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Partially known environment




Motion Planning assumes the world
is sufficiently known

What happens in a partially known
world?



Two central questions

1. How do we gather information about the world?

2. How do we guarantee satety in a partially known world?



Information Gathering



Autonomous indoor exploration

|1] Benjamin Charrow, Gregory Kahn, Sachin Patil, Sikang Liu, Ken Goldberg, Pieter Abbeel, Nathan Michael, and Vijay

Kumar. Information-theoretic planning with trajectory optimization for dense 3d mapping. In RSS, 2015




Exploration of Subterranean Environment




Contextual Information Gathering

ONR Grant# N0O0014-14-1-0693

MavScout: Large scale data
gathering through aerial vehicles

Sankalp Arora, Geetesh Dubey, Daniel Maturana, Greg Armstrong,
Sebastian Scherer

£, air lab, Carnegie Mellon University L3




Informative Path Planning Problem

Plan a path to maximize the amount of information gathered
while respecting the total fuel constraints
and time constraints
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What is information in this context?
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Informative Path Planning Problem

Plan a path to maximize the amount of information gathered
while respecting the total fuel constraints
and time constraints
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Let's look at a simpler problem

What if robot had infinite tuel

and
could teleport to any node?

Can we maximize the amount of information discovered
by the robot?
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Sensor Placement Problem

Simulation: Stanford Dataset-Bunny

Octomap Representation 3D Pointcloud

|2] Stefan Isler, Reza Sabzevari, Jeffrey Delmerico, and Davide Scara- muzza. An information gain formulation for active
volumetric 3d reconstruction. In ICRA, 2016.
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Sensor Placement Problem

maximize F'(vi,...,Up)
{v1,...,0n}
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Sensor Placement Problem

maximize F'(vi,...,Up)
{v1,...,0n}
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Sensor Placement Problem

maximize F'(vi,...,Up)
{v1,...,0n}
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Sensor Placement Problem

maximize F'(vi,...,Up)
{v1,...,0n}

1,V2,V3) = 8
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Can't we run dynamic programming
and get the optimal answer?

No! Lack of optimal substructure
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Optimal substructure in Search

g(s) = min (g(s') +c(s’,s))
s’ €pred(s)



Optimal substructure in LQR

Recall the Bellman function that relates value at consecutive time steps

J(th, t) — quj,ln C(th, ut) -+ J(.CEt_|_1, t + 1)

t

— minz; Q; + u; Ruy + J(zep1,t + 1)

U+
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No optimal substructure in PP

F(vl,...,vn)

Here F' is a set function.
The utility of adding a vertex depends on the vertices

already added.
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Utility is a set function

V1 increases the utility by 3; seems informative

F(@):O F(Ul):3
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Utility is a set function

Now let’s say we have already visited wvs

F(UQ) — 2
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Utility is a set function

Additional contribution of v;is only 1

F(Ug) = 2 F(Ug,vl) = 3
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Utility of a vertex depends on the
path we took to get there

Need to reason over all combination
of paths!

NP-hard



The provable virtue of
greediness
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Submodular Functions

Submodularity is a property of set functions, i.e., functions f : 2¥ — R

Definition 1.1 (Discrete derivative) For a set function f: 2"V - R, SCV,ande € V,
let As(e | S):= f(SU{e}) — f(S) be the discrete derivative of f at S with respect to e.

Where the function f is clear from the context, we drop the subscript and simply write

Ae | S).
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Submodular Functions

Definition 1.2 (Submodularity) A function f : 2¥ — R is submodular if for every
AC BCV and e eV \ B it holds that

Ale| A) > Ale| B).

(think of this as diminishing returns)

Definition 1.3 (Monotonicity) A function f : 2" — R is monotone if for every A C B C

V, f(A) < f(B).

(think of this as positive returns)
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e

le.n  Example: Set cover

act

Place sensors Want to cover floorplan with discs

in building °
@
@
|
@
@
[
@

Node predicts For A C V: F(A) = “area

values of positions covered by sensors placed at A”

with some radius
Formally:

W finite set, collection of n subsets S, C W
For A C V={1,...,n} define F(A) = U, S|
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'})-F(B)

F(BU{S
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Example: Sensor placement

(a) Adding s’ to set {s1,s2} (b) Adding s’ to superset {s1,...,84}

Figure 1 Illustration of the diminishing returns effect in context of placing sensors in a water dis-
tribution network to detect contaminations. The blue regions indicate nodes where contamination
is detected quickly using the existing sensors S. The red region indicates the additional coverage

by adding a new sensor s’. If more sensors are already placed (b), there is more overlap, hence
less gain in utility: A(s” | {s1,s2}) > A(s" | {s1,...,84}).
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Theorem: Greedy is near-optimal

S@ — Si—l U {arg maXA(e ‘ Si—l)}-

Theorem 1.5 (Nemhauser et al. 1978) Fizx a nonnegative monotone submodular function
f:2Y = Ry and let {Si}tiso be the greedily selected sets defined in Eq. (2). Then for all

Fs0 = (1-¢) 159

€

(greedy) 63%  (optimal)
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Back to our problem ...

maximize F'(vi,...,Up)
{v1,...,0n}

Greedily visit nodes with highest marginal utility
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Informative Path Planning Problem

What if we could no longer teleport?

Node Set
Utlhty

arg 1max F(g ¢) (Coverage)
Pat/h\ cfE_a

<—World Map S. 1. T (5, ¢) S B (Tour
Cost)

Measurement——— Vs

Would greedy still be near-optimal?
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Generalized Cost Benefit

(on board)
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Ship Hull Inspection
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G. Hollinger, B. Englot, F. Hover, U. Mitra, and G. Sukhatme, "Active planning for underwater inspection and the benefit of adaptivity," International
Journal of Robotics Research (IJRR), vol. 32, no. 1, pp. 3-18, Jan. 2013.



Safety



Guaranteeing safety

s

4

A

/\|

Laser range

-

/N

A
What prevents the system from flying at high speeds to a dead end?

Safety planner that guarantees the robot can stay safe
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What is a safe state?

Known Volume

Known Obstacles

( ! === Unsafe Trajectory

S=-7 === Safe Trajectory

Must exist a trajectory in known free space



Guaranteed Sate Planning

To Helicopte
Safety Checker —

Motion

Planner

Need simple
verifiable code
for DO-178B

certification!

Emergency Library

1. S.Arora, S.Choudhury, D. Althoff and S. Scherer. “Emergency Maneuver Library — Ensuring Safe Navigation in Partially

Known Environments”, ICRA (2015)
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Safety Algorithm

Known Unocc. Volume

Known Obstacles

B S —

=== Available Safe Trajectory

== = Planned Trajectory
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State at t+lookahead

Safety Algorithm

Known Unocc. Volume

Known Obstacles

=== Available Safe Trajectory

== = Planned Trajectory

s
L
.=
.
"
»*
o

Available collision free paths
at state t+lookahead
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Current state

Safety Algorithm

Known Unocc. Volume

Known Obstacles

=== Available Safe Trajectory

== = Planned Trajectory

=== Unsafe Trajectory
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Safety Algorithm

Known Unocc. Volume

If the rotorcraft cannotslow Known Obstacles
down in time to the suggested

speed. J— 2
S

=== Available Safe Trajectory

= = Planned Trajectory

; === Unsafe Trajectory
Current state

State at t+lookahead
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When is a safety maneuver triggered?’

ergency Library (rand Canyon)

Desired path between origin and destiny
Is a straight line.




Guaranteeing safety at close obstacle proximity

Safe Velocity = 3@mis




Safety during actual sensor failure

f_- Sensor planner

generates
polygon in the
53 correct location




How do we compute a library of
emergency maneuvers’
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Generating the Emergency Maneuver
Library

®, = argmax P.(D)
Subject to: P. = N

Where,

P.(®)is the probability of a trajectory being unobstructed in the trajectory ®

N, is the number of trajectories that can be checked for obstruction in real
time

NP-hard problem.

Sub-modular, monotonic structure leads to an efficient
greedy algorithm which allows for near-optimal solutions

Arora et. Al, “Emergency Maneuver Library - ensuring safe navigation in partially known environments”, ICRA
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Library Construction
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Library Construction

Selected Trajectory Set

200 200+
100 100+
E © 0+
>
-100 -100 ¢
-200 -200 +
-300 : : : i : - -300 : . ~ : : : : .
-200 -100 0 100 200 300 400 0 100 200 300 400 500 600
X(m) X(m)
0.1 deads . - 05- .y . o
Probability of Finding a Probability of Finding a
0.08/ Safe Trajectory o4} Safe Trajectory in the Selected Set
2 0.06 Z03
2 3
g 0.04 g 0.2

o

0.02

o

o '’ 'l e ' 8 ' A ' s A ' {4 ' J
0 20 40 60 80 100 120 140 160 3 4 5 6 7
Right to Left lterations

o
n



Library Construction

Selected Trajectory Set
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Library Construction
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Library Construction

Selected Trajectory Set
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Library Construction
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