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2. How do we search when we interleave?

(repairing search)

3. How do we improve graphs when we interleave?
(incremental sampling)
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Planning as Inference



A Bayesian Approach to Edge Evaluation
Agent’s beliefGround truth

First Set of Provably Near Bayes-Optimal Planning Algorithms 

[NIPS’17, ISRR’17, IJCAI’18]
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Do we always have to replan 
whenever the graph changes?

Interleaving implies 
new vertices / edges appear



What’s true about g(s) values after search?
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Vertices are locally consistent
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g(s) = min
s02pred(s)

(g(s0) + c(s0, s))



What happens when we introduce a new edge?
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1
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Why  
Reinforcement Learning  

played a big role in  
developing planning … 

(obv. the reverse is true)



Value iteration on graphs
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Value iteration step
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g+(s) = min
s02pred(s)

(g(s0) + c(s0, s))

Do this for all states!
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Does this converge?
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V 1(s) V 2(s) V n(s)…
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V 1(s) V 2(s) V n(s)…

Yes!  
Value iteration is a contraction
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Asynchronous value iteration
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What if we didn’t update for ALL the states?
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What if we didn’t update for ALL the states?

g+(s) = min
s02pred(s)

(g(s0) + c(s0, s))

What if we did this for a RANDOM SUBSET of states?

Does this converge?

YES



Does this converge?
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Back to our problem …

 25

1

What happens if you run asynchronous value iteration?



Key Idea
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Run asynchronous value iteration in  
an 

organized way

LPA* (Koenig and Likhachev)



How general is this idea?
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How many ways can a graph change?

New edges / vertices appear

Cost of edges increase (lazy evaluation)

F-value of nodes change (dynamic heuristic)

Cost of edges increase/decrease (approximation tech)

What about planning across iterations?

New obstacles appear/disappear - cost of edges increase/decrease



Anytime Repairing A* (ARA*)
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https://www.youtube.com/watch?v=rZHtHJlJa2w
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Today’s discussion
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1. Why would we want to interleave?

2. How do we search when we interleave?

(repairing search)

3. How do we improve graphs when we interleave?
(incremental sampling)

4. Putting it all together



What is incremental sampling?

 31
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Probabilistic Roadmaps were batch



Rapidly Exploring Dense Tree (RDT)
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5.5. RAPIDLY EXPLORING DENSE TREES 229

SIMPLE RDT(q0)
1 G.init(q0);
2 for i = 1 to k do
3 G.add vertex(α(i));
4 qn ← nearest(S(G),α(i));
5 G.add edge(qn,α(i));

Figure 5.16: The basic algorithm for constructing RDTs (which includes RRTs
as a special case) when there are no obstacles. It requires the availability of a
dense sequence, α, and iteratively connects from α(i) to the nearest point among
all those reached by G.
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Figure 5.17: (a) Suppose inductively that this tree has been constructed so far
using the algorithm in Figure 5.16. (b) A new edge is added that connects from
the sample α(i) to the nearest point in S, which is the vertex qn.

5.5.1 The Exploration Algorithm

Before explaining how to use these trees to solve a planning query, imagine that
the goal is to get as close as possible to every configuration, starting from an
initial configuration. The method works for any dense sequence. Once again, let α
denote an infinite, dense sequence of samples in C. The ith sample is denoted by
α(i). This may possibly include a uniform, random sequence, which is only dense
with probability one. Random sequences that induce a nonuniform bias are also
acceptable, as long as they are dense with probability one.

An RDT is a topological graph, G(V,E). Let S ⊂ Cfree indicate the set of all
points reached by G. Since each e ∈ E is a path, this can be expressed as the
swath, S, of the graph, which is defined as

S =
⋃

e∈E

e([0, 1]). (5.40)

In (5.40), e([0, 1]) ⊆ Cfree is the image of the path e.
The exploration algorithm is first explained in Figure 5.16 without any obsta-

cles or boundary obstructions. It is assumed that C is a metric space. Initially,
a vertex is made at q0. For k iterations, a tree is iteratively grown by connecting
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LaValle, 1998
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230 S. M. LaValle: Planning Algorithms

qn
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Figure 5.18: If the nearest point in S lies in an edge, then the edge is split into
two, and a new vertex is inserted into G.

45 iterations 2345 iterations

Figure 5.19: In the early iterations, the RRT quickly reaches the unexplored parts.
However, the RRT is dense in the limit (with probability one), which means that
it gets arbitrarily close to any point in the space.

LaValle, 1998
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RDT with iterations
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start

end

At the ith iteration,

SAMPLE

FIND BEST PARENT

REWIRE TO CHILDREN



RRT* is asynchronous Value Iteration!
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Can we do better?



Informed RRT*
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J. Gammell, S.Srinivasa, T.Barfoot, 2014https://www.youtube.com/watch?v=nsl-5MZfwu4&t=48s
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