can be evaluated while computing a path ⇠.
Problem 1 (KNOWN-UNC: Known World Map; Uncon-
strained Travel Cost). Given a world map � and a time horizon
T , find a path ⇠ that maximizes utility

arg max

⇠2⌅
F (⇠, �)

s.t. |⇠|  T + 1

(1)

Problem 2 (KNOWN-CON: Known World Map; Constrained
Travel Cost). Problem 1 with a travel cost budget B

arg max

⇠2⌅
F (⇠, �)

s.t. T (⇠, �)  B

|⇠|  T + 1

(2)

Problem 1 is a set function maximization problem which in
general can be NP-Hard (Krause and Golovin [20]). However,
the utility function F is a monotone submodular function.
For such functions, it has been shown that greedy strate-
gies achieve near-optimality (Krause et al. [22], Krause and
Guestrin [21]).

Problem 2 introduces a routing constraint (due to T )
for which greedy approaches can perform arbitrarily poorly.
Chekuri and Pal [2], Singh et al. [30] propose a quasi-
polynomial time recursive greedy approach to solving this
problem. Iyer and Bilmes [15] solve a related problem
(submodular knapsack constraints) using an iterative greedy
approach which is generalized by Zhang and Vorobeychik
[35]. Yu et al. [34] propose a mixed integer approach to
solve a related correlated orienteering problem. Hollinger and
Sukhatme [11] propose a sampling based approach.

C. Problems with Hidden World Maps
We now consider the setting where the world map � is

hidden. Given a prior distribution P (�), it can be inferred only
via the measurements yi received as the robot visits nodes vi.

Hence, instead of solving for a fixed path, we compute a policy
that maps history of measurements received and nodes visited
to decide which node to visit.
Problem 3 (HIDDEN-UNC: Hidden World Map; Uncon-
strained Travel Cost). Given a distribution of world maps,
P (�), a time horizon T , find a policy that at time t, maps the
history of nodes visited {vi}t�1

i=1 and measurements received
{yi}t�1

i=1 to compute node vt to visit at time t, such that the
expected utility is maximized.
Problem 4 (HIDDEN-CON: Hidden World Map; Constrained
Travel Cost). Problem 3 with a travel cost budget B

Due to the hidden world map �, it is not straight forward
to apply the approaches discussed in Section II-B - methods
have to reason about how P (� | {vi}t�1

i=1, {yi}t�1
i=1) will evolve.

However, the utility function F has an additional property of
adaptive submodularity [7]. Hence, applying greedy strategies
to Problem 3 has near-optimality guarantees (Golovin et al.
[8], Javdani et al. [16, 17], Chen et al. [4, 5] ).

Problem 4 does not enjoy the adaptive submodularity
property. Hollinger et al. [13, 12] propose a heuristic based
approach to select a subset of informative nodes and perform
minimum cost tours. Singh et al. [31] replan every step using
a non-adaptive information path planning algorithm. Inspired
by adaptive TSP approaches by Gupta et al. [9], Lim et al.
[24, 23] propose recursive coverage algorithms to learn policy
trees. However such methods cannot scale well to large state
and observation spaces. Heng et al. [10] make a modular
approximation of the objective function. Isler et al. [14] survey
a broad number of myopic information gain based heuristics
that work well in practice but have no formal guarantees.

III. POMDPS AND IMITATION LEARNING

A. Mapping Problems to a POMDP
We now map Problems HIDDEN-UNC and HIDDEN-CON

to a Partially Observable Markov Decision Process (POMDP).
The POMDP is a tuple (S, M, A, ⌦, R, O, Z, T ) defined upto
a fixed finite horizon T . It is defined over an augmented state
space comprising of the ego-motion state space S (which we
will refer to as simply the state space) and the space of world
maps M. The first component, S , is fully observable while
the second component, M, is partially observable through
observations received.

Let the state, st 2 S , be the set of nodes visited, st =

(v1, v2, . . . , vt). Let the action, at 2 A be the node visited
at = vt+1. Given a world map �, at state s, the utility of a is
F (s [ a, �). For Problem HIDDEN-CON, let Afeas (s, �) ⇢ A
be the set of feasible actions defined as

Afeas (s, �) = {a | a 2 A, T (s [ a, �)  B} (3)

The state transition function, ⌦ (s, a, s0) = P (s0|s, a), is
the deterministic function s0 = s [ a. The one-step-reward
function, R (s, �, a) 2 [0, 1], is defined as the normalized
marginal gain of the utility function, R (s, �, a) =

�F (a|s,�)
F(A,�) .

Let the observation, ot 2 O be the measurement ot = yt.
The observation model, Z (s, a, �, o) = P (o|s, a, �) is the
deterministic function o = H (s [ a, �).

What if we could no longer teleport? 

(Coverage)

(Tour 
Cost)

Would greedy still be near-optimal?



Generalized Cost Benefit
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(on board)



Ship Hull Inspection

 38

G. Hollinger, B. Englot, F. Hover, U. Mitra, and G. Sukhatme, "Active planning for underwater inspection and the benefit of adaptivity," International 
Journal of Robotics Research (IJRR), vol. 32, no. 1, pp. 3-18, Jan. 2013. 



Safety
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Guaranteeing safety

What prevents the system from flying at high speeds to a dead end?

Laser range 
(1 km)

Safety planner that guarantees the robot can stay safe 



Known%Volume

Known%Obstacles

Unsafe%Trajectory

Safe%Trajectory

What is a safe state?

Must exist a trajectory in known free space



Guaranteed Safe Planning
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1. S.Arora, S.Choudhury, D. Althoff and S. Scherer. “Emergency Maneuver Library – Ensuring Safe Navigation in Partially 
Known Environments”, ICRA (2015)

Motion 
Planner Safety Checker

Emergency Library 

To Helicopter

Need simple  
verifiable code 
for DO-178B  
certification!



Safety Algorithm
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Known%Unocc.%Volume
Known%Obstacles

Available%Safe%Trajectory

Planned%Trajectory



Safety Algorithm
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Known%Unocc.%Volume
Known%Obstacles

Available%Safe%Trajectory

Planned%Trajectory

State%at%t+lookahead

Available%collision%free%paths%
at%state%%t+lookahead



Safety Algorithm
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Known%Unocc.%Volume
Known%Obstacles

Available%Safe%Trajectory

Planned%Trajectory

Unsafe%Trajectory
Current%state



Safety Algorithm
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Known%Unocc.%Volume
Known%Obstacles

Available%Safe%Trajectory

Planned%Trajectory

Current%state
Unsafe%Trajectory

If%the%rotorcraft%cannot%slow%
down%in%time%to%the%suggested%
speed.%

State%at%t+lookahead



When is a safety maneuver triggered?
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Guaranteeing safety at close obstacle proximity



Safety during actual sensor failure



How do we compute a library of 
emergency maneuvers?
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is the probability of a trajectory being unobstructed in the trajectory  

Generating the Emergency Maneuver 
Library

 51

Where,  

)(maxarg Φ=Φ ud P
dNd ≤ΦSubject to:

Φ
dN
)(ΦuP

is the number of trajectories that can be checked for obstruction in real 
time

NP-hard problem. 

Sub-modular, monotonic structure leads to an efficient 
greedy algorithm which allows for near-optimal solutions

Arora et. Al, “Emergency Maneuver Library – ensuring safe navigation in partially known environments”, ICRA 
2015.



Library Construction
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Library Construction
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Library Construction
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Library Construction
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Library Construction
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Library Construction


