
 1

Sanjiban Choudhury

Heuristic Search

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle

Content adapted from LaValle

 2

Create a graph

General framework for motion planning

 2

Create a graph

General framework for motion planning

Search the graph

 2

Create a graph

General framework for motion planning

Search the graph

Interleave

 3

Any planning
algorithm Create graph Search graph Interleave

General framework for motion planning

 3

Any planning
algorithm Create graph Search graph Interleave

General framework for motion planning

RRT*-XYZ

 3

Any planning
algorithm Create graph Search graph Interleave

General framework for motion planning

RRT*-XYZ

=

 3

Any planning
algorithm Create graph Search graph Interleave

General framework for motion planning

RRT*-XYZ
e.g. fancy
random
sampler

e.g. fancy
heuristic

e.g. fancy
way of

densifying
⇥ ⇥=

 3

Any planning
algorithm Create graph Search graph Interleave

Whats the best
we can do?

Whats the best
we can do?

Whats the best
we can do?

General framework for motion planning

RRT*-XYZ
e.g. fancy
random
sampler

e.g. fancy
heuristic

e.g. fancy
way of

densifying
⇥ ⇥=

For this lecture….

 4

We will focus on the search assuming everything we need is given

Optimal Path = SHORTESTPATH(V,E, start, goal)

If you are serious about heuristic search

 5

This lecture:
Skewed view of search

that will be helpful for robot motion planning

Today’s objective

 6

1. Best first search as a meta-algorithm

2. Heuristic search and what we want from it

3. Laziness in search

High-order bit

 7

Expansion of a search wavefront from start to goal

Courtesy wikipedia

Djikstra A* Weighted A*

High-order bit

 7

Expansion of a search wavefront from start to goal

Courtesy wikipedia

Djikstra A* Weighted A*

What do we want?

 8

1. Search to systematically reason over the space of paths

(minimize planning effort)

2. Find a (near)-optimal path quickly

 9

Best first search
This is a meta-algorithm

 9

Best first search
This is a meta-algorithm

 9

Best first search
This is a meta-algorithm

BFS maintains a priority queue of promising nodes

Each node s ranked by a function f(s)

Element
(Node)

Priority Value
 (f-value)

Node A f(A)

Node B f(B)

….. ……

Populate queue initially with start node

 10

Best first search

Element
(Node)

Priority Value
 (f-value)

Node A f(A)

Node D f(D)

Node B f(B)

Node C f(C)

A
C

D

Search explores graph by expanding most promising node min f(s)

Terminate when you find the goal

 10

Best first search

Element
(Node)

Priority Value
 (f-value)

Node A f(A)

Node D f(D)

Node B f(B)

Node C f(C)

A
C

D

Search explores graph by expanding most promising node min f(s)

Terminate when you find the goal

 11

Best first search

Key Idea: Choose f(s) wisely!

- minimize the number of expansions

- when goal found, it has (near) optimal path

 11

Best first search

Key Idea: Choose f(s) wisely!

- minimize the number of expansions

- when goal found, it has (near) optimal path

Notations

 12

Given:

Start sstart Goal sgoal

Cost c(s, s’)

Objects created:

OPEN: priority queue of nodes to be processed

CLOSED: list of nodes already processed

g(s): estimate of the least cost from start to a given node

Pseudocode

 13

While goal not expanded

Add (or update) s’ to OPEN

Push start into OPEN

Pop best from OPEN

Add best to CLOSED

For every successor s’

If g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’)

Djikstra’s Algorithm

 14

Set
f(s) = g(s)

Sort nodes by their cost to come

Djikstra’s Algorithm

 14

Set
f(s) = g(s)

Sort nodes by their cost to come

!15

Djikstra’s Algorithm

!16

Djikstra’s Algorithm

!16

Djikstra’s Algorithm

Nice property:
Only process nodes ONCE. Only process cheaper nodes than goal.

 17

Can we have a better f(s)?

 17

Can we have a better f(s)?

Yes!

f(s) should estimate the
cost of the path to goal

Heuristics

 18

What if we had a heuristic h(s) that estimated the cost to goal?

Set the evaluation function f(s) = g(s) + h(s)

Example of heuristics?

 19

Example of heuristics?

 19

1. Minimum number of nodes to go to goal

Example of heuristics?

 19

1. Minimum number of nodes to go to goal

2. Euclidean distance to goal (if you know your cost is measuring
length)

Example of heuristics?

 19

1. Minimum number of nodes to go to goal

3. Solution to a relaxed problem

2. Euclidean distance to goal (if you know your cost is measuring
length)

Example of heuristics?

 19

1. Minimum number of nodes to go to goal

3. Solution to a relaxed problem

2. Euclidean distance to goal (if you know your cost is measuring
length)

4. Domain knowledge / Learning ….

A* [Hart, Nillson, Raphael, ’68]

 20

Let L be the length of the shortest path

Djikstra

Expand every state
 g(s) < L

A*

Expand every state
f(s) = g(s) + h(s) < L

but A* only expands relevant states, i.e., does much less work!

Both find the optimal path …

A* [Hart, Nillson, Raphael, ’68]

 20

Let L be the length of the shortest path

Djikstra

Expand every state
 g(s) < L

A*

Expand every state
f(s) = g(s) + h(s) < L

but A* only expands relevant states, i.e., does much less work!

Both find the optimal path …

ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

A* Search

Computes optimal g-values for relevant states

ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

CLOSED = {}
OPEN = {sstart}

next state to expand: sstart

S2 S1

Sgoal

2

g=∞
h=2

g= ∞
h=1

g= ∞
h=02

S4 S3
3

g= ∞
h=2

g= ∞
h=1

1
Sstart

1

1

g=0
h=3

A* Search

Computes optimal g-values for relevant states

CLOSED = {}
OPEN = {sstart}

next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)

S2 S1

Sgoal

2

g=∞
h=2

g= ∞
h=1

g= ∞
h=02

S4 S3
3

g= ∞
h=2

g= ∞
h=1

1
Sstart

1

1

g=0
h=3

A* Search

ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

Computes optimal g-values for relevant states

CLOSED = {sstart}
OPEN = {s2}

next state to expand: s2

S2 S1

Sgoal

2

g=1
h=2

g= ∞
h=1

g= ∞
h=02

S4 S3
3

g= ∞
h=2

g= ∞
h=1

1
Sstart

1

1

g=0
h=3

A* Search

ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= ∞
h=02

S4 S3
3

g= 2
h=2

g= ∞
h=1

1
Sstart

1

1

g=0
h=3CLOSED = {sstart,s2}

OPEN = {s1,s4}
next state to expand: s1

A* Search

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= ∞
h=1

1
Sstart

1

1

g=0
h=3CLOSED = {sstart,s2,s1}

OPEN = {s4,sgoal}
next state to expand: s4

A* Search

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3CLOSED = {sstart,s2,s1,s4}

OPEN = {s3,sgoal}
next state to expand: sgoal

A* Search

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3CLOSED = {sstart,s2,s1,s4,sgoal}

OPEN = {s3}
done

A* Search

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

for every expanded state g(s) is optimal
for every other state g(s) is an upper bound

we can now compute a least-cost path

A* Search

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

for every expanded state g(s) is optimal
for every other state g(s) is an upper bound

we can now compute a least-cost path

A* Search

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

Properties of heuristics

 31

What properties should h(s) satisfy? How does it affect search?

Properties of heuristics

 31

What properties should h(s) satisfy? How does it affect search?

Admissible: h(s) <= h*(s)

If this true, the path returned by A* is optimal

h(goal) = 0

Properties of heuristics

 31

What properties should h(s) satisfy? How does it affect search?

Admissible: h(s) <= h*(s)

If this true, the path returned by A* is optimal

h(goal) = 0

Consistency: h(s) <= c(s,s’) + h(s’)

If this true, A* is optimal AND efficient (will not re-expand a node)

h(goal) = 0

Admissible vs Consistent

 32

Admissible

Consistent

Theorem: ALL consistent heuristics are admissible,
not vice versa!

 33

Takeaway:
Heuristics are great because they focus

search on relevant states 

AND

still give us optimal solution

 34

Design of Informative Heuristics

• For grid-based navigation:
– Euclidean distance
– Manhattan distance: h(x,y) = abs(x-xgoal) + abs(y-ygoal)
– Diagonal distance: h(x,y) = max(abs(x-xgoal), abs(y-ygoal))
– More informed distances???

Carnegie Mellon University

Which heuristics are admissible for
4-connected grid?
8-connected grid?

Courtesy Max Likhachev

 35

Design of Informative Heuristics

• For lattice-based 3D (x,y,Ѳ) navigation:

Carnegie Mellon University

Any ideas?

Courtesy Max Likhachev

 36

Design of Informative Heuristics

• For lattice-based 3D (x,y,Ѳ) navigation:

– 2D (x,y) distance accounting for obstacles (single Dijkstra’s on 2D
grid cell starting at goalcell will give us these values)

Carnegie Mellon University

Any problems where it will be highly uninformative?

Courtesy Max Likhachev

 37

Design of Informative Heuristics

• For lattice-based 3D (x,y,Ѳ) navigation:

– 2D (x,y) distance accounting for obstacles (single Dijkstra’s on 2D
grid cell starting at goalcell will give us these values)

Carnegie Mellon University

Any problems where it will be highly uninformative?

Any heuristic functions
that will guide search well

in this example?

Courtesy Max Likhachev

 38

Design of Informative Heuristics

• Arm planning in 3D:

Carnegie Mellon University

Any ideas?

Courtesy Max Likhachev

 39

Is admissibility always what we want?

Admissible Inadmissible

 39

Is admissibility always what we want?

Admissible Inadmissible

 40

Solution
Quality

Number of
states

expanded

Can inadmissible heuristics help us
with this tradeoff?

!41 Courtesy Max Likhachev

!42 Courtesy Max Likhachev

Effect of the Heuristic Function

sgoal
sstart

A* Search: expands states in the order of f = g+h values

Courtesy Max Likhachev

Effect of the Heuristic Function

sgoal
sstart

… …

A* Search: expands states in the order of f = g+h values

Courtesy Max Likhachev

Effect of the Heuristic Function

sgoal
sstart

… …

A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly
running out of memory (memory: O(n))

Courtesy Max Likhachev

Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh
values, ε > 1 = bias towards states that are closer to goal

sstart sgoal

Courtesy Max Likhachev

Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh
values, ε > 1 = bias towards states that are closer to goal

sstart sgoal
…

…

Courtesy Max Likhachev

Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh
values, ε > 1 = bias towards states that are closer to goal

sstart sgoal
…

…

solution is always ε-suboptimal:
cost(solution) ≤ ε·cost(optimal solution)

Courtesy Max Likhachev

Effect of the Heuristic Function

Courtesy Max Likhachev

Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh
values, ε > 1 = bias towards states that are closer to goal

 20DOF simulated robotic arm
state-space size: over 1026 states

 planning with ARA* (anytime version of weighted A*)
Courtesy Max Likhachev

Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh
values, ε > 1 = bias towards states that are closer to goal

 20DOF simulated robotic arm
state-space size: over 1026 states

 planning with ARA* (anytime version of weighted A*)
Courtesy Max Likhachev

Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh
values, ε > 1 = bias towards states that are closer to goal

 20DOF simulated robotic arm
state-space size: over 1026 states

 planning with ARA* (anytime version of weighted A*)
Courtesy Max Likhachev

Effect of the Heuristic Function
• planning in 8D (<x,y> for each foothold)
• heuristic is Euclidean distance from the center of the body to the goal location
• cost of edges based on kinematic stability of the robot and quality of footholds

Uses R* - A randomized version of weighted A*
Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin

Chitta, Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza

Courtesy Max Likhachev

Effect of the Heuristic Function
• planning in 8D (<x,y> for each foothold)
• heuristic is Euclidean distance from the center of the body to the goal location
• cost of edges based on kinematic stability of the robot and quality of footholds

Uses R* - A randomized version of weighted A*
Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin

Chitta, Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza

Courtesy Max Likhachev

Effect of the Heuristic Function
• planning in 8D (<x,y> for each foothold)
• heuristic is Euclidean distance from the center of the body to the goal location
• cost of edges based on kinematic stability of the robot and quality of footholds

Uses R* - A randomized version of weighted A*
Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin

Chitta, Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza

Courtesy Max Likhachev

