
 1

Sanjiban Choudhury

Heuristic Search

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle

Content adapted from LaValle



 2

Create a graph

General framework for motion planning



 2

Create a graph

General framework for motion planning

Search the graph



 2

Create a graph

General framework for motion planning

Search the graph

Interleave



 3

Any planning  
algorithm Create graph Search graph Interleave

General framework for motion planning



 3

Any planning  
algorithm Create graph Search graph Interleave

General framework for motion planning

RRT*-XYZ



 3

Any planning  
algorithm Create graph Search graph Interleave

General framework for motion planning

RRT*-XYZ

=



 3

Any planning  
algorithm Create graph Search graph Interleave

General framework for motion planning

RRT*-XYZ
e.g. fancy 
random 
sampler

e.g. fancy 
heuristic

e.g. fancy 
way of 

densifying
⇥ ⇥=



 3

Any planning  
algorithm Create graph Search graph Interleave

Whats the best 
we can do?

Whats the best 
we can do?

Whats the best 
we can do?

General framework for motion planning

RRT*-XYZ
e.g. fancy 
random 
sampler

e.g. fancy 
heuristic

e.g. fancy 
way of 

densifying
⇥ ⇥=



For this lecture….
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We will focus on the search assuming everything we need is given

Optimal Path = SHORTESTPATH(V,E, start, goal)



If you are serious about heuristic search
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This lecture: 
Skewed view of search  

that will be helpful for robot motion planning



Today’s objective
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1. Best first search as a meta-algorithm

2. Heuristic search and what we want from it

3. Laziness in search



High-order bit
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Expansion of a search wavefront from start to goal

Courtesy wikipedia

Djikstra A* Weighted A*
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Expansion of a search wavefront from start to goal

Courtesy wikipedia

Djikstra A* Weighted A*



What do we want?
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1. Search to systematically reason over the space of paths

(minimize planning effort)

2. Find a (near)-optimal path quickly
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Best first search
This is a meta-algorithm 
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Best first search
This is a meta-algorithm 

BFS maintains a priority queue of promising nodes

Each node s ranked by a function f(s)

Element 
(Node)

Priority Value 
 (f-value)

Node A f(A)

Node B f(B)

….. ……

Populate queue initially with start node
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Best first search
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A
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Search explores graph by expanding most promising node  min f(s)

Terminate when you find the goal
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Best first search

Key Idea: Choose f(s) wisely!

- minimize the number of expansions 

- when goal found, it has (near) optimal path  
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Notations
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Given:

Start sstart Goal sgoal

Cost c(s, s’) 

Objects created:

OPEN: priority queue of nodes to be processed

CLOSED: list of nodes already processed

g(s): estimate of the least cost from start to a given node



Pseudocode
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While goal not expanded

Add (or update) s’ to OPEN

Push start into OPEN

Pop best from OPEN

Add best to CLOSED

For every successor s’

If g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’)



Djikstra’s Algorithm
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Set 
f(s) = g(s)

Sort nodes by their cost to come 
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Set 
f(s) = g(s)

Sort nodes by their cost to come 
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Djikstra’s Algorithm
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Djikstra’s Algorithm

Nice property:  
Only process nodes ONCE. Only process cheaper nodes than goal.
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Can we have a better f(s)?
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Can we have a better f(s)?

Yes!  

f(s) should estimate the  
cost of the path to goal



Heuristics
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What if we had a heuristic h(s) that estimated the cost to goal?

Set the evaluation function f(s) = g(s) + h(s)



Example of heuristics?
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Example of heuristics?
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1. Minimum number of nodes to go to goal 

3. Solution to a relaxed problem

2. Euclidean distance to goal (if you know your cost is measuring 
length) 

4. Domain knowledge / Learning ….



A* [Hart, Nillson, Raphael, ’68]
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Let L be the length of the shortest path

Djikstra

Expand every state 
 g(s) < L

A*

Expand every state  
f(s) = g(s) + h(s) < L

but A* only expands relevant states, i.e., does much less work!

Both find the optimal path …
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ComputePath function 
while(sgoal is not expanded) 
   remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED; 
for every successor s’ of s such that s’ not in CLOSED 
 if g(s’) > g(s) + c(s,s’) 
    g(s’) = g(s) + c(s,s’); 
    insert s’ into OPEN;

A* Search

Computes optimal g-values for relevant states
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A* Search

insert s into CLOSED; 
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    g(s’) = g(s) + c(s,s’); 
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Computes optimal g-values for relevant states
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   remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
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   remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;



S2 S1

Sgoal

2

g=1 
h=2

g= 3 
h=1

g= 5 
h=02

S4 S3
3

g= 2 
h=2

g= 5 
h=1

1
Sstart

1

1

g=0 
h=3

for every expanded state g(s) is optimal 
for every other state g(s) is an upper bound 

we can now compute a least-cost path

A* Search

insert s into CLOSED; 
for every successor s’ of s such that s’ not in CLOSED 
 if g(s’) > g(s) + c(s,s’) 
    g(s’) = g(s) + c(s,s’); 
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What properties should h(s) satisfy? How does it affect search?

Admissible:  h(s) <= h*(s)  

If this true, the path returned by A* is optimal

h(goal) = 0

Consistency:  h(s) <= c(s,s’) + h(s’)  

If this true, A* is optimal AND efficient (will not re-expand a node)

h(goal) = 0



Admissible vs Consistent
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Admissible

Consistent

Theorem: ALL consistent heuristics are admissible, 
not vice versa! 
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Takeaway: 
Heuristics are great because they focus 

search on relevant states 

AND 

still give us optimal solution



 34

Design of Informative Heuristics

• For grid-based navigation:
– Euclidean distance
– Manhattan distance: h(x,y) = abs(x-xgoal) + abs(y-ygoal)
– Diagonal distance: h(x,y) = max(abs(x-xgoal), abs(y-ygoal))
– More informed distances???

Carnegie Mellon University

Which heuristics are admissible for
4-connected grid?
8-connected grid?

Courtesy Max Likhachev 
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Design of Informative Heuristics

• For lattice-based 3D (x,y,Ѳ) navigation:

Carnegie Mellon University

Any ideas?

Courtesy Max Likhachev 
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Design of Informative Heuristics

• For lattice-based 3D (x,y,Ѳ) navigation:

– 2D (x,y) distance accounting for obstacles (single Dijkstra’s on 2D 
grid cell starting at goalcell will give us these values) 

Carnegie Mellon University

Any problems where it will be highly uninformative?

Courtesy Max Likhachev 
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Design of Informative Heuristics

• For lattice-based 3D (x,y,Ѳ) navigation:

– 2D (x,y) distance accounting for obstacles (single Dijkstra’s on 2D 
grid cell starting at goalcell will give us these values) 

Carnegie Mellon University

Any problems where it will be highly uninformative?

Any heuristic functions 
that will guide search well 

in this example?

Courtesy Max Likhachev 
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Design of Informative Heuristics

• Arm planning in 3D:

Carnegie Mellon University

Any ideas?

Courtesy Max Likhachev 
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Is admissibility always what we want?

Admissible Inadmissible
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Is admissibility always what we want?

Admissible Inadmissible
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Solution  
Quality

Number of  
states  

expanded

Can inadmissible heuristics help us 
with this tradeoff?
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Effect of the Heuristic Function
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sstart

A* Search: expands states in the order of f = g+h values

Courtesy Max Likhachev 
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Effect of the Heuristic Function

sgoal
sstart

… …

A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly  
running out of memory (memory: O(n))

Courtesy Max Likhachev 



Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh 
values, ε > 1 = bias towards states that are closer to goal

sstart sgoal

Courtesy Max Likhachev 



Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh 
values, ε > 1 = bias towards states that are closer to goal

sstart sgoal
…

…

Courtesy Max Likhachev 



Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh 
values, ε > 1 = bias towards states that are closer to goal

sstart sgoal
…

…

solution is always ε-suboptimal: 
cost(solution) ≤ ε·cost(optimal solution)

Courtesy Max Likhachev 
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Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh 
values, ε > 1 = bias towards states that are closer to goal

 20DOF simulated robotic arm 
state-space size: over 1026 states 

 planning with ARA* (anytime version of weighted A*)
Courtesy Max Likhachev 
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Effect of the Heuristic Function
• planning in 8D (<x,y> for each foothold) 
• heuristic is Euclidean distance from the center of the body to the goal location 
• cost of edges based on kinematic stability of the robot and quality of footholds

Uses R* - A randomized version of weighted A* 
Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin 

Chitta, Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza

Courtesy Max Likhachev 
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