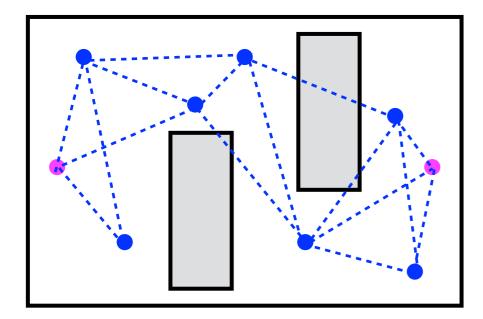
Incremental Planning

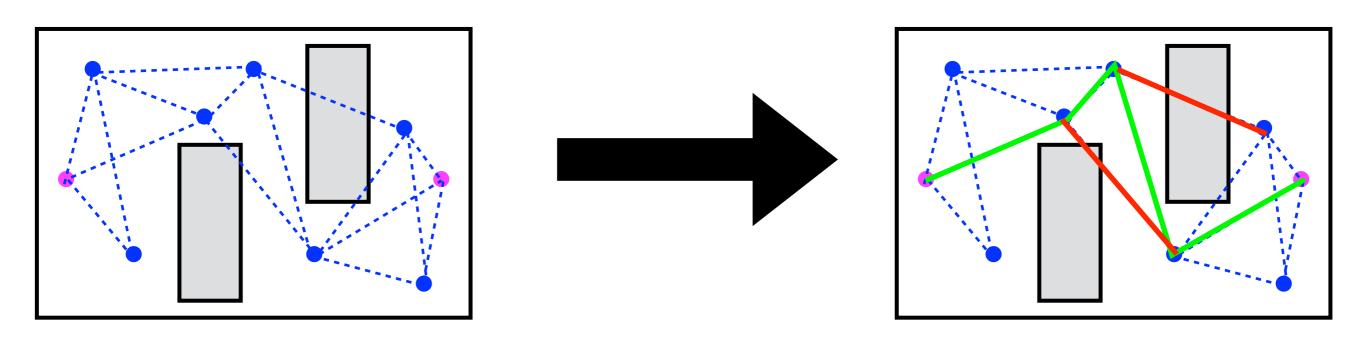
Sanjiban Choudhury

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle

1

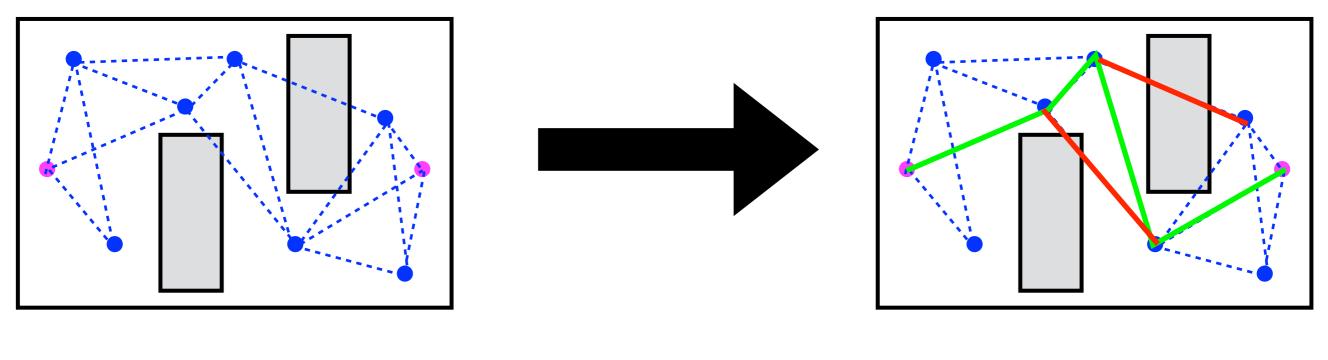


Create a graph



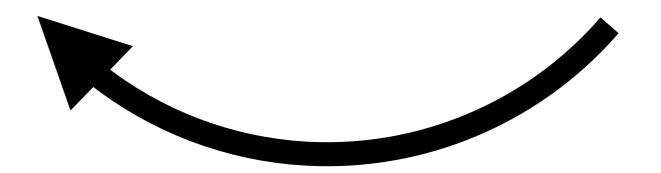
Create a graph

Search the graph



Create a graph

Search the graph



Interleave

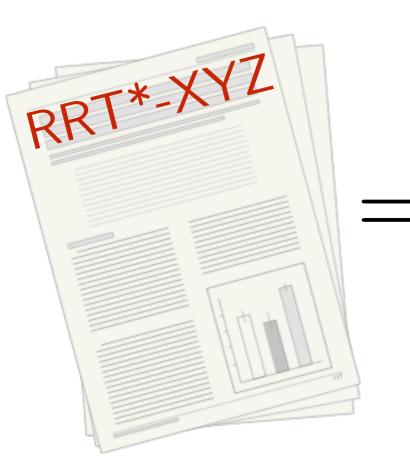
Any planning algorithm

Create graph Search graph Interleave

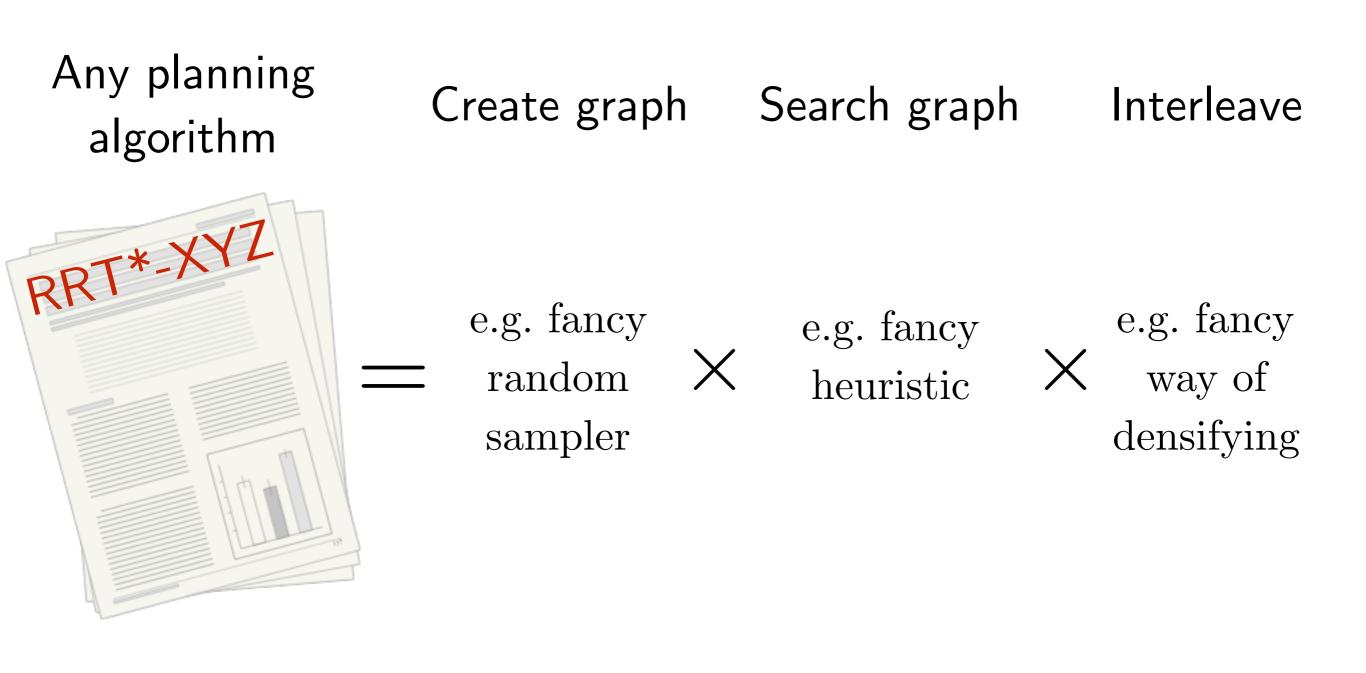
Any planning algorithm

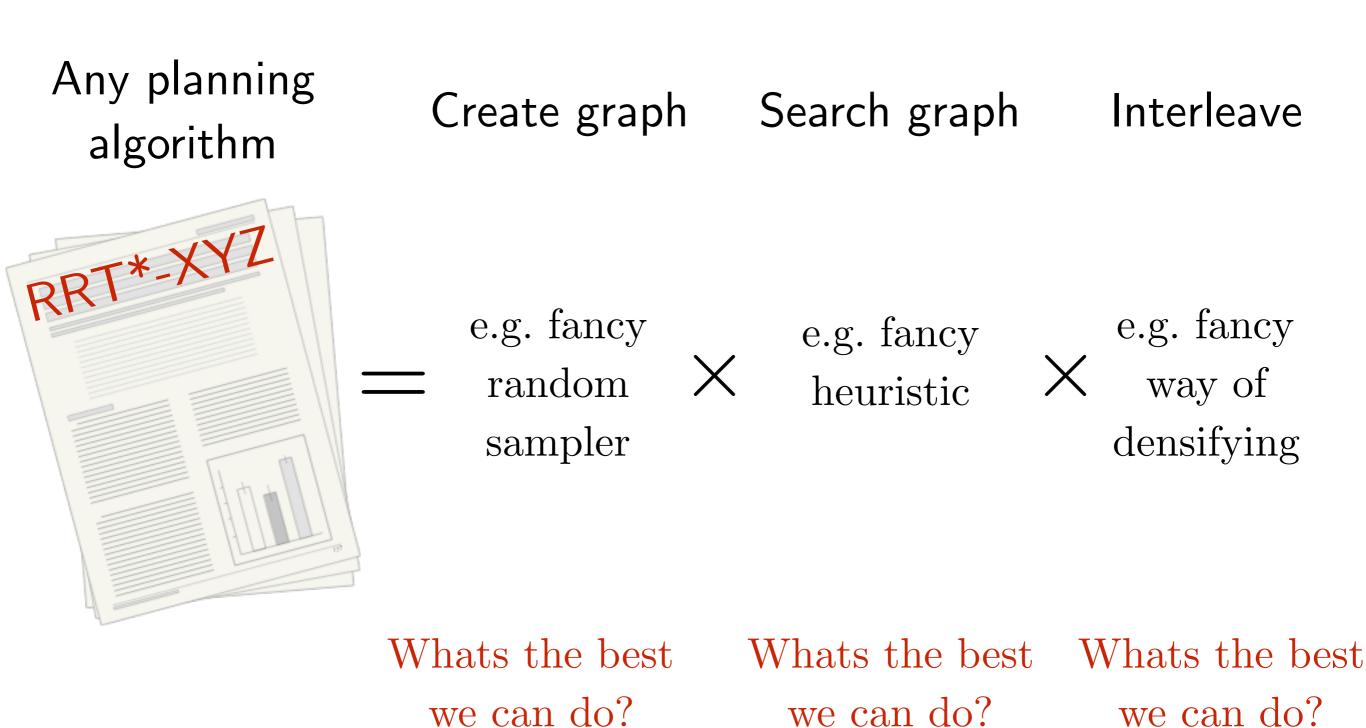
Create graph Search graph Interleave

Any planning algorithm



Create graph Search graph Interleave





Today's discussion

1. Why would we want to interleave?

2. How do we search when we interleave? (repairing search)

3. How do we improve graphs when we interleave? (incremental sampling)

4. Putting it all together

Today's discussion

1. Why would we want to interleave?

2. How do we search when we interleave? (repairing search)

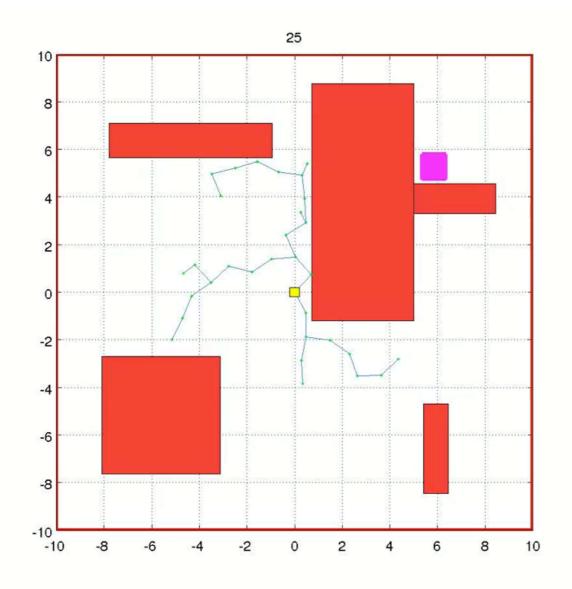
3. How do we improve graphs when we interleave? (incremental sampling)

4. Putting it all together

Anytime Planning

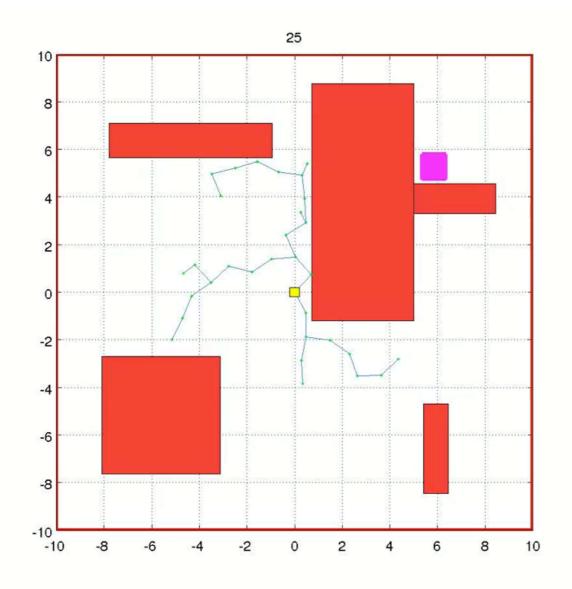
Anytime Planning

Quickly get a feasible path. Improve if you have more time.



Anytime Planning

Quickly get a feasible path. Improve if you have more time.

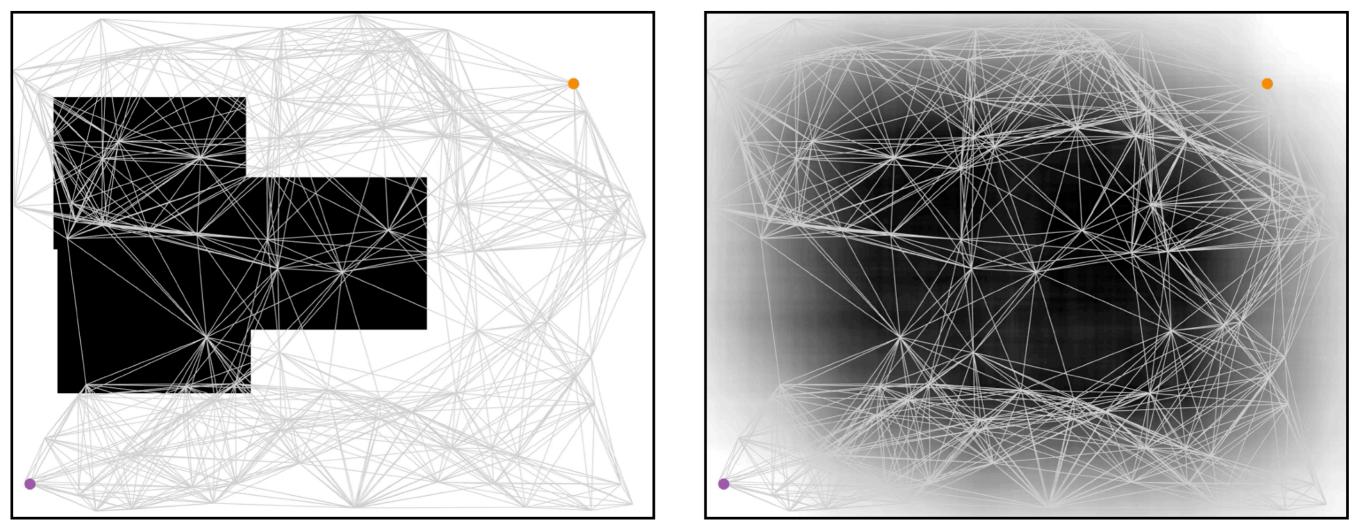


Planning as Inference

A Bayesian Approach to Edge Evaluation

Ground truth

Agent's belief

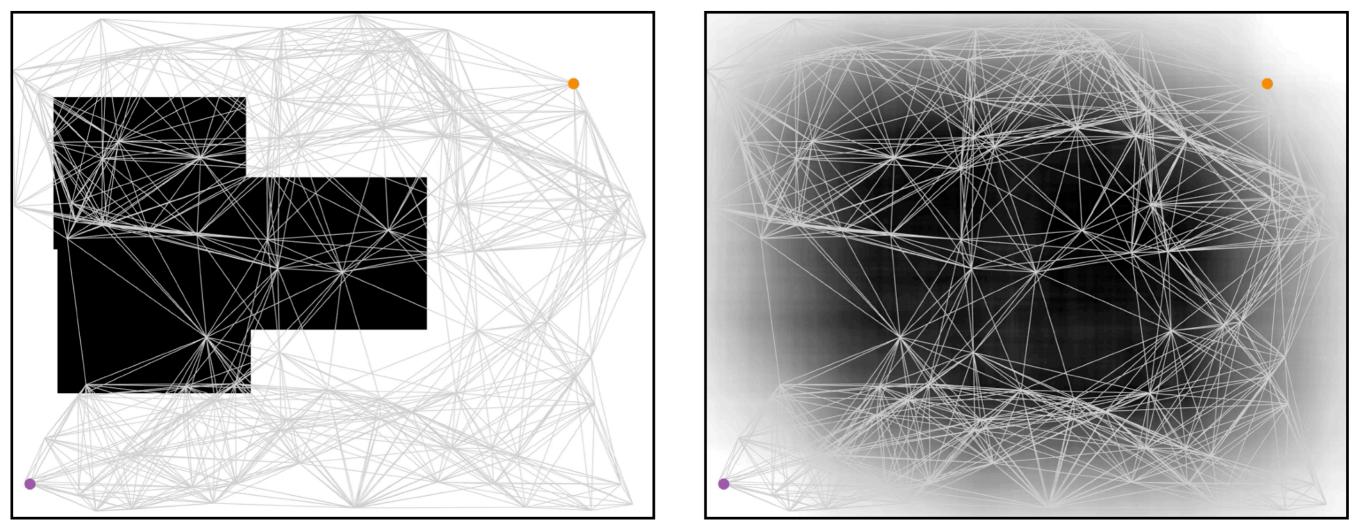


First Set of Provably Near Bayes-Optimal Planning Algorithms [NIPS'17, ISRR'17, IJCAI'18]

A Bayesian Approach to Edge Evaluation

Ground truth

Agent's belief



First Set of Provably Near Bayes-Optimal Planning Algorithms [NIPS'17, ISRR'17, IJCAI'18]

Today's discussion

1. Why would we want to interleave?

2. How do we search when we interleave? (repairing search)

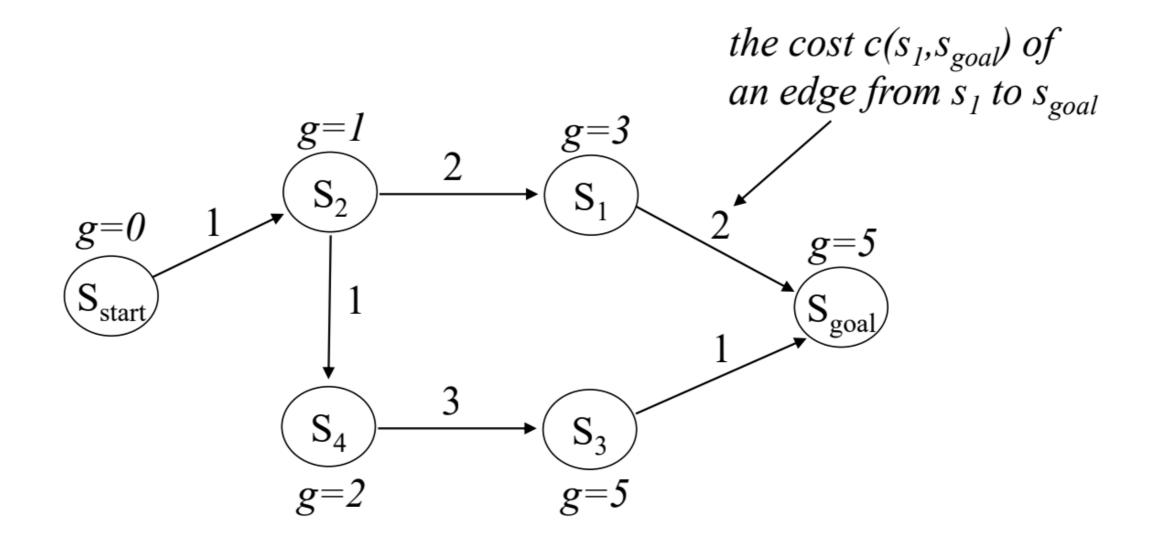
3. How do we improve graphs when we interleave? (incremental sampling)

4. Putting it all together

Interleaving implies new vertices / edges appear

Do we always have to replan whenever the graph changes?

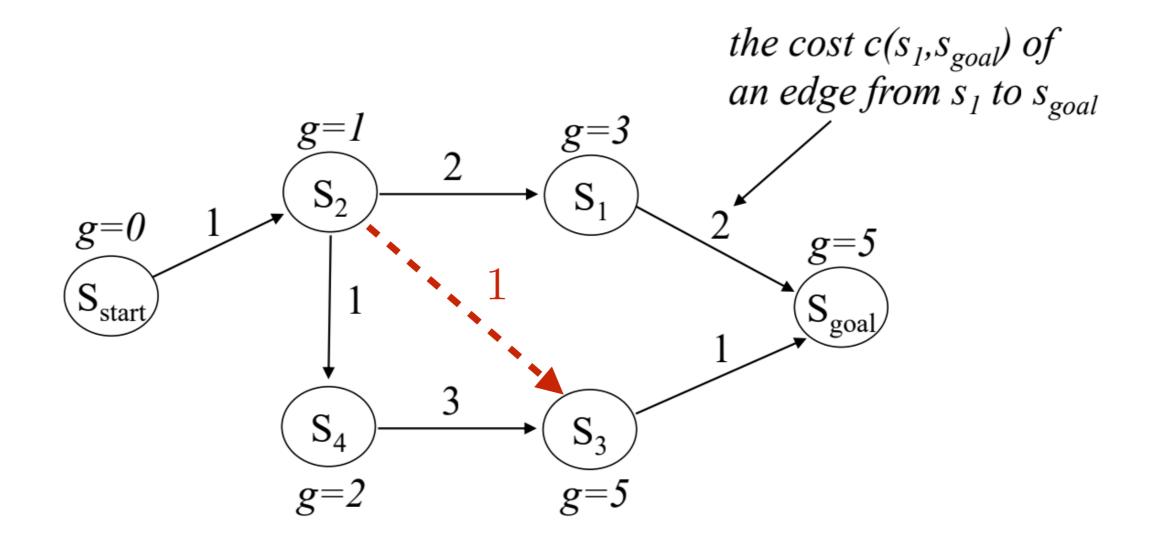
What's true about g(s) values after search?



Vertices are locally consistent

$g(s) = \min_{\substack{s' \in \operatorname{pred}(s)}} (g(s') + c(s', s))$

What happens when we introduce a new edge?



Why Reinforcement Learning played a big role in developing planning ... (obv. the reverse is true)

Value iteration on graphs g_1 g_2 g_1 g_2 2 S_2 \mathbf{S}_1 g_0 g_5 g_3 S_{start} S_{goal} 3 S_4 S_3 g_4 g_4 g_3 g_5

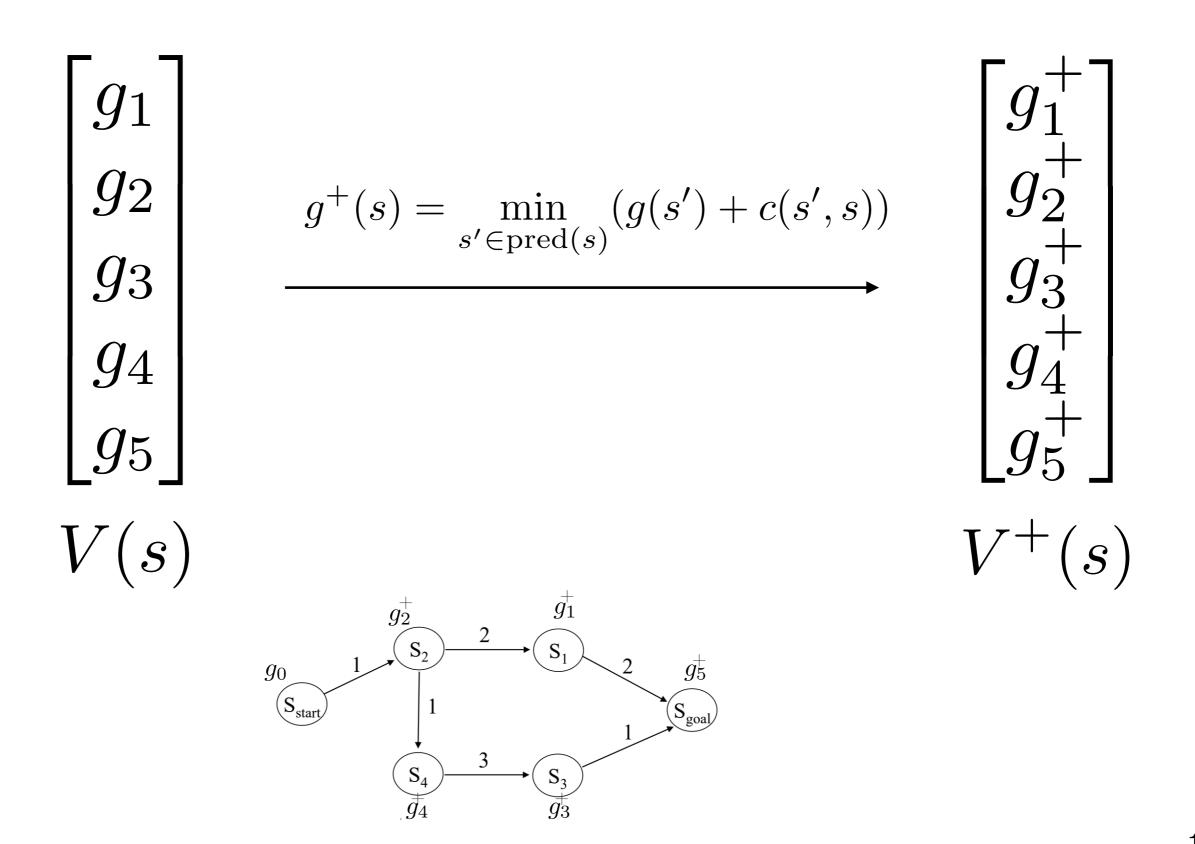
V(s)

Value iteration step

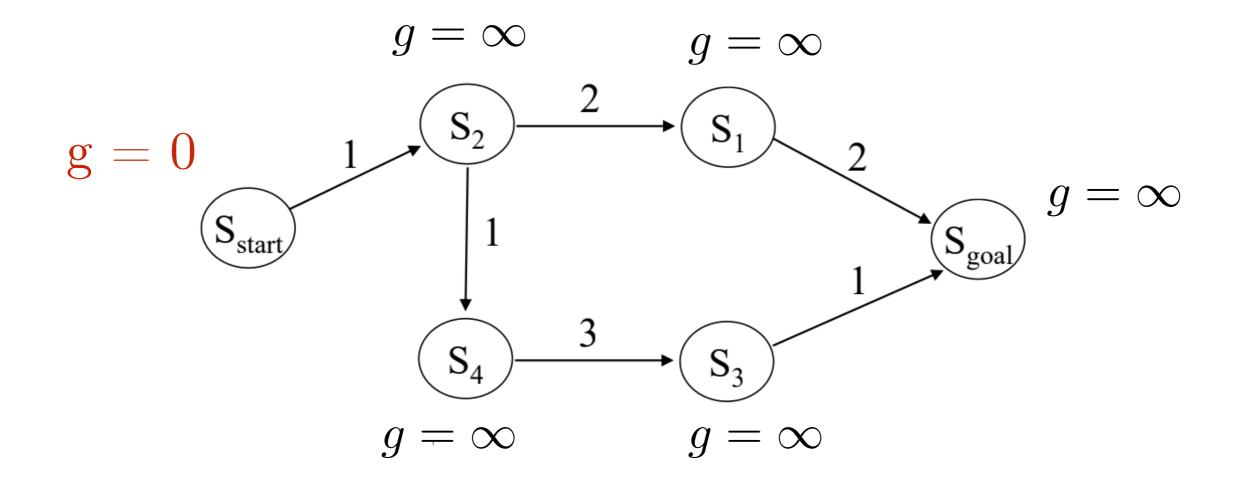
$g^+(s) = \min_{\substack{s' \in \operatorname{pred}(s)}} (g(s') + c(s', s))$

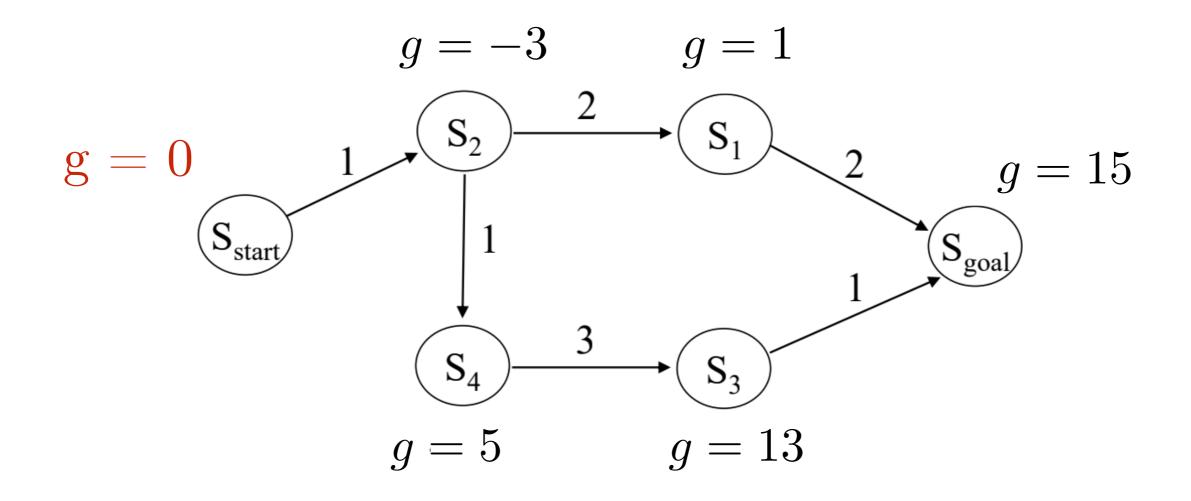
Do this for all states!

Value iteration on graphs



Yes! Value iteration is a contraction





What if we didn't update for ALL the states?

$$\begin{bmatrix} g_{1} \\ g_{2} \\ g_{3} \\ g_{4} \\ g_{5} \end{bmatrix} \xrightarrow{g^{+}(s) = \min_{s' \in \text{pred}(s)}(g(s') + c(s', s))} \begin{bmatrix} g_{1}^{+} \\ g_{2}^{+} \\ g_{3}^{+} \\ g_{3}^{+} \\ g_{4}^{+} \\ g_{5}^{+} \end{bmatrix}}$$

$$V(s) \qquad \qquad V^{+}(s)$$

What if we didn't update for ALL the states?

$$g^+(s) = \min_{\substack{s' \in \operatorname{pred}(s)}} (g(s') + c(s', s))$$

What if we did this for a RANDOM SUBSET of states?

What if we didn't update for ALL the states?

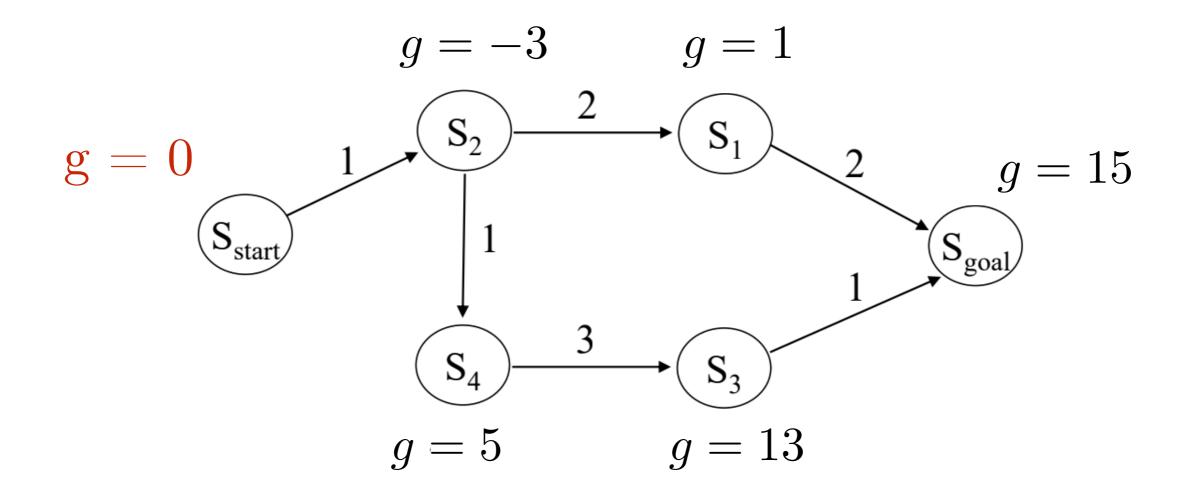
$$g^+(s) = \min_{\substack{s' \in \operatorname{pred}(s)}} (g(s') + c(s', s))$$

What if we did this for a RANDOM SUBSET of states?

What if we didn't update for ALL the states?

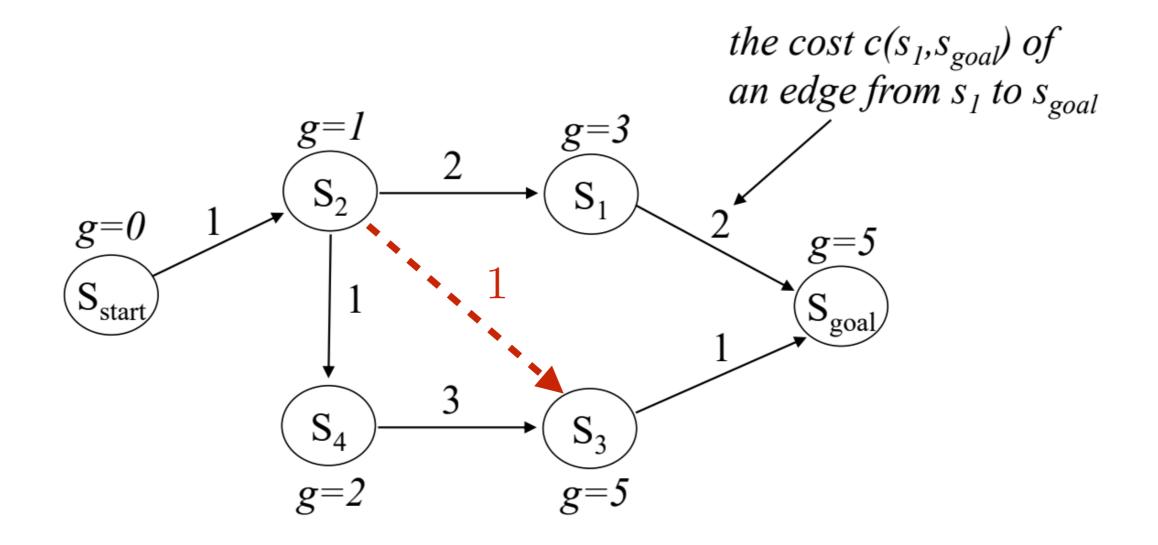
$$g^+(s) = \min_{\substack{s' \in \operatorname{pred}(s)}} (g(s') + c(s', s))$$

What if we did this for a RANDOM SUBSET of states?



Back to our problem ...

What happens if you run asynchronous value iteration?



Key Idea

Run asynchronous value iteration in an organized way

LPA* (Koenig and Likhachev)

How many ways can a graph change?

How many ways can a graph change?

New edges / vertices appear

How many ways can a graph change?

New edges / vertices appear

Cost of edges increase (lazy evaluation)

How many ways can a graph change?

New edges / vertices appear

Cost of edges increase (lazy evaluation)

Cost of edges increase/decrease (approximation tech)

How many ways can a graph change?

New edges / vertices appear

Cost of edges increase (lazy evaluation)

Cost of edges increase/decrease (approximation tech)

F-value of nodes change (dynamic heuristic)

How many ways can a graph change?

New edges / vertices appear

Cost of edges increase (lazy evaluation)

Cost of edges increase/decrease (approximation tech)

F-value of nodes change (dynamic heuristic)

What about planning across iterations?

How many ways can a graph change?

New edges / vertices appear

Cost of edges increase (lazy evaluation)

Cost of edges increase/decrease (approximation tech)

F-value of nodes change (dynamic heuristic)

What about planning across iterations?

New obstacles appear/disappear - cost of edges increase/decrease

Anytime Repairing A* (ARA*)

https://www.youtube.com/watch?v=rZHtHJlJa2w

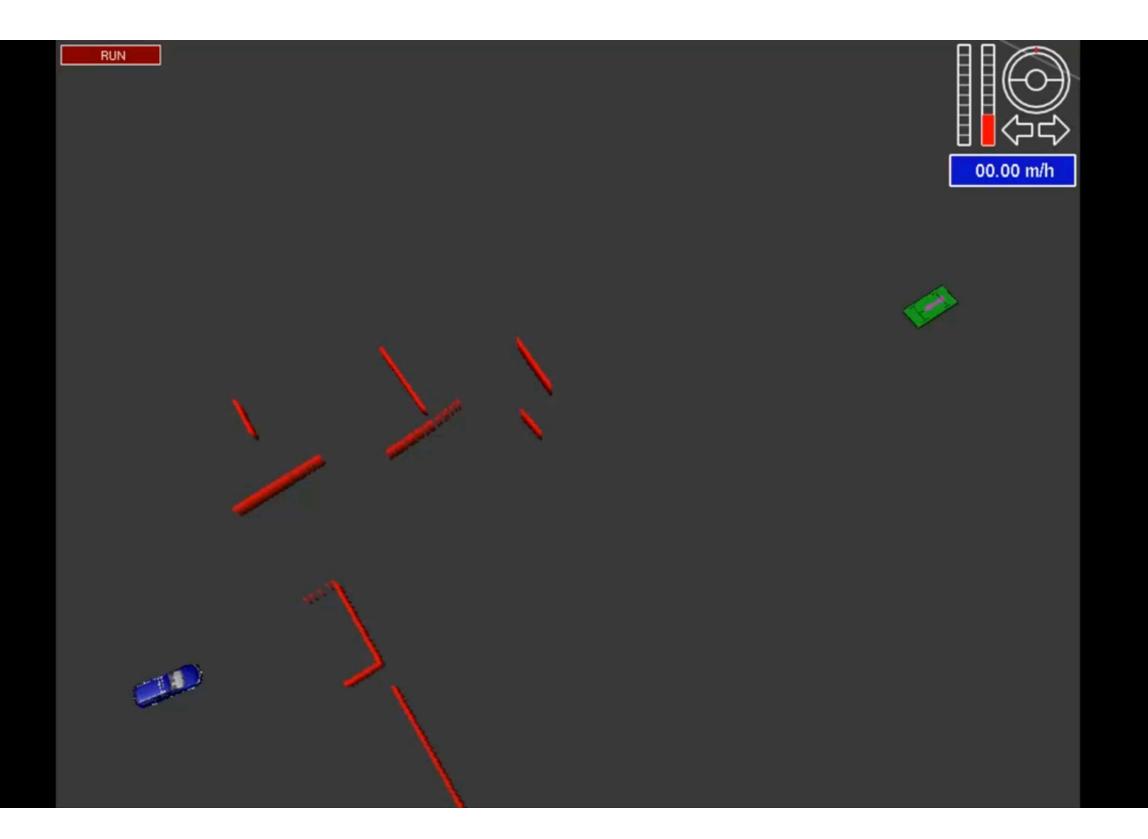
Maxim Likhachev, Geoff Gordon and Sebastian Thrun 28

Anytime Repairing A* (ARA*)

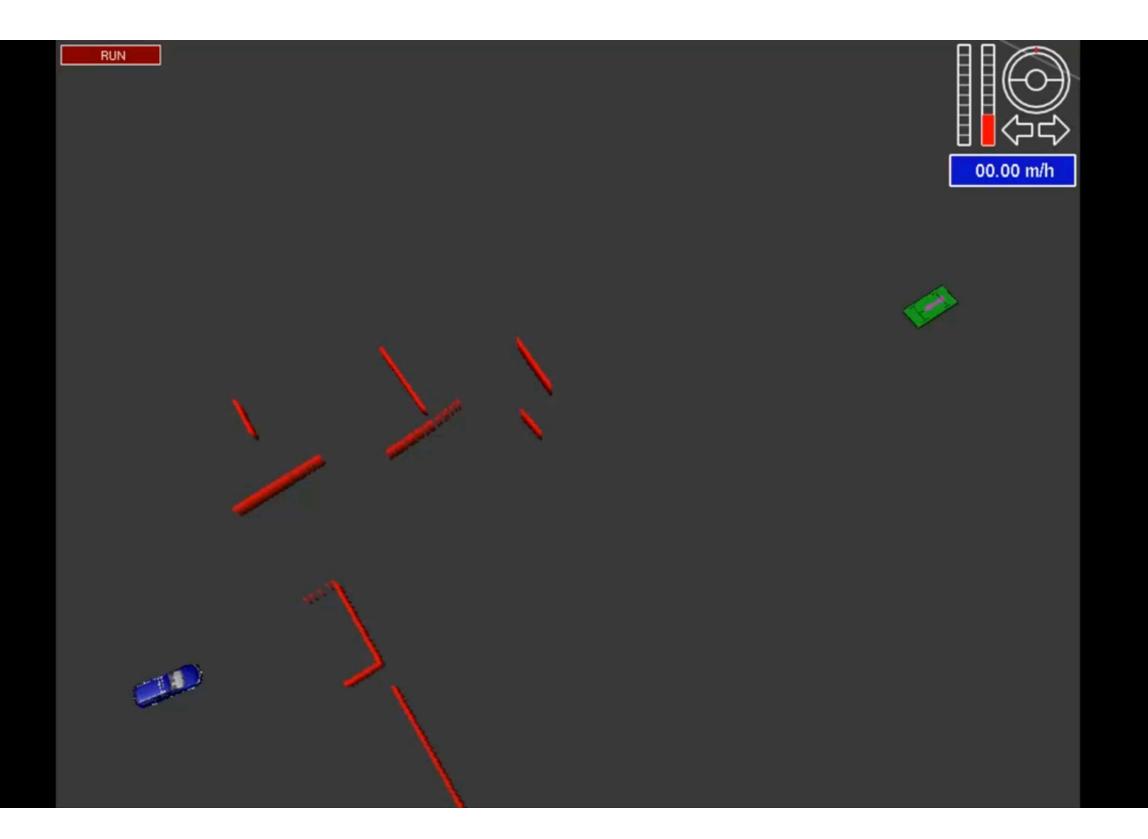
https://www.youtube.com/watch?v=rZHtHJlJa2w

Maxim Likhachev, Geoff Gordon and Sebastian Thrun 28

D*-Lite



D*-Lite



Today's discussion

1. Why would we want to interleave?

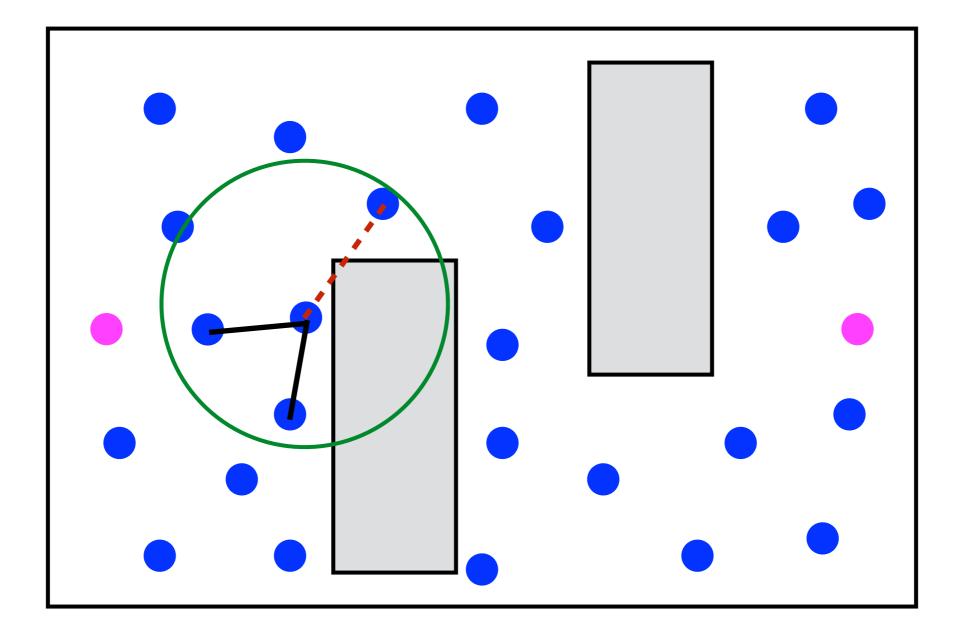
2. How do we search when we interleave? (repairing search)

3. How do we improve graphs when we interleave? (incremental sampling)

4. Putting it all together

What is incremental sampling?

Probabilistic Roadmaps were batch

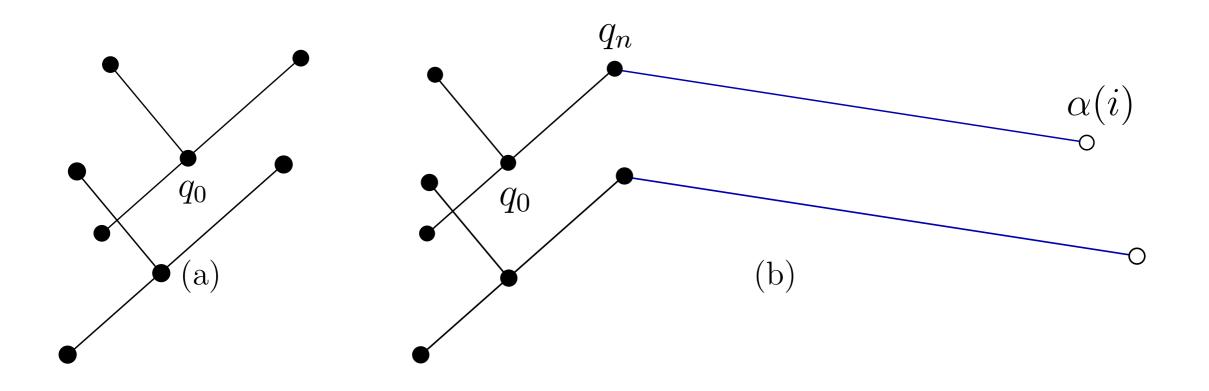


Rapidly Exploring Dense Tree (RDT)

LaValle, 1998

SIMPLE_RDT (q_0)

- 1 $\mathcal{G}.init(q_0);$
- 2 for i = 1 to k do
- 3 $\mathcal{G}.add_vertex(\alpha(i));$
- 4 $q_n \leftarrow \text{NEAREST}(S(\mathcal{G}), \alpha(i));$
- 5 $\mathcal{G}.add_edge(q_n, \alpha(i));$

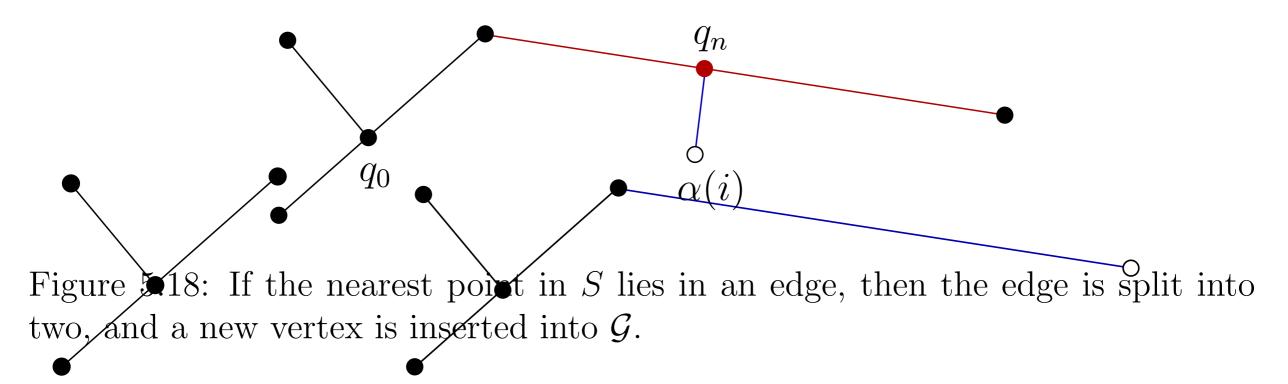


Rapidly Exploring Dense Tree (RDT)

LaValle, 1998

SIMPLE_RDT (q_0)

- 1 $\mathcal{G}.init(q_0);$
- 2 for i = 1 to k do
- 3 $\mathcal{G}.add_vertex(\alpha(i));$
- 4 $q_n \leftarrow \text{NEAREST}(S(\mathcal{G}), \alpha(i));$
- 5 $\mathcal{G}.add_edge(q_n, \alpha(i));$

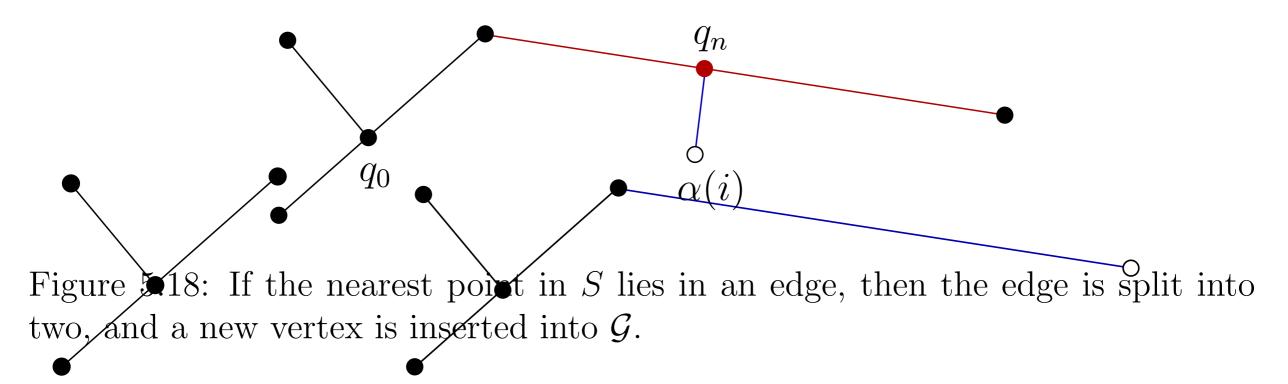


Rapidly Exploring Dense Tree (RDT)

LaValle, 1998

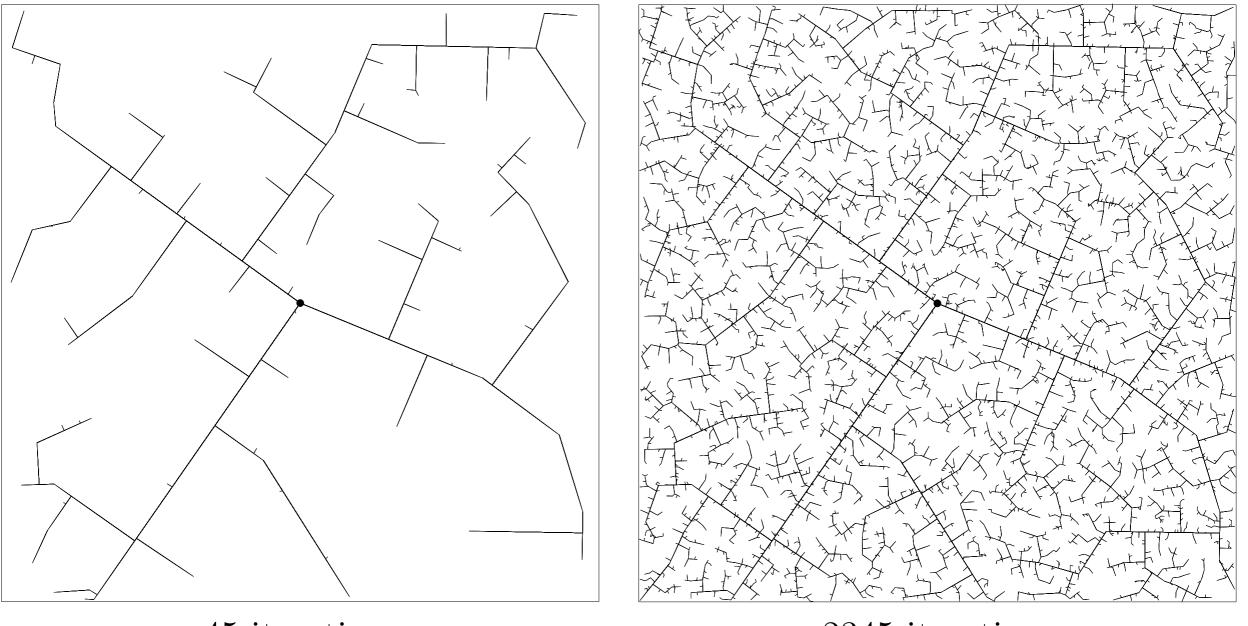
SIMPLE_RDT (q_0)

- 1 $\mathcal{G}.init(q_0);$
- 2 for i = 1 to k do
- 3 $\mathcal{G}.add_vertex(\alpha(i));$
- 4 $q_n \leftarrow \text{NEAREST}(S(\mathcal{G}), \alpha(i));$
- 5 $\mathcal{G}.add_edge(q_n, \alpha(i));$



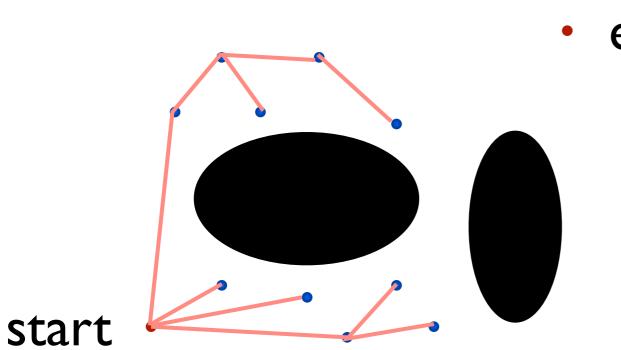
RDT with iterations

LaValle, 1998



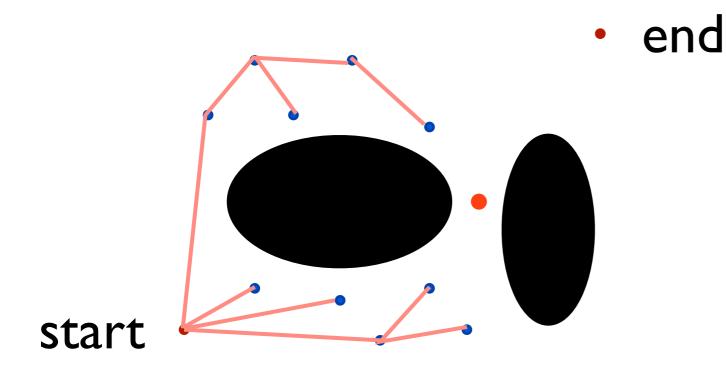
45 iterations

2345 iterations



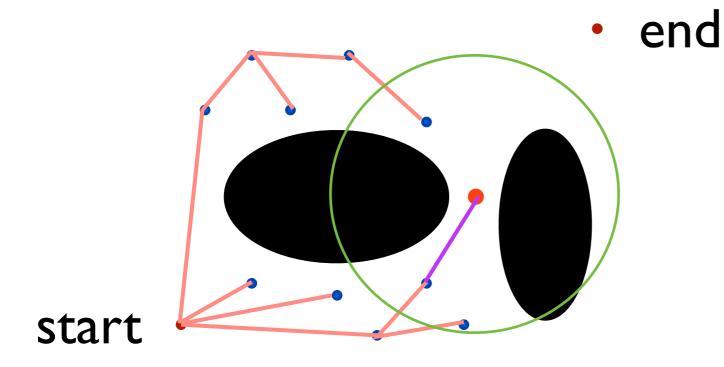
At the *i*th iteration,

end



At the *i*th iteration,

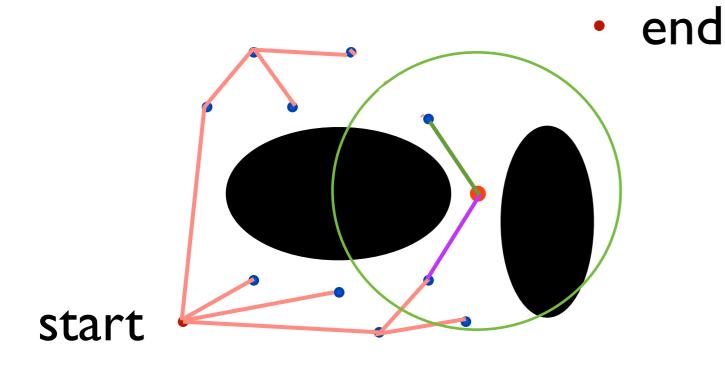
SAMPLE



At the *i*th iteration,

SAMPLE

FIND BEST PARENT



At the *i*th iteration,

SAMPLE

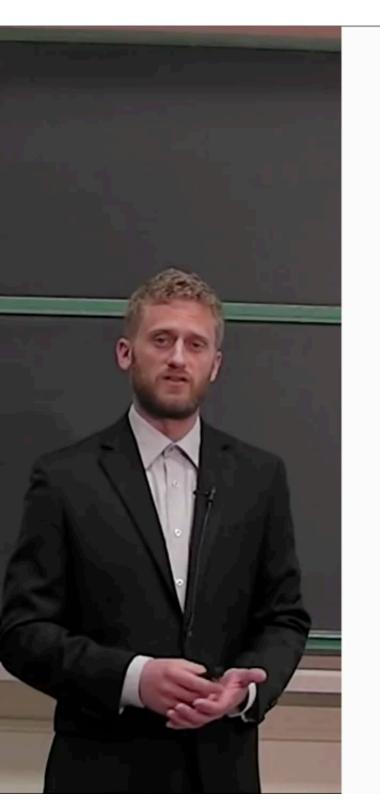
FIND BEST PARENT

REWIRE TO CHILDREN

RRT* is asynchronous Value Iteration!

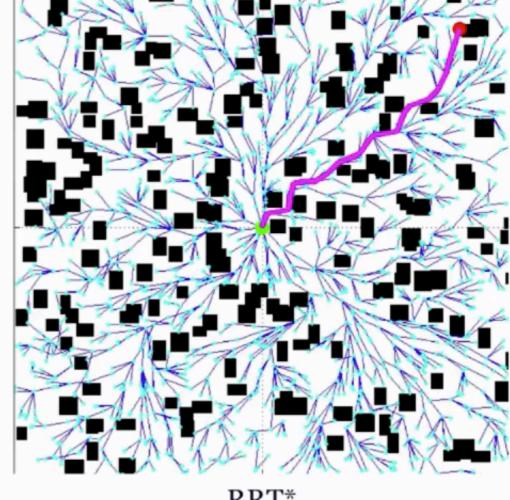
Can we do better?

Informed RRT*



Informed RRT*

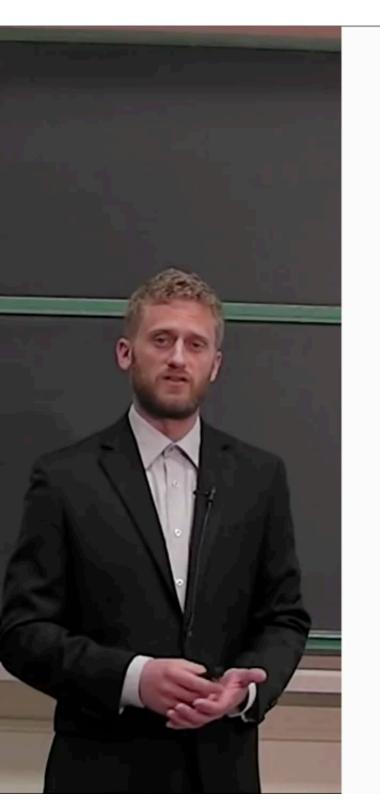
- RRT* is asymptotically optimal everywhere.
- This is unnecessary for singlequery planning.



RRT* Carnegie Mellon THE ROBOTICS INSTITUTE

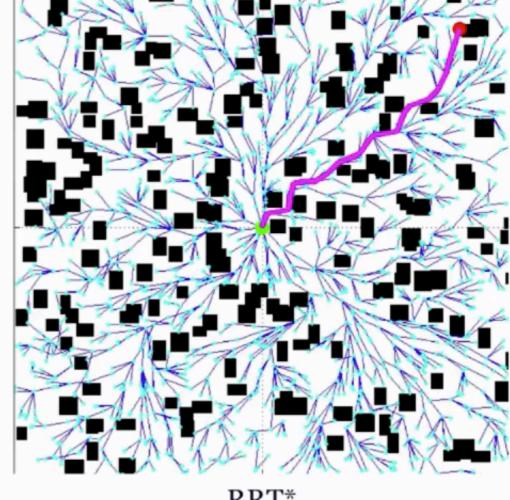
https://www.youtube.com/watch?v=nsl-5MZfwu4&t=48s J. Gammell, S.Srinivasa, T.Barfoot, 2014

Informed RRT*



Informed RRT*

- RRT* is asymptotically optimal everywhere.
- This is unnecessary for singlequery planning.



RRT* Carnegie Mellon THE ROBOTICS INSTITUTE

https://www.youtube.com/watch?v=nsl-5MZfwu4&t=48s J. Gammell, S.Srinivasa, T.Barfoot, 2014

Today's discussion

1. Why would we want to interleave?

2. How do we search when we interleave? (repairing search)

3. How do we improve graphs when we interleave? (incremental sampling)

4. Putting it all together

Batch Informed Trees

- BIT* uses **batches** of random samples to define an **implicit** random geometric graph (RGG).
- It then uses a **heuristic** to search the RGG in order of decreasing solution quality (e.g., A*).

 $https://www.youtube.com/watch?v{=}TQIoCC48gp4$

Batch Informed Trees

- BIT* uses **batches** of random samples to define an **implicit** random geometric graph (RGG).
- It then uses a **heuristic** to search the RGG in order of decreasing solution quality (e.g., A*).

 $https://www.youtube.com/watch?v{=}TQIoCC48gp4$