
 1

Sanjiban Choudhury

Incremental
Planning

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle

 2

Create a graph

General framework for motion planning

 2

Create a graph

General framework for motion planning

Search the graph

 2

Create a graph

General framework for motion planning

Search the graph

Interleave

 3

Any planning
algorithm Create graph Search graph Interleave

General framework for motion planning

 3

Any planning
algorithm Create graph Search graph Interleave

General framework for motion planning

RRT*-XYZ

 3

Any planning
algorithm Create graph Search graph Interleave

General framework for motion planning

RRT*-XYZ

=

 3

Any planning
algorithm Create graph Search graph Interleave

General framework for motion planning

RRT*-XYZ
e.g. fancy
random
sampler

e.g. fancy
heuristic

e.g. fancy
way of

densifying
⇥ ⇥=

 3

Any planning
algorithm Create graph Search graph Interleave

Whats the best
we can do?

Whats the best
we can do?

Whats the best
we can do?

General framework for motion planning

RRT*-XYZ
e.g. fancy
random
sampler

e.g. fancy
heuristic

e.g. fancy
way of

densifying
⇥ ⇥=

Today’s discussion

 4

1. Why would we want to interleave?

2. How do we search when we interleave?

(repairing search)

3. How do we improve graphs when we interleave?
(incremental sampling)

4. Putting it all together

Today’s discussion

 5

1. Why would we want to interleave?

2. How do we search when we interleave?

(repairing search)

3. How do we improve graphs when we interleave?
(incremental sampling)

4. Putting it all together

 6

Anytime Planning

Anytime Planning

 7

Quickly get a feasible path. Improve if you have more time.

Anytime Planning

 7

Quickly get a feasible path. Improve if you have more time.

 8

Planning as Inference

A Bayesian Approach to Edge Evaluation
Agent’s beliefGround truth

First Set of Provably Near Bayes-Optimal Planning Algorithms

[NIPS’17, ISRR’17, IJCAI’18]

A Bayesian Approach to Edge Evaluation
Agent’s beliefGround truth

First Set of Provably Near Bayes-Optimal Planning Algorithms

[NIPS’17, ISRR’17, IJCAI’18]

Today’s discussion

 10

1. Why would we want to interleave?

2. How do we search when we interleave?

(repairing search)

3. How do we improve graphs when we interleave?
(incremental sampling)

4. Putting it all together

 11

Do we always have to replan
whenever the graph changes?

Interleaving implies
new vertices / edges appear

What’s true about g(s) values after search?

 12

Vertices are locally consistent

 13

g(s) = min
s02pred(s)

(g(s0) + c(s0, s))

What happens when we introduce a new edge?

 14

1

 15

Why
Reinforcement Learning

played a big role in
developing planning …

(obv. the reverse is true)

Value iteration on graphs

 16

g1g2

g3g4

g0 g5

2

66664

g1
g2
g3
g4
g5

3

77775

V (s)

Value iteration step

 17

g+(s) = min
s02pred(s)

(g(s0) + c(s0, s))

Do this for all states!

 18

2

66664

g1
g2
g3
g4
g5

3

77775

2

66664

g+1
g+2
g+3
g+4
g+5

3

77775

g1g2

g3g4

g0 g5

+

+

+

+

+

g+(s) = min
s02pred(s)

(g(s0) + c(s0, s))

V (s) V +(s)

Value iteration on graphs

Does this converge?

 19

V 1(s) V 2(s) V n(s)…

Does this converge?

 19

V 1(s) V 2(s) V n(s)…

Yes!
Value iteration is a contraction

Does this converge?

 20

g = 0

g = 1 g = 1

g = 1

g = 1g = 1

Does this converge?

 21

g = 0

g = �3

g = 13g = 5

g = 1

g = 15

Asynchronous value iteration

 22

What if we didn’t update for ALL the states?

2

66664

g1
g2
g3
g4
g5

3

77775

2

66664

g+1
g+2
g+3
g+4
g+5

3

77775

g+(s) = min
s02pred(s)

(g(s0) + c(s0, s))

V (s) V +(s)

Asynchronous value iteration

 23

What if we didn’t update for ALL the states?

g+(s) = min
s02pred(s)

(g(s0) + c(s0, s))

What if we did this for a RANDOM SUBSET of states?

Asynchronous value iteration

 23

What if we didn’t update for ALL the states?

g+(s) = min
s02pred(s)

(g(s0) + c(s0, s))

What if we did this for a RANDOM SUBSET of states?

Does this converge?

Asynchronous value iteration

 23

What if we didn’t update for ALL the states?

g+(s) = min
s02pred(s)

(g(s0) + c(s0, s))

What if we did this for a RANDOM SUBSET of states?

Does this converge?

YES

Does this converge?

 24

g = 0

g = �3

g = 13g = 5

g = 1

g = 15

Back to our problem …

 25

1

What happens if you run asynchronous value iteration?

Key Idea

 26

Run asynchronous value iteration in
an

organized way

LPA* (Koenig and Likhachev)

How general is this idea?

 27

How general is this idea?

 27

How many ways can a graph change?

How general is this idea?

 27

How many ways can a graph change?

New edges / vertices appear

How general is this idea?

 27

How many ways can a graph change?

New edges / vertices appear

Cost of edges increase (lazy evaluation)

How general is this idea?

 27

How many ways can a graph change?

New edges / vertices appear

Cost of edges increase (lazy evaluation)

Cost of edges increase/decrease (approximation tech)

How general is this idea?

 27

How many ways can a graph change?

New edges / vertices appear

Cost of edges increase (lazy evaluation)

F-value of nodes change (dynamic heuristic)

Cost of edges increase/decrease (approximation tech)

How general is this idea?

 27

How many ways can a graph change?

New edges / vertices appear

Cost of edges increase (lazy evaluation)

F-value of nodes change (dynamic heuristic)

Cost of edges increase/decrease (approximation tech)

What about planning across iterations?

How general is this idea?

 27

How many ways can a graph change?

New edges / vertices appear

Cost of edges increase (lazy evaluation)

F-value of nodes change (dynamic heuristic)

Cost of edges increase/decrease (approximation tech)

What about planning across iterations?

New obstacles appear/disappear - cost of edges increase/decrease

Anytime Repairing A* (ARA*)

 28Maxim Likhachev, Geoff Gordon and Sebastian Thrun

https://www.youtube.com/watch?v=rZHtHJlJa2w

Anytime Repairing A* (ARA*)

 28Maxim Likhachev, Geoff Gordon and Sebastian Thrun

https://www.youtube.com/watch?v=rZHtHJlJa2w

D*-Lite

 29

D*-Lite

 29

Today’s discussion

 30

1. Why would we want to interleave?

2. How do we search when we interleave?

(repairing search)

3. How do we improve graphs when we interleave?
(incremental sampling)

4. Putting it all together

What is incremental sampling?

 31

 32

Probabilistic Roadmaps were batch

Rapidly Exploring Dense Tree (RDT)

 33

5.5. RAPIDLY EXPLORING DENSE TREES 229

SIMPLE RDT(q0)
1 G.init(q0);
2 for i = 1 to k do
3 G.add vertex(α(i));
4 qn ← nearest(S(G),α(i));
5 G.add edge(qn,α(i));

Figure 5.16: The basic algorithm for constructing RDTs (which includes RRTs
as a special case) when there are no obstacles. It requires the availability of a
dense sequence, α, and iteratively connects from α(i) to the nearest point among
all those reached by G.

q0

qn

α(i)

q0

(a) (b)

Figure 5.17: (a) Suppose inductively that this tree has been constructed so far
using the algorithm in Figure 5.16. (b) A new edge is added that connects from
the sample α(i) to the nearest point in S, which is the vertex qn.

5.5.1 The Exploration Algorithm

Before explaining how to use these trees to solve a planning query, imagine that
the goal is to get as close as possible to every configuration, starting from an
initial configuration. The method works for any dense sequence. Once again, let α
denote an infinite, dense sequence of samples in C. The ith sample is denoted by
α(i). This may possibly include a uniform, random sequence, which is only dense
with probability one. Random sequences that induce a nonuniform bias are also
acceptable, as long as they are dense with probability one.

An RDT is a topological graph, G(V,E). Let S ⊂ Cfree indicate the set of all
points reached by G. Since each e ∈ E is a path, this can be expressed as the
swath, S, of the graph, which is defined as

S =
⋃

e∈E

e([0, 1]). (5.40)

In (5.40), e([0, 1]) ⊆ Cfree is the image of the path e.
The exploration algorithm is first explained in Figure 5.16 without any obsta-

cles or boundary obstructions. It is assumed that C is a metric space. Initially,
a vertex is made at q0. For k iterations, a tree is iteratively grown by connecting

5.5. RAPIDLY EXPLORING DENSE TREES 229

SIMPLE RDT(q0)
1 G.init(q0);
2 for i = 1 to k do
3 G.add vertex(α(i));
4 qn ← nearest(S(G),α(i));
5 G.add edge(qn,α(i));

Figure 5.16: The basic algorithm for constructing RDTs (which includes RRTs
as a special case) when there are no obstacles. It requires the availability of a
dense sequence, α, and iteratively connects from α(i) to the nearest point among
all those reached by G.

q0

qn

α(i)

q0

(a) (b)

Figure 5.17: (a) Suppose inductively that this tree has been constructed so far
using the algorithm in Figure 5.16. (b) A new edge is added that connects from
the sample α(i) to the nearest point in S, which is the vertex qn.

5.5.1 The Exploration Algorithm

Before explaining how to use these trees to solve a planning query, imagine that
the goal is to get as close as possible to every configuration, starting from an
initial configuration. The method works for any dense sequence. Once again, let α
denote an infinite, dense sequence of samples in C. The ith sample is denoted by
α(i). This may possibly include a uniform, random sequence, which is only dense
with probability one. Random sequences that induce a nonuniform bias are also
acceptable, as long as they are dense with probability one.

An RDT is a topological graph, G(V,E). Let S ⊂ Cfree indicate the set of all
points reached by G. Since each e ∈ E is a path, this can be expressed as the
swath, S, of the graph, which is defined as

S =
⋃

e∈E

e([0, 1]). (5.40)

In (5.40), e([0, 1]) ⊆ Cfree is the image of the path e.
The exploration algorithm is first explained in Figure 5.16 without any obsta-

cles or boundary obstructions. It is assumed that C is a metric space. Initially,
a vertex is made at q0. For k iterations, a tree is iteratively grown by connecting

LaValle, 1998

Rapidly Exploring Dense Tree (RDT)

 34

5.5. RAPIDLY EXPLORING DENSE TREES 229

SIMPLE RDT(q0)
1 G.init(q0);
2 for i = 1 to k do
3 G.add vertex(α(i));
4 qn ← nearest(S(G),α(i));
5 G.add edge(qn,α(i));

Figure 5.16: The basic algorithm for constructing RDTs (which includes RRTs
as a special case) when there are no obstacles. It requires the availability of a
dense sequence, α, and iteratively connects from α(i) to the nearest point among
all those reached by G.

q0

qn

α(i)

q0

(a) (b)

Figure 5.17: (a) Suppose inductively that this tree has been constructed so far
using the algorithm in Figure 5.16. (b) A new edge is added that connects from
the sample α(i) to the nearest point in S, which is the vertex qn.

5.5.1 The Exploration Algorithm

Before explaining how to use these trees to solve a planning query, imagine that
the goal is to get as close as possible to every configuration, starting from an
initial configuration. The method works for any dense sequence. Once again, let α
denote an infinite, dense sequence of samples in C. The ith sample is denoted by
α(i). This may possibly include a uniform, random sequence, which is only dense
with probability one. Random sequences that induce a nonuniform bias are also
acceptable, as long as they are dense with probability one.

An RDT is a topological graph, G(V,E). Let S ⊂ Cfree indicate the set of all
points reached by G. Since each e ∈ E is a path, this can be expressed as the
swath, S, of the graph, which is defined as

S =
⋃

e∈E

e([0, 1]). (5.40)

In (5.40), e([0, 1]) ⊆ Cfree is the image of the path e.
The exploration algorithm is first explained in Figure 5.16 without any obsta-

cles or boundary obstructions. It is assumed that C is a metric space. Initially,
a vertex is made at q0. For k iterations, a tree is iteratively grown by connecting

230 S. M. LaValle: Planning Algorithms

qn

α(i)q0

Figure 5.18: If the nearest point in S lies in an edge, then the edge is split into
two, and a new vertex is inserted into G.

45 iterations 2345 iterations

Figure 5.19: In the early iterations, the RRT quickly reaches the unexplored parts.
However, the RRT is dense in the limit (with probability one), which means that
it gets arbitrarily close to any point in the space.

LaValle, 1998

Rapidly Exploring Dense Tree (RDT)

 35

5.5. RAPIDLY EXPLORING DENSE TREES 229

SIMPLE RDT(q0)
1 G.init(q0);
2 for i = 1 to k do
3 G.add vertex(α(i));
4 qn ← nearest(S(G),α(i));
5 G.add edge(qn,α(i));

Figure 5.16: The basic algorithm for constructing RDTs (which includes RRTs
as a special case) when there are no obstacles. It requires the availability of a
dense sequence, α, and iteratively connects from α(i) to the nearest point among
all those reached by G.

q0

qn

α(i)

q0

(a) (b)

Figure 5.17: (a) Suppose inductively that this tree has been constructed so far
using the algorithm in Figure 5.16. (b) A new edge is added that connects from
the sample α(i) to the nearest point in S, which is the vertex qn.

5.5.1 The Exploration Algorithm

Before explaining how to use these trees to solve a planning query, imagine that
the goal is to get as close as possible to every configuration, starting from an
initial configuration. The method works for any dense sequence. Once again, let α
denote an infinite, dense sequence of samples in C. The ith sample is denoted by
α(i). This may possibly include a uniform, random sequence, which is only dense
with probability one. Random sequences that induce a nonuniform bias are also
acceptable, as long as they are dense with probability one.

An RDT is a topological graph, G(V,E). Let S ⊂ Cfree indicate the set of all
points reached by G. Since each e ∈ E is a path, this can be expressed as the
swath, S, of the graph, which is defined as

S =
⋃

e∈E

e([0, 1]). (5.40)

In (5.40), e([0, 1]) ⊆ Cfree is the image of the path e.
The exploration algorithm is first explained in Figure 5.16 without any obsta-

cles or boundary obstructions. It is assumed that C is a metric space. Initially,
a vertex is made at q0. For k iterations, a tree is iteratively grown by connecting

230 S. M. LaValle: Planning Algorithms

qn

α(i)q0

Figure 5.18: If the nearest point in S lies in an edge, then the edge is split into
two, and a new vertex is inserted into G.

45 iterations 2345 iterations

Figure 5.19: In the early iterations, the RRT quickly reaches the unexplored parts.
However, the RRT is dense in the limit (with probability one), which means that
it gets arbitrarily close to any point in the space.

LaValle, 1998

RDT with iterations

 36

230 S. M. LaValle: Planning Algorithms

qn

α(i)q0

Figure 5.18: If the nearest point in S lies in an edge, then the edge is split into
two, and a new vertex is inserted into G.

45 iterations 2345 iterations

Figure 5.19: In the early iterations, the RRT quickly reaches the unexplored parts.
However, the RRT is dense in the limit (with probability one), which means that
it gets arbitrarily close to any point in the space.

LaValle, 1998

RRT* (Karaman and Frazolli, 2010)

 37

RRT* (Karaman and Frazolli, 2010)

 37

start

end

At the ith iteration,

RRT* (Karaman and Frazolli, 2010)

 37

start

end

At the ith iteration,

SAMPLE

RRT* (Karaman and Frazolli, 2010)

 37

start

end

At the ith iteration,

SAMPLE

FIND BEST PARENT

RRT* (Karaman and Frazolli, 2010)

 37

start

end

At the ith iteration,

SAMPLE

FIND BEST PARENT

REWIRE TO CHILDREN

RRT* is asynchronous Value Iteration!

 38

 39

Can we do better?

Informed RRT*

 40
J. Gammell, S.Srinivasa, T.Barfoot, 2014https://www.youtube.com/watch?v=nsl-5MZfwu4&t=48s

Informed RRT*

 40
J. Gammell, S.Srinivasa, T.Barfoot, 2014https://www.youtube.com/watch?v=nsl-5MZfwu4&t=48s

Today’s discussion

 41

1. Why would we want to interleave?

2. How do we search when we interleave?

(repairing search)

3. How do we improve graphs when we interleave?
(incremental sampling)

4. Putting it all together

Batch Informed Trees

 42
https://www.youtube.com/watch?v=TQIoCC48gp4 J. Gammell, S.Srinivasa, T.Barfoot, 2015

Batch Informed Trees

 42
https://www.youtube.com/watch?v=TQIoCC48gp4 J. Gammell, S.Srinivasa, T.Barfoot, 2015

