
 1

Sanjiban Choudhury

Lazy Search

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle

High-order bit

 2

Expansion of a search wavefront from start to goal

Courtesy wikipedia

Djikstra A* Weighted A*

High-order bit

 2

Expansion of a search wavefront from start to goal

Courtesy wikipedia

Djikstra A* Weighted A*

What do we want?

 3

1. Search to systematically reason over the space of paths

(minimize planning effort)

2. Find a (near)-optimal path quickly

Best First Search

 4

S

A

B
G

C

Element
(Node)

Priority Value
 (f-value)

Node S f(S)

(Explore the graph by expanding/processing promising nodes)

Best First Search

 5

S

A

B
G

C

Element
(Node)

Priority Value
 (f-value)

Node S f(S)

Node A f(A)

Node C f(C)

(Explore the graph by expanding/processing promising nodes)

Different f(s) leads to different algorithms

 6

Algorithm f(s) Optimality Efficiency

Djikstra f(s) = g(s) Yes Poor

A* f(s) = g(s) +
h(s)

Yes*
(if h(s) is

admissible)

Good*
(better if h(s) is

consistent)

What is a heuristic h(s)?

 7

So far, we have been thinking of heuristics as an
estimate of cost-to-go to goal

What is a heuristic h(s)?

 7

So far, we have been thinking of heuristics as an
estimate of cost-to-go to goal

Goal is to come up with cheap-to-compute estimates

What is a heuristic h(s)?

 7

So far, we have been thinking of heuristics as an
estimate of cost-to-go to goal

Goal is to come up with cheap-to-compute estimates

- External knowledge about metrics  
 - Euclidean distance admissible because triangle inequality

What is a heuristic h(s)?

 7

So far, we have been thinking of heuristics as an
estimate of cost-to-go to goal

Goal is to come up with cheap-to-compute estimates

- External knowledge about metrics  
 - Euclidean distance admissible because triangle inequality

- Solving a relaxation of the problem (which is easier)
- Ignore obstacles, ignore dynamics

What is a heuristic h(s)?

 7

So far, we have been thinking of heuristics as an
estimate of cost-to-go to goal

Goal is to come up with cheap-to-compute estimates

- External knowledge about metrics  
 - Euclidean distance admissible because triangle inequality

- Solving a relaxation of the problem (which is easier)
- Ignore obstacles, ignore dynamics

- Statistical knowledge of the problem
- Keep arms tucked in, don’t drive headfirst into a wall

What is a heuristic h(s)?

 8

So far, we have been thinking of heuristics as an
estimate of cost-to-go to goal

What is a heuristic h(s)?

 8

So far, we have been thinking of heuristics as an
estimate of cost-to-go to goal

But another way to think of heuristics is as a ranking function

What is a heuristic h(s)?

 8

So far, we have been thinking of heuristics as an
estimate of cost-to-go to goal

But another way to think of heuristics is as a ranking function

Even if estimates are off, as long as a heuristic is ranking
good states better than bad states,

it’s useful

The case for inadmissible search

 9

The case for inadmissible search

 9

Let’s say you have a h(s) that is very very admissible

The case for inadmissible search

 9

Let’s say you have a h(s) that is very very admissible

But it is actually good at ranking good vs bad states

The case for inadmissible search

 9

Let’s say you have a h(s) that is very very admissible

But it is actually good at ranking good vs bad states

f(s) = g(s) + h(s) might not be best at ranking states. Why?

The case for inadmissible search

 9

Let’s say you have a h(s) that is very very admissible

But it is actually good at ranking good vs bad states

f(s) = g(s) + h(s) might not be best at ranking states. Why?

f(s) = g(s) + 10h(s) might be much better. Why?

 10

f(s) = g(s) + h(s) f(s) = g(s) + 5h(s)

Side-effects of inflating heuristics

 10

f(s) = g(s) + h(s) f(s) = g(s) + 5h(s)

Side-effects of inflating heuristics

 11

Can we bound the solution quality?

✏ � 1

 11

Can we bound the solution quality?

✏ � 1

cost(solution)  ✏ cost(solution)

g(s) + ✏h(s)

results in

!12 Courtesy Max Likhachev

Effect of the Heuristic Function

sgoal
sstart

A* Search: expands states in the order of f = g+h values

Courtesy Max Likhachev

Effect of the Heuristic Function

sgoal
sstart

… …

A* Search: expands states in the order of f = g+h values

Courtesy Max Likhachev

Effect of the Heuristic Function

sgoal
sstart

… …

A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly
running out of memory (memory: O(n))

Courtesy Max Likhachev

Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh
values, ε > 1 = bias towards states that are closer to goal

sstart sgoal

Courtesy Max Likhachev

Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh
values, ε > 1 = bias towards states that are closer to goal

sstart sgoal
…

…

Courtesy Max Likhachev

Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh
values, ε > 1 = bias towards states that are closer to goal

sstart sgoal
…

…

solution is always ε-suboptimal:
cost(solution) ≤ ε·cost(optimal solution)

Courtesy Max Likhachev

Effect of the Heuristic Function

Courtesy Max Likhachev

Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh
values, ε > 1 = bias towards states that are closer to goal

 20DOF simulated robotic arm
state-space size: over 1026 states

 planning with ARA* (anytime version of weighted A*)
Courtesy Max Likhachev

Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh
values, ε > 1 = bias towards states that are closer to goal

 20DOF simulated robotic arm
state-space size: over 1026 states

 planning with ARA* (anytime version of weighted A*)
Courtesy Max Likhachev

Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh
values, ε > 1 = bias towards states that are closer to goal

 20DOF simulated robotic arm
state-space size: over 1026 states

 planning with ARA* (anytime version of weighted A*)
Courtesy Max Likhachev

Effect of the Heuristic Function
• planning in 8D (<x,y> for each foothold)
• heuristic is Euclidean distance from the center of the body to the goal location
• cost of edges based on kinematic stability of the robot and quality of footholds

Uses R* - A randomized version of weighted A*
Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin

Chitta, Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza

Courtesy Max Likhachev

Effect of the Heuristic Function
• planning in 8D (<x,y> for each foothold)
• heuristic is Euclidean distance from the center of the body to the goal location
• cost of edges based on kinematic stability of the robot and quality of footholds

Uses R* - A randomized version of weighted A*
Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin

Chitta, Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza

Courtesy Max Likhachev

Effect of the Heuristic Function
• planning in 8D (<x,y> for each foothold)
• heuristic is Euclidean distance from the center of the body to the goal location
• cost of edges based on kinematic stability of the robot and quality of footholds

Uses R* - A randomized version of weighted A*
Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin

Chitta, Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza

Courtesy Max Likhachev

 19

But is the number of expansions
really what we want to minimize in

motion planning?

What is the most expensive step?

Edge evaluation is expensive

 20

(Schluman et al. ’14)

Check if helicopter
intersects with tower

Check if manipulator
intersects with table

Edge evaluation dominates planning time

 21

Edge Evaluations

Other

Hauser, Kris., Lazy collision checking in asymptotically-optimal motion planning. ICRA 2015

Let’s revisit Best First Search

 22

S

A

B
G

C

Element
(Node)

Priority Value
 (f-value)

Node S f(S)

 23

S

A

B
G

C

Element
(Node)

Priority Value
 (f-value)

Node S f(S)

Node A f(A)

Node C f(C)

Let’s revisit Best First Search

What if we never use C? Wasted collision check!

 24

S

A

B
G

C

Element
(Node)

Priority Value
 (f-value)

Node S f(S)

Node A f(A)

Node C f(C)

 25

The provable virtue of laziness:

Take the thing that’s expensive
(collision checking)

and
procrastinate as long as possible

 till you have to evaluate it!

 26

Lazy (weighted) A*
Cohen, Phillips, and Likhachev 2014

 26

Lazy (weighted) A*
Cohen, Phillips, and Likhachev 2014

Key Idea:

 26

Lazy (weighted) A*
Cohen, Phillips, and Likhachev 2014

Key Idea:
1. When expanding a node, don’t collision check edge to successors

(be optimistic and assume the edge will be valid)

 26

Lazy (weighted) A*
Cohen, Phillips, and Likhachev 2014

Key Idea:
1. When expanding a node, don’t collision check edge to successors

(be optimistic and assume the edge will be valid)

2. When expanding a node, collision check the edge to parent
(expansion means this node is good and worth the effort)

 26

Lazy (weighted) A*
Cohen, Phillips, and Likhachev 2014

Key Idea:
1. When expanding a node, don’t collision check edge to successors

(be optimistic and assume the edge will be valid)

2. When expanding a node, collision check the edge to parent
(expansion means this node is good and worth the effort)

3. Important: OPEN list will have multiple copies of a node
(multiple candidate parents since we haven’t collision check)

Lazy A*

 27

Cohen, Phillips, and Likhachev 2014

ComputePath function
while(sgoal is not expanded)
 remove s with the smallest  

[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such  

that s’ not in CLOSED  
if edge (s,s’) in collision

 c(s,s’) = ∞
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

Non lazy A*

Lazy A*

 27

Cohen, Phillips, and Likhachev 2014

ComputePath function
while(sgoal is not expanded)
 remove s with the smallest  

[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such  

that s’ not in CLOSED  
if edge (s,s’) in collision

 c(s,s’) = ∞
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

Non lazy A* Lazy A*
ComputePath function
while(sgoal is not expanded)
 remove s with the smallest  

[f(s) = g(s)+h(s)] from OPEN; 
if s is in CLOSED  
 continue;

if edge(parent(s), s) in collision
 continue;
insert s into CLOSED;
for every successor s’ of s such  

that s’ not in CLOSED  
no collision checking of edge

 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN; // multiple
 copies

 28

A*

G (goal)S (start)

...
N edges
all in

collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

 29

A*

G (goal)S (start)

...
N edges
all in

collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

A* will
collision check
all N+2 edges!

 30

Lazy A*

G (goal)S (start)

...
N edges
all in

collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

OPEN CLOSED CollChecked

B (from S)

A (from S)

…..

f = 1

f = 2

Lets set f(s) = g(s)

f = 1000

X

X (from S)

S

 31

Lazy A*

G (goal)S (start)

...
N edges
all in

collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

OPEN CLOSED CollChecked

A (from S)

A (from B)

S

…..

S-B

B

f = 2

f = 3

X

 32

Lazy A*

G (goal)S (start)

...
N edges
all in

collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

We have TWO copies of A in OPEN!

OPEN CLOSED CollChecked

A (from S)

A (from B)

S

…..

S-B

B

f = 2

f = 3

X

 33

Lazy A*

G (goal)S (start)

...
N edges
all in

collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

We have TWO copies of A in OPEN!

OPEN CLOSED CollChecked

A (from B) S

…..

S-B

B

f = 3

X

A

 34

G (goal)S (start)

...
N edges
all in

collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

OPEN CLOSED CollChecked

S S-B

B S-A
B-A
A-G

A
G

Lazy A*

 35

Yet another algorithm to
remember….!?!?!

Best First Search explains it all

 36

Best First Search as a Meta++ algorithm

 37

Element Ranking value

Element A f(A)

Element B f(B)

Process
Element

Update
Queue

Done?

YN

POP best element

 38

If we want to minimize the
number of vertices expanded,

then
elements of the queue should be
candidate vertices to expand!

 39

If we want to minimize the
number of edges evaluated,

then
……

 40

If we want to minimize the
number of edges evaluated,

then
……

elements of the queue should be
candidate edges to evaluate!

Best First Search as a Meta++ algorithm

 41

Element Ranking value

Element A f(A)

Element B f(B)

Process
Element

Update
Queue

Done?

YN

POP best element

 42

How do we define a queue over edges???

OPEN list of A*

Element
(Vertex)

Value
 (f-value of path
through vertex)

Vertex A f(A) = g(A) + h(A)

Vertex B f(B) = g(B) + h(B)

 42

How do we define a queue over edges???

OPEN list of A*

Element
(Vertex)

Value
 (f-value of path
through vertex)

Vertex A f(A) = g(A) + h(A)

Vertex B f(B) = g(B) + h(B)

OPEN list of Lazy A*

Element
(Edge)

Value
(f-value of path through edge)

Edge (X,Y) f(X,Y) = g(X) + c(X,Y) + h(Y)

Edge (P,Q) f(P,Q) = g(P) + c(P,Q) + h(Q)

Edge (W,Y) f(W,Y) = g(W) + c(W,Y) + h(Y)

 43

Lazy A*

G (goal)S (start)

...
N edges
all in

collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

OPEN CLOSED CollChecked

S——B

S——A
…..

g(S) + c(S,B) + h(B)

X

S

f(.)

g(S) + c(S,A) + h(A)

 44

Lazy A*

G (goal)S (start)

...
N edges
all in

collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

OPEN CLOSED CollChecked

S——A

…..

X

S

f(.)

g(S) + c(S,A) + h(A)

B——Ag(B) + c(B,A) + h(A) B
S——B

Lazy A* as BFS

 45

Element Ranking value

Element A f(A)

Element B f(B)

Process
Element

Update
Queue

Done?

YN

POP best element

Queu
e o

ver
 ed

ges

Co
llis

ion
 Ch

eck
 Ed

ge

Ad
d s

ucc
ess

ors

What is the laziest that we can
be?

!46

What is the laziest that we can
be?

LazySP
(Lazy Shortest Path) 

Dellin and Srinivasa, 2016

First Provably Edge-Optimal A*-like Search Algorithm

!46

LazySP

Greedy Best-first Search over Paths

To find the shortest path,
eliminate all shorter paths!

Lazy A* as BFS

 48

Element Ranking value

Element A f(A)

Element B f(B)

Process
Element

Update
Queue

Done?

YN

POP best element

Im
plic

t q
ueu

e

ove
r p

ath
s

Co
llis

ion
 Ch

eck
 Pa

th

Re
move

 ba
d

 ed
ges

Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP
Optimism Under Uncertainty

Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP
Optimism Under Uncertainty

Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP
Optimism Under Uncertainty

Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP
Optimism Under Uncertainty

Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP
Optimism Under Uncertainty

Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP
Optimism Under Uncertainty

Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP
Optimism Under Uncertainty

Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP
Optimism Under Uncertainty

Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP
Optimism Under Uncertainty

Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP
Optimism Under Uncertainty

Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP
Optimism Under Uncertainty

Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP
Optimism Under Uncertainty

Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP
Optimism Under Uncertainty

Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP
Optimism Under Uncertainty

Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP
Optimism Under Uncertainty

Comparison across environments

Comparison across environments

Comparison across environments

Comparison across environments

Comparison across environments

Comparison across environments

Comparison across environments

Comparison across environments

