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What do we want?
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1. Search to systematically reason over the space of paths

(minimize planning effort)

2. Find a (near)-optimal path quickly



Best First Search
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Different f(s) leads to different algorithms
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Algorithm f(s) Optimality Efficiency

Djikstra f(s) = g(s) Yes Poor

A* f(s) = g(s) + 
h(s)

Yes* 
(if h(s) is 

admissible)

Good* 
(better if h(s) is 

consistent)
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So far, we have been thinking of heuristics as an  
estimate of cost-to-go to goal

Goal is to come up with cheap-to-compute estimates

- External knowledge about metrics  
     - Euclidean distance admissible because triangle inequality

- Solving a relaxation of the problem (which is easier)
- Ignore obstacles, ignore dynamics

- Statistical knowledge of the problem
- Keep arms tucked in, don’t drive headfirst into a wall
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What is a heuristic h(s)?
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So far, we have been thinking of heuristics as an  
estimate of cost-to-go to goal

But another way to think of heuristics is as a ranking function

Even if estimates are off, as long as a heuristic is ranking 
good states better than bad states, 

it’s useful
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The case for inadmissible search
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Let’s say you have a h(s) that is very very admissible

But it is actually good at ranking good vs bad states

f(s) = g(s) + h(s) might not be best at ranking states. Why?

f(s) = g(s) + 10h(s) might be much better. Why?
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f(s) = g(s) + h(s) f(s) = g(s) + 5h(s)

Side-effects of inflating heuristics
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f(s) = g(s) + h(s) f(s) = g(s) + 5h(s)
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Can we bound the solution quality?

✏ � 1
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Can we bound the solution quality?

✏ � 1

cost(solution)  ✏ cost(solution)

g(s) + ✏h(s)

results in 



!12 Courtesy Max Likhachev 
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Effect of the Heuristic Function

sgoal
sstart

… …

A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly  
running out of memory (memory: O(n))

Courtesy Max Likhachev 
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Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh 
values, ε > 1 = bias towards states that are closer to goal

sstart sgoal
…

…

solution is always ε-suboptimal: 
cost(solution) ≤ ε·cost(optimal solution)

Courtesy Max Likhachev 
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Effect of the Heuristic Function
• planning in 8D (<x,y> for each foothold) 
• heuristic is Euclidean distance from the center of the body to the goal location 
• cost of edges based on kinematic stability of the robot and quality of footholds

Uses R* - A randomized version of weighted A* 
Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin 

Chitta, Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza
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But is the number of expansions 
really what we want to minimize in 

motion planning?

What is the most expensive step?



Edge evaluation is expensive
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(Schluman et al. ’14)

Check if helicopter 
intersects with tower

Check if manipulator 
intersects with table



Edge evaluation dominates planning time
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Edge Evaluations

Other

Hauser, Kris., Lazy collision checking in asymptotically-optimal motion planning. ICRA 2015 



Let’s revisit Best First Search
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What if we never use C? Wasted collision check!
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The provable virtue of laziness: 

Take the thing that’s expensive 
(collision checking) 

and  
procrastinate as long as possible 

 till you have to evaluate it!
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Lazy (weighted) A* 
Cohen, Phillips, and Likhachev 2014 
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Lazy (weighted) A* 
Cohen, Phillips, and Likhachev 2014 

Key Idea:
1. When expanding a node, don’t collision check edge to successors 

(be optimistic and assume the edge will be valid)

2. When expanding a node, collision check the edge to parent 
(expansion means this node is good and worth the effort)

3. Important: OPEN list will have multiple copies of a node
(multiple candidate parents since we haven’t collision check)



Lazy A* 
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Cohen, Phillips, and Likhachev 2014 

ComputePath function 
while(sgoal is not expanded) 
   remove s with the smallest  

[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED; 
for every successor s’ of s such  

that s’ not in CLOSED  
if edge (s,s’) in collision 

       c(s,s’) = ∞ 
 if g(s’) > g(s) + c(s,s’) 
    g(s’) = g(s) + c(s,s’); 
    insert s’ into OPEN;

Non lazy A*
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Cohen, Phillips, and Likhachev 2014 

ComputePath function 
while(sgoal is not expanded) 
   remove s with the smallest  

[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED; 
for every successor s’ of s such  

that s’ not in CLOSED  
if edge (s,s’) in collision 

       c(s,s’) = ∞ 
 if g(s’) > g(s) + c(s,s’) 
    g(s’) = g(s) + c(s,s’); 
    insert s’ into OPEN;

Non lazy A* Lazy A*
ComputePath function 
while(sgoal is not expanded) 
   remove s with the smallest  

[f(s) = g(s)+h(s)] from OPEN; 
if s is in CLOSED  
    continue;

if edge(parent(s), s) in collision 
   continue; 
insert s into CLOSED; 
for every successor s’ of s such  

that s’ not in CLOSED  
no collision checking of edge 

 if g(s’) > g(s) + c(s,s’) 
    g(s’) = g(s) + c(s,s’); 
    insert s’ into OPEN; // multiple                        
                                            copies
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A* 
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all in  
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21

Let’s say S-A is in collision and true shortest path is S-B-A-G
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A* 

G (goal)S (start)

...
N edges 
all in  

collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

A* will 
collision check 
all N+2 edges!
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Lazy A* 

G (goal)S (start)

...
N edges 
all in  

collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

OPEN CLOSED CollChecked

B (from S)

A (from S)

…..

f = 1

f = 2

Lets set f(s) = g(s)

f = 1000

X

X (from S)

S
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Lazy A* 

G (goal)S (start)

...
N edges 
all in  

collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

OPEN CLOSED CollChecked

A (from S)

A (from B)

S

…..

S-B

B

f = 2

f = 3

X
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Lazy A* 

G (goal)S (start)

...
N edges 
all in  

collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

We have TWO copies of A in OPEN!

OPEN CLOSED CollChecked

A (from S)

A (from B)

S

…..

S-B

B

f = 2

f = 3

X
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Lazy A* 

G (goal)S (start)

...
N edges 
all in  

collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

We have TWO copies of A in OPEN!

OPEN CLOSED CollChecked

A (from B) S

…..

S-B

B

f = 3

X

A
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G (goal)S (start)

...
N edges 
all in  

collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

OPEN CLOSED CollChecked

S S-B

B S-A
B-A
A-G

A
G

Lazy A* 
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Yet another algorithm to 
remember….!?!?!



Best First Search explains it all

 36



Best First Search as a Meta++ algorithm

 37

Element Ranking value

Element A f(A)

Element B f(B)

Process  
Element

Update  
Queue

Done?

YN

POP best element
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If we want to minimize the  
number of vertices expanded, 

then 
elements of the queue should be 
candidate vertices to expand!
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If we want to minimize the  
number of edges evaluated, 

then 
……
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If we want to minimize the  
number of edges evaluated, 

then 
……

elements of the queue should be 
candidate edges to evaluate!



Best First Search as a Meta++ algorithm
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Element Ranking value

Element A f(A)

Element B f(B)

Process  
Element

Update  
Queue

Done?

YN

POP best element
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How do we define a queue over edges???

OPEN list of A*

Element 
(Vertex)

Value 
 (f-value of path 
through vertex)

Vertex A f(A) = g(A) + h(A)

Vertex B f(B) = g(B) + h(B)
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How do we define a queue over edges???

OPEN list of A*

Element 
(Vertex)

Value 
 (f-value of path 
through vertex)

Vertex A f(A) = g(A) + h(A)

Vertex B f(B) = g(B) + h(B)

OPEN list of Lazy A*

Element 
(Edge)

Value 
(f-value of path through edge)

Edge (X,Y) f(X,Y) = g(X) + c(X,Y) + h(Y)

Edge (P,Q) f(P,Q) = g(P) + c(P,Q) + h(Q)

Edge (W,Y) f(W,Y) = g(W) + c(W,Y) + h(Y)
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Lazy A* 

G (goal)S (start)

...
N edges 
all in  

collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

OPEN CLOSED CollChecked

S——B

S——A
…..

g(S) + c(S,B) + h(B)

X

S

f(.)

g(S) + c(S,A) + h(A)
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Lazy A* 

G (goal)S (start)

...
N edges 
all in  

collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

OPEN CLOSED CollChecked

S——A

…..

X

S

f(.)

g(S) + c(S,A) + h(A)

B——Ag(B) + c(B,A) + h(A) B
S——B



Lazy A* as BFS
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Element Ranking value

Element A f(A)

Element B f(B)
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Element
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Queue
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What is the laziest that we can 
be? 

!46



What is the laziest that we can 
be? 

LazySP 
(Lazy Shortest Path) 

Dellin and Srinivasa, 2016 

First Provably Edge-Optimal A*-like Search Algorithm 

!46



LazySP

Greedy Best-first Search over Paths

To find the shortest path, 
eliminate all shorter paths!



Lazy A* as BFS
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Element Ranking value
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Element B f(B)
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Element
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POP best element
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Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP 
Optimism Under Uncertainty



Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP 
Optimism Under Uncertainty



Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP 
Optimism Under Uncertainty



Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP 
Optimism Under Uncertainty



Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP 
Optimism Under Uncertainty



Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP 
Optimism Under Uncertainty



Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP 
Optimism Under Uncertainty



Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP 
Optimism Under Uncertainty



Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP 
Optimism Under Uncertainty



Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP 
Optimism Under Uncertainty



Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP 
Optimism Under Uncertainty



Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP 
Optimism Under Uncertainty



Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP 
Optimism Under Uncertainty



Lazy search for shortest path

Evaluate Path

Update the graph P

P

Collision
Free

Graph, start, goal, lazy estimates

LazySP 
Optimism Under Uncertainty



Lazy search for shortest path

Evaluate Path

Update the graph P
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Free
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LazySP 
Optimism Under Uncertainty
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