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Today's discussion

1. Why would we want to interleave?

2. How do we search when we interleave?

(repairing search)

3. How do we improve graphs when we interleave?

(incremental sampling)

4. Putting it all together
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Planning as Inference
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Today's discussion

1. Why would we want to interleave?

2. How do we search when we interleave?”

(repairing search)

3. How do we improve graphs when we interleave?

(incremental sampling)

4. Putting it all together
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Interleaving implies
new vertices / edges appear

Do we always have to replan
whenever the graph changes?
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What's true about g(s) values after search?

the cost (S 1,Sgo0) Of

an edge from s, 10 S,

12



Vertices are locally consistent

g(s) = min (g(s’)+c(s, s))
s’ €pred(s)



What happens when we introduce a new edge?’

the cost (S 1,Sgo0) Of

an edge from s, 10 S,
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Why
Reinforcement Learning
played a big role in
developing planning ...
(obv. the reverse is true)
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Value iteration step

g'(s)= min (g(s') +c(s,s))
s’ €Epred(s)

Do this for all states!



Value iteration on graphs
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Does this converge?




Does this converge?

Yes|
Value i1teration 1s a contraction
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Asynchronous value iteration

What if we didn’t update for ALL the states?
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Asynchronous value iteration

What if we didn’t update for ALL the states?

g™ (s)

min
s’ €Epred(s)

(9(5") +c(5, 5))

What if we did this for a RANDOM SUBSET of states?
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Asynchronous value iteration

What if we didn’t update for ALL the states?

g™ (s)

min  (g(s") + c(s', 5))
s’ €Epred(s)

What if we did this for a RANDOM SUBSET of states?

Does this converge?

YES
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Does this converge?
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Back to our problem

What happens if you run asynchronous value iteration?

the cost (S 1,Sgo0) Of

an edge from s, 10 S,
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Key ldea

Run asynchronous value iteration in
an
organized way

LPA* (Koenig and Likhachev)



How general is this idea?
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How general is this idea?

How many ways can a graph change?

New edges / vertices appear

Cost of edges increase (lazy evaluation)

Cost of edges increase/decrease (approximation tech)
F-value of nodes change (dynamic heuristic)

What about planning across iterations?

New obstacles appear/disappear - cost of edges increase/decrease
27



syan: Partial or suboptimal path
Blue: Optimal path & endpoints

https:/ /www.youtube.com/watch?v=rZHtHJ1Ja2w

Maxim Likhachev, Geoff Gordon and Sebastian Thrun 28
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Today's discussion

1. Why would we want to interleave?

2. How do we search when we interleave?

(repairing search)

3. How do we improve graphs when we interleave?

(incremental sampling)

4. Putting it all together
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What is incremental sampling?

31



Probabilistic Roadmaps were batch




Rapidly Exploring Dense Tree (RDT)

LaValle, 1998

SIMPLE _RDT(qo)
1 G.init(qo);
2 fori=1tokdo
3 G.add _vertex(a(z));
4 Qn < NEAREST(S(G), a(7));
5 G.add_edge(q,, a(?));
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LaValle, 1998

SIMPLE _RDT(qo)
1 G.init(qo);
2 fori=1tokdo
3 G.add_vertex(a(7));
4 Qn < NEAREST(S(G), a(7));
5 G.add_edge(q,, a(?));

Figure 5.18: If the nearest point in S lies in an edge, then the edge is split into
two, and a new vertex is inserted into G.
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LaValle, 1998

SIMPLE _RDT(qo)
1 G.init(qo);
2 fori=1tokdo
3 G.add_vertex(a(7));
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RDT with iterations

LaValle, 1998

) R

45 1terations 2345 1terations
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RRT* (Karaman and Frazolli, 2010)
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RRT* is asynchronous Value lteration!
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Can we do better?
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Informed RRT*

Informed RRT*

®* RRT* is asymptotically
optimal everywhere.

® This is unnecessary for single-
query planning.

RRT*
Carnegie Mellon
w UNIVERSITY OF TORONTO THE ROBOTICS INSTITUTE

3:11

Institute for Aeross pace Studies

https:/ /www.youtube.com/watch?v=nsl-bMZfwud&t=48s J. Gammell, S.Srinivasa, T.Barfoot, 2014 40
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Batch Informed Trees

— BIT* uses batches of random samples to define
an implicit random geometric graph (RGG).

— |t then uses a heuristic to search the RGG in order
of decreasing solution quality (e.qg., A*).

https:/ /www.youtube.com/watch?v=TQIoCC48gp4 J. Gammell, S.Srinivasa, T.Barfoot, 2015 45
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