Heuristic Search

Sanjiban Choudhury

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle
Create a graph

General framework for motion planning
General framework for motion planning

Create a graph

Search the graph
General framework for motion planning

Create a graph

Search the graph

Interleave
General framework for motion planning

Any planning algorithm
Create graph Search graph Interleave
General framework for motion planning

Any planning algorithm

Create graph Search graph Interleave

RRT*-XYZ
General framework for motion planning

Any planning algorithm

Create graph Search graph Interleave

RRT*-XYZ
General framework for motion planning

Any planning algorithm

Create graph Search graph Interleave

RRT*-XYZ

e.g. fancy random sampler

× e.g. fancy heuristic

× e.g. fancy way of densifying
General framework for motion planning

Any planning algorithm

Create graph Search graph Interleave

RRT*-XYZ

\[\text{Whats the best we can do?} \times \text{Whats the best we can do?} \times \text{Whats the best we can do?} \]

\[\text{e.g. fancy random sampler} \times \text{e.g. fancy heuristic} \times \text{e.g. fancy way of densifying} \]
For this lecture....

We will focus on the search assuming everything we need is given

Optimal Path = \text{SHORTESTPATH}(V,E, \text{start}, \text{goal})
If you are serious about heuristic search

This lecture:
Skewed view of search
that will be helpful for robot motion planning
Today’s objective

1. Best first search as a meta-algorithm

2. Heuristic search and what we want from it

3. Laziness in search
High-order bit

Expansion of a search wavefront from start to goal

Dijkstra A* Weighted A*

Courtesy wikipedia
High-order bit

Expansion of a search wavefront from start to goal

Djikstra A* Weighted A*

Courtesy wikipedia
What do we want?

1. Search to systematically reason over the space of paths

2. Find a (near)-optimal path quickly
 (minimize planning effort)
Best first search

This is a meta-algorithm
Best first search

This is a meta-algorithm
Best first search

This is a meta-algorithm

BFS maintains a priority queue of promising nodes

Each node is ranked by a function $f(s)$

Populate queue initially with start node

<table>
<thead>
<tr>
<th>Element (Node)</th>
<th>Priority Value (f-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node A</td>
<td>$f(A)$</td>
</tr>
<tr>
<td>Node B</td>
<td>$f(B)$</td>
</tr>
<tr>
<td>.....</td>
<td>.....</td>
</tr>
</tbody>
</table>
Best first search

Search explores graph by expanding most promising node $\min f(s)$

Terminate when you find the goal

<table>
<thead>
<tr>
<th>Element (Node)</th>
<th>Priority Value (f-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node A</td>
<td>f(A)</td>
</tr>
<tr>
<td>Node D</td>
<td>f(D)</td>
</tr>
<tr>
<td>Node B</td>
<td>f(B)</td>
</tr>
<tr>
<td>Node C</td>
<td>f(C)</td>
</tr>
</tbody>
</table>
Best first search

Search explores graph by expanding most promising node $\min f(s)$

Terminate when you find the goal

<table>
<thead>
<tr>
<th>Element (Node)</th>
<th>Priority Value (f-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node A</td>
<td>$f(A)$</td>
</tr>
<tr>
<td>Node D</td>
<td>$f(D)$</td>
</tr>
<tr>
<td>Node B</td>
<td>$f(B)$</td>
</tr>
<tr>
<td>Node C</td>
<td>$f(C)$</td>
</tr>
</tbody>
</table>
Best first search

Key Idea: Choose $f(s)$ wisely!

- when goal found, it has (near) optimal path
 - minimize the number of expansions
Best first search

Key Idea: Choose $f(s)$ wisely!
- when goal found, it has (near) optimal path
 - minimize the number of expansions
Notations

Given:

\begin{align*}
\text{Start } s_{\text{start}} & \quad \text{Goal } s_{\text{goal}} \\
\text{Cost } c(s, s')
\end{align*}

Objects created:

\begin{align*}
\text{OPEN: priority queue of nodes to be processed} \\
\text{CLOSED: list of nodes already processed} \\
g(s): \text{estimate of the least cost from start to a given node}
\end{align*}
Pseudocode

Push start into OPEN

While goal not expanded

 Pop best from OPEN

 Add best to CLOSED

 For every successor s’

 If $g(s’) > g(s) + c(s,s’)$

 $g(s’) = g(s) + c(s,s’)$

 Add (or update) s’ to OPEN
Djikstra’s Algorithm

Set

\[f(s) = g(s) \]

Sort nodes by their cost to come
Djikstra’s Algorithm

Set

\[f(s) = g(s) \]

Sort nodes by their cost to come
Dijkstra’s Algorithm

- optimal values satisfy: \(g(s) = \min_{s'' \in \text{pred}(s)} g(s'') + c(s'',s) \)

the cost \(c(s_1,s_{goal}) \) of an edge from \(s_1 \) to \(s_{goal} \)
Dijkstra’s Algorithm

- optimal values satisfy: \(g(s) = \min_{s'' \in \text{pred}(s)} g(s'') + c(s'', s) \)

the cost \(c(s_1, s_{\text{goal}}) \) of an edge from \(s_1 \) to \(s_{\text{goal}} \)
Djikstra’s Algorithm

- optimal values satisfy: \(g(s) = \min_{s'' \in \text{pred}(s)} g(s'') + c(s'', s) \)

Nice property:
Only process nodes ONCE. Only process cheaper nodes than goal.
Can we have a better \(f(s) \)?
Can we have a better $f(s)$?

Yes!

$f(s)$ should estimate the cost of the path to goal
Heuristics

What if we had a heuristic $h(s)$ that estimated the cost to goal?

Set the evaluation function $f(s) = g(s) + h(s)$
Example of heuristics?
Example of heuristics?

1. Minimum number of nodes to go to goal
Example of heuristics?

1. Minimum number of nodes to go to goal

2. Euclidean distance to goal (if you know your cost is measuring length)
Example of heuristics?

1. Minimum number of nodes to go to goal

2. Euclidean distance to goal (if you know your cost is measuring length)

3. Solution to a relaxed problem
Example of heuristics?

1. Minimum number of nodes to go to goal

2. Euclidean distance to goal (if you know your cost is measuring length)

3. Solution to a relaxed problem

4. Domain knowledge / Learning
A* [Hart, Nilsson, Raphael, ’68]

Let L be the length of the shortest path

Dijkstra

Expand every state

$g(s) < L$

A*

Expand every state

$f(s) = g(s) + h(s) < L$

Both find the optimal path ...

but A* only expands relevant states, i.e., does much less work!
A* [Hart, Nilsson, Raphael, '68]

Let L be the length of the shortest path

Dijkstra

Expand every state
$g(s) < L$

A*

Expand every state
$f(s) = g(s) + h(s) < L$

Both find the optimal path ...

but A* only expands relevant states, i.e., does much less work!
A* Search

Computes optimal g-values for relevant states

while(s_{goal} is not expanded)

remove s with the smallest $[f(s) = g(s) + h(s)]$ from OPEN;

insert s into CLOSED;

for every successor s' of s such that s' not in CLOSED

if $g(s') > g(s) + c(s,s')$

$g(s') = g(s) + c(s,s')$;

insert s' into OPEN;
A* Search

Computes optimal g-values for relevant states

while(s_{goal} is not expanded)
 remove s with the smallest $[f(s) = g(s)+h(s)]$ from OPEN;
 insert s into CLOSED;
for every successor s' of s such that s' not in CLOSED
 if $g(s') > g(s) + c(s,s')$
 $g(s') = g(s) + c(s,s')$;
 insert s' into OPEN;

CLOSED = {}
OPEN = {s_{start}}

next state to expand: s_{start}
A* Search

Computes optimal g-values for relevant states

while(s_{goal} is not expanded)

remove s with the smallest $[f(s) = g(s)+h(s)]$ from OPEN;
insert s into CLOSED;
for every successor s' of s such that s' not in CLOSED
if $g(s') > g(s) + c(s,s')$
 $g(s') = g(s) + c(s,s')$;
insert s' into OPEN;

$CLOSED = {}$
$OPEN = \{s_{start}\}$

next state to expand: s_{start}
A* Search

Computes optimal g-values for relevant states

while(s_{goal} is not expanded)
 remove s with the smallest $[f(s) = g(s)+h(s)]$ from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s' not in CLOSED
 if $g(s') > g(s) + c(s,s')$
 $g(s') = g(s) + c(s,s')$;
 insert s' into OPEN;

$CLOSED = \{s_{start}\}$
$OPEN = \{s_2\}$
next state to expand: s_2
A* Search

Computes optimal g-values for relevant states

while(s_{goal} is not expanded)

remove s with the smallest \([f(s) = g(s)+h(s)]\) from OPEN;
insert s into CLOSED;
for every successor $s’$ of s such that $s’$ not in CLOSED
if $g(s’) > g(s) + c(s,s’)$
$g(s’) = g(s) + c(s,s’);$
insert $s’$ into OPEN;

\[\text{CLOSED} = \{s_{start}, s_2\} \]
\[\text{OPEN} = \{s_1, s_4\} \]
next state to expand: s_1
A* Search

Computes optimal g-values for relevant states

while (s_{goal} is not expanded)

remove s with the smallest $[f(s) = g(s) + h(s)]$ from OPEN;

insert s into CLOSED;

for every successor s' of s such that s' not in CLOSED

if $g(s') > g(s) + c(s,s')$

$g(s') = g(s) + c(s,s')$;

insert s' into OPEN;

$CLOSED = \{s_{\text{start}}, s_2, s_1\}$

$OPEN = \{s_4, s_{\text{goal}}\}$

next state to expand: s_4
A* Search

Computes optimal g-values for relevant states

while(s_{goal} is not expanded)

remove s with the smallest $[f(s) = g(s)+h(s)]$ from OPEN;
insert s into CLOSED;
for every successor s' of s such that s' not in CLOSED

if $g(s') > g(s) + c(s,s')$

$g(s') = g(s) + c(s,s')$;
insert s' into OPEN;

\[
\text{CLOSED} = \{s_{\text{start}}, s_2, s_1, s_4\} \\
\text{OPEN} = \{s_3, s_{\text{goal}}\} \\
\text{next state to expand: } s_{\text{goal}}
\]
A* Search

Computes optimal g-values for relevant states

while \(s_{goal} \) is not expanded

remove \(s \) with the smallest \([f(s) = g(s)+h(s)]\) from \(OPEN \);
insert \(s \) into \(CLOSED \);
for every successor \(s' \) of \(s \) such that \(s' \) not in \(CLOSED \)
if \(g(s') > g(s) + c(s,s') \)
\[g(s') = g(s) + c(s,s') \);
insert \(s' \) into \(OPEN \);

\[CLOSED = \{ s_{start}, s_2, s_1, s_4, s_{goal} \} \]
\[OPEN = \{ s_3 \} \]
done
A* Search

 Computes optimal g-values for relevant states

 while(s_{goal} is not expanded)
 remove s with the smallest $[f(s) = g(s)+h(s)]$ from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s' not in CLOSED
 if $g(s') > g(s) + c(s,s')$
 $g(s') = g(s) + c(s,s')$;
 insert s' into OPEN;

 for every expanded state $g(s)$ is optimal
 for every other state $g(s)$ is an upper bound
 we can now compute a least-cost path
A* Search

Computes optimal g-values for relevant states

while(s_{goal} is not expanded)

 remove s with the smallest $[f(s) = g(s) + h(s)]$ from OPEN;

 insert s into CLOSED;

 for every successor s' of s such that s' not in CLOSED

 if $g(s') > g(s) + c(s,s')$

 $g(s') = g(s) + c(s,s')$;

 insert s' into OPEN;

for every expanded state $g(s)$ is optimal
for every other state $g(s)$ is an upper bound
we can now compute a least-cost path
Properties of heuristics

What properties should $h(s)$ satisfy? How does it affect search?
Properties of heuristics

What properties should \(h(s) \) satisfy? How does it affect search?

Admissible: \(h(s) \leq h^*(s) \) \hspace{1cm} h(\text{goal}) = 0

If this true, the path returned by A* is **optimal**
Properties of heuristics

What properties should $h(s)$ satisfy? How does it affect search?

Admissible: $h(s) \leq h^*(s) \quad h(\text{goal}) = 0$

If this true, the path returned by A^* is **optimal**

Consistency: $h(s) \leq c(s,s') + h(s') \quad h(\text{goal}) = 0$

If this true, A^* is **optimal AND efficient** (will not re-expand a node)
Admissible vs Consistent

Theorem: ALL consistent heuristics are admissible, not vice versa!
Takeaway:
Heuristics are great because they focus search on relevant states
AND
still give us optimal solution
Design of Informative Heuristics

• For grid-based navigation:
 – Euclidean distance
 – Manhattan distance: $h(x,y) = |x-x_{goal}| + |y-y_{goal}|$
 – Diagonal distance: $h(x,y) = \max(|x-x_{goal}|, |y-y_{goal}|)$
 – More informed distances???

Which heuristics are admissible for 4-connected grid? 8-connected grid?

Courtesy Max Likhachev
Design of Informative Heuristics

- For lattice-based 3D \((x,y,\Theta)\) navigation:

Any ideas?

Courtesy Max Likhachev
Design of Informative Heuristics

• For lattice-based 3D \((x,y,\Theta)\) navigation:

 – 2D \((x,y)\) distance accounting for obstacles (single Dijkstra’s on 2D grid cell starting at goal cell will give us these values)

Any problems where it will be highly uninformative?

Courtesy Max Likhachev
Design of Informative Heuristics

- For lattice-based 3D \((x,y,\theta)\) navigation:
 - 2D \((x,y)\) distance accounting for obstacles (single Dijkstra’s on 2D grid cell starting at goal cell will give us these values)

Any problems where it will be highly uninformative?

Any heuristic functions that will guide search well in this example?

Courtesy Max Likhachev
Design of Informative Heuristics

- Arm planning in 3D:

Any ideas?

Courtesy Max Likhachev
Is admissibility always what we want?

Admissible

Inadmissible
Is admissibility always what we want?

Admissible

Inadmissible
Can inadmissible heuristics help us with this tradeoff?
• A* Search: expands states in the order of $f = g + h$ values
• Dijkstra’s: expands states in the order of $f = g$ values
• **Weighted A***: expands states in the order of $f = g + \epsilon h$ values, $\epsilon > 1$ = bias towards states that are closer to goal
• Dijkstra’s: expands states in the order of $f = g$ values

What are the states expanded?

$S_{\text{start}} \ldots \ldots \ldots \ldots S_{\text{goal}}$
Effect of the Heuristic Function

A* Search: expands states in the order of $f = g+h$ values

S_{start} \[\rightarrow\] S_{goal}

Courtesy Max Likhachev
Effect of the Heuristic Function

A* Search: expands states in the order of $f = g + h$ values

Courtesy Max Likhachev
Effect of the Heuristic Function

A* Search: expands states in the order of $f = g + h$ values

for large problems this results in A* quickly running out of memory (memory: $O(n)$)

Courtesy Max Likhachev
Effect of the Heuristic Function

Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1 = \text{bias towards states that are closer to goal}$

S_{start} \[\rightarrow \] S_{goal}

Courtesy Max Likhachev
Effect of the Heuristic Function

Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal

Courtesy Max Likhachev
Effect of the Heuristic Function

Weighted A* Search: expands states in the order of \(f = g + \varepsilon h \) values, \(\varepsilon > 1 \) = bias towards states that are closer to goal

solution is always \(\varepsilon \)-suboptimal:
\[
\text{cost(solution)} \leq \varepsilon \cdot \text{cost(optimal solution)}
\]

Courtesy Max Likhachev
Effect of the Heuristic Function

$\epsilon = 2.5$

$\epsilon = 1.5$

$\epsilon = 1.0$ (optimal search)

Courtesy Max Likhachev
Effect of the Heuristic Function

Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1 = \text{bias towards states that are closer to goal}$

20DOF simulated robotic arm
state-space size: over 10^{26} states

planning with ARA* (anytime version of weighted A*)

Courtesy Max Likhachev
Effect of the Heuristic Function

Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal

20DOF simulated robotic arm
state-space size: over 10^{26} states

planning with ARA* (anytime version of weighted A*)

Courtesy Max Likhachev
Effect of the Heuristic Function

Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal

20DOF simulated robotic arm
state-space size: over 10^{26} states

planning with ARA* (anytime version of weighted A*)

Courtesy Max Likhachev
Effect of the Heuristic Function

- planning in 8D ($<x,y>$ for each foothold)
- heuristic is Euclidean distance from the center of the body to the goal location
- cost of edges based on kinematic stability of the robot and quality of footholds

Uses R* - A randomized version of weighted A*

Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza
Effect of the Heuristic Function

- planning in 8D ($<x,y>$ for each foothold)
- heuristic is Euclidean distance from the center of the body to the goal location
- cost of edges based on kinematic stability of the robot and quality of footholds

Uses R* - A randomized version of weighted A*

Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza
Effect of the Heuristic Function

- planning in 8D ($<x,y>$ for each foothold)
- heuristic is Euclidean distance from the center of the body to the goal location
- cost of edges based on kinematic stability of the robot and quality of footholds

Uses R* - A randomized version of weighted A*

Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza