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Geometric Path Planning Problem
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Also known as  
Piano Mover’s Problem (Reif 79)

2 CHAPTER 5. MOTION PLANNING BY LYDIA E. KAVRAKI AND STEVEN M. LAVALLE

Figure 5.1: A robot translating in the plane: (a) a tri-
angular robot moves in a workspace with a single rect-
angular obstacle. (b) The C-space obstacle.

Figure 5.2: A two-joint planar arm: (a) links are pinned
and there are no joint limits. (b) The C-space.

surfaces. Let the closed set A(q) ⊂ W denote the set
of points occupied by the robot when at configuration
q ∈ C; this set is usually modeled using the same primi-
tives as used for O. The C-space obstacle region, Cobs, is
defined as

Cobs = {q ∈ C | A(q) ∩O ̸= ∅}. (5.1)

Since O and A(q) are closed sets in W , the obstacle
region is a closed set in C. The set of configurations that
avoid collision is Cfree = C \ Cobs, and is called the free
space.

Simple examples of C-spaces

Translating Planar Rigid Bodies: The robot’s
configuration can be specified by a reference point (x, y)
on the planar rigid body relative to some fixed coordi-
nate frame. Therefore the C-space is equivalent to R2.
Figure 5.1 gives an example of a C-space for a triangular
robot and a single polygonal obstacle. The obstacle
in the C-space can be traced by sliding the robot
around the workspace obstacle to find the constraints
on all q ∈ C. Motion planning for the robot is now
equivalent to motion planning for a point in the C-space.

Planar Arms: Figure 5.2 gives an example of a two-
joint planar arm. The bases of both links are pinned, so

that they can only rotate around the joints and there are
no joint limits. For this arm, specifying the rotational
parameters θ1 and θ2 provides the configuration. Each
joint angle θi corresponds to a point on the unit circle
S1 and the C-space is S1×S1 = T 2, the two-dimensional
torus as Figure 5.2 shows. For a higher number of links
without joint limits, the C-space can be similarly defined
as:

C = S
1 × S

1 × · · ·× S
1. (5.2)

If a joint has limits, then each corresponding S1 is often
replaced with R, even though it is a finite interval. If
the base of the planar arm is mobile and not pinned,
then the additional translation parameters must also be
considered in the arm’s configuration:

C = R
2 × S

1 × S
1 × · · ·× S

1 (5.3)

Additional examples of C-spaces are provided in Sec-
tion 5.6.1, where topological properties of configuration
spaces are discussed.

5.1.2 Geometric Path Planning Problem

The basic motion planning problem, also known as the
Piano Mover’s problem [84], is defined as follows.
Given:

1. A workspace W , where either W = R2 or W = R3.

2. An obstacle region O ⊂W .

3. A robot defined in W . Either a rigid body A or a
collection of m links: A1,A2, . . . ,Am.

4. The configuration space C (Cobs and Cfree are then
defined).

5. An initial configuration qI ∈ Cfree.

6. A goal configuration qG ∈ Cfree. The initial and
goal configuration are often called a query (qI , qG).

Compute a (continuous) path, τ : [0, 1] → Cfree, such
that τ(0) = qI and τ(1) = qG.

5.1.3 Complexity of Motion Planning

The main complications in motion planning are that it is
not easy to directly compute Cobs and Cfree and the di-
mensionality of the C-space is often quite high. In terms
of computational complexity, the Piano Mover’s problem
was studied early on and it was shown to be PSPACE-hard
by Reif [84]. A series of polynomial time algorithms for
problems with fixed dimension suggested an exponential
dependence on the problem dimensionality [92, 93]. A

Also may want to minimize cost c(⌧)
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But I just want to know  
how to plan for my racecar!
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But I just want to know  
how to plan for my racecar!

Patience! Upcoming lec on differential constraints
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links, which may or may not be attached together by joints. A single configuration
vector q is given for the entire collection of links. We will write Ai(q) for each
link, i, even though some of the parameters of q may be irrelevant for moving link
Ai. For example, in a kinematic chain, the configuration of the second body does
not depend on the angle between the ninth and tenth bodies.

Let P denote the set of collision pairs, in which each collision pair, (i, j) ∈ P ,
represents a pair of link indices i, j ∈ {1, 2, . . . ,m}, such that i ̸= j. If (i, j)
appears in P , it means that Ai and Aj are not allowed to be in a configuration,
q, for which Ai(q) ∩ Aj(q) ̸= ∅. Usually, P does not represent all pairs because
consecutive links are in contact all of the time due to the joint that connects them.
One common definition for P is that each link must avoid collisions with any links
to which it is not attached by a joint. For m bodies, P is generally of size O(m2);
however, in practice it is often possible to eliminate many pairs by some geometric
analysis of the linkage. Collisions between some pairs of links may be impossible
over all of C, in which case they do not need to appear in P .

Using P , the consideration of robot self-collisions is added to the definition of
Cobs to obtain

Cobs =
(

m
⋃

i=1

{q ∈ C | Ai(q) ∩O ̸= ∅}
)

⋃

(

⋃

[i,j]∈P

{q ∈ C | Ai(q) ∩Aj(q) ̸= ∅}
)

.

(4.36)
Thus, a configuration q ∈ C is in Cobs if at least one link collides with O or a pair
of links indicated by P collide with each other.

Definition of basic motion planning Finally, enough tools have been intro-
duced to precisely define the motion planning problem. The problem is concep-
tually illustrated in Figure 4.11. The main difficulty is that it is neither straight-
forward nor efficient to construct an explicit boundary or solid representation of
either Cfree or Cobs. The components are as follows:

Formulation 4.1 (The Piano Mover’s Problem)

1. A world W in which either W = R2 or W = R3.

2. A semi-algebraic obstacle region O ⊂ W in the world.

3. A semi-algebraic robot is defined in W . It may be a rigid robot A or a
collection of m links, A1,A2, . . . ,Am.

4. The configuration space C determined by specifying the set of all possible
transformations that may be applied to the robot. From this, Cobs and Cfree
are derived.

5. A configuration, qI ∈ Cfree designated as the initial configuration.
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Cobs

qI

qG
Cfree

Cobs

Cobs

Figure 4.11: The basic motion planning problem is conceptually very simple using
C-space ideas. The task is to find a path from qI to qG in Cfree. The entire blob
represents C = Cfree ∪ Cobs.

6. A configuration qG ∈ Cfree designated as the goal configuration. The initial
and goal configurations together are often called a query pair (or query) and
designated as (qI , qG).

7. A complete algorithm must compute a (continuous) path, τ : [0, 1] → Cfree,
such that τ(0) = qI and τ(1) = qG, or correctly report that such a path does
not exist.

It was shown by Reif [31] that this problem is PSPACE-hard, which implies
NP-hard. The main problem is that the dimension of C is unbounded.

4.3.2 Explicitly Modeling Cobs: The Translational Case

It is important to understand how to construct a representation of Cobs. In some
algorithms, especially the combinatorial methods of Chapter 6, this represents
an important first step to solving the problem. In other algorithms, especially
the sampling-based planning algorithms of Chapter 5, it helps to understand why
such constructions are avoided due to their complexity.

The simplest case for characterizing Cobs is when C = Rn for n = 1, 2, and
3, and the robot is a rigid body that is restricted to translation only. Under
these conditions, Cobs can be expressed as a type of convolution. For any two sets
X, Y ⊂ Rn, let their Minkowski difference10 be defined as

X ⊖ Y = {x− y ∈ Rn | x ∈ X and y ∈ Y }, (4.37)

10In some contexts, which include mathematics and image processing, the Minkowski differ-

Piano Mover’s Problem
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Completeness

Optimality

A planner is complete if for any input, it correctly reports whether 
or not a feasible path exists is finite time

Returns the best solution in finite time.
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qG

qI

Figure 6.12: To solve a query, qI and qG are connected to all visible roadmap
vertices, and graph search is performed.

qG

qI

Figure 6.13: The shortest path in the extended roadmap is the shortest path
between qI and qG.

which takes only O(n2 lg n) time. The idea is to perform a radial sweep from each
reflex vertex, v. A ray is started at θ = 0, and events occur when the ray touches
vertices. A set of bitangents through v can be computed in this way in O(n lg n)
time. Since there are O(n) reflex vertices, the total running time is O(n2 lg n). See
Chapter 15 of [264] for more details. There exists an algorithm that can compute
the shortest-path roadmap in time O(n lg n+m), in which m is the total number
of edges in the roadmap [384]. If the obstacle region is described by a simple poly-
gon, the time complexity can be reduced to O(n); see [709] for many shortest-path
variations and references.

To improve numerical robustness, the shortest-path roadmap can be imple-
mented without the use of trigonometric functions. For a sequence of three points,
p1, p2, p3, define the left-turn predicate, fl : R2 × R2 × R2 → {true, false}, as
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which takes only O(n2 lg n) time. The idea is to perform a radial sweep from each
reflex vertex, v. A ray is started at θ = 0, and events occur when the ray touches
vertices. A set of bitangents through v can be computed in this way in O(n lg n)
time. Since there are O(n) reflex vertices, the total running time is O(n2 lg n). See
Chapter 15 of [264] for more details. There exists an algorithm that can compute
the shortest-path roadmap in time O(n lg n+m), in which m is the total number
of edges in the roadmap [384]. If the obstacle region is described by a simple poly-
gon, the time complexity can be reduced to O(n); see [709] for many shortest-path
variations and references.

To improve numerical robustness, the shortest-path roadmap can be imple-
mented without the use of trigonometric functions. For a sequence of three points,
p1, p2, p3, define the left-turn predicate, fl : R2 × R2 × R2 → {true, false}, as

E.g. 2D polygon robots / obstacles can be solved 
with visibility graphs 

Yes! 2D Visibility Graphs!

O(N2
logN)

Typical runtime:
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So, are we done … ?

No! Planning in general is hard
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Piano Mover’s problem is PSPACE-hard (Reif et al. 79)300 S. M. LaValle: Planning Algorithms

P NP PSPACE EXPTIME

Figure 6.40: It is known that P ⊂ EXPTIME is a strict subset; however, it is not
known precisely how large NP and PSPACE are.

or EXPTIME. A language A is called X-hard if every language B in class X is
polynomial-time reducible to A. In short, this means that in polynomial time,
any language in B can be translated into instances for language A, and then the
decisions for A can be correctly translated back in polynomial time to correctly
decide B. Thus, if A can be decided, then within a polynomial-time factor, every
language in X can be decided. The hardness concept can even be applied to
a language (problem) that does not belong to the class. For example, we can
declare that a language A is NP-hard even if A ̸∈NP (it could be harder and lie in
EXPTIME, for example). If it is known that the language is both hard for some
class X and is also a member of X, then it is called X-complete (i.e., NP-complete,
PSPACE-complete, etc.).8 Note that because of this uncertainty regarding P, NP,
and PSPACE, one cannot say that a problem is intractable if it is NP-hard or
PSPACE-hard, but one can, however, if the problem is EXPTIME-hard. One
additional remark: it is useful to remember that PSPACE-hard implies NP-hard.

Lower bounds for motion planning The general motion planning problem,
Formulation 4.1, was shown in 1979 to be PSPACE-hard by Reif [817]. In fact, the
problem was restricted to polyhedral obstacles and a finite number of polyhedral
robot bodies attached by spherical joints. The coordinates of all polyhedra are
assumed to be in Q (this enables a finite-length string encoding of the problem
instance). The proof introduces a fascinating motion planning instance that in-
volves many attached, dangling robot parts that must work their way through a
complicated system of tunnels, which together simulates the operation of a sym-
metric Turing machine. Canny later established that the problem in Formulation
4.1 (expressed using polynomials that have rational coefficients) lies in PSPACE
[173]. Therefore, the general motion planning problem is PSPACE-complete.

Many other lower bounds have been shown for a variety of planning problems.
One famous example is the Warehouseman’s problem shown in Figure 6.41. This

8If you remember hearing that a planning problem is NP-something, but cannot remember
whether it was NP-hard or NP-complete, then it is safe to say NP-hard because NP-complete
implies NP-hard. This can similarly be said for other classes, such as PSPACE-complete vs.
PSPACE-hard.
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Figure 6.41: Even motion planning for a bunch of translating rectangles inside of
a rectangular box in R2 is PSPACE-hard (and hence, NP-hard).

problem involves a finite number of translating, axis-aligned rectangles in a rect-
angular world. It was shown in [461] to be PSPACE-hard. This example is a
beautiful illustration of how such a deceptively simple problem formulation can
lead to such a high lower bound. More recently, it was even shown that planning
for Sokoban, which is a warehouseman’s problem on a discrete 2D grid, is also
PSPACE-hard [255]. Other general motion planning problems that were shown
to be PSPACE-hard include motion planning for a chain of bodies in the plane
[460, 490] and motion planning for a chain of bodies among polyhedral obsta-
cles in R3. Many lower bounds have been established for a variety of extensions
and variations of the general motion planning problem. For example, in [172] it
was established that a certain form of planning under uncertainty for a robot in
a 3D polyhedral environment is NEXPTIME-hard, which is harder than any of
the classes shown in Figure 6.40; the hardest problems in this NEXPTIME are
believed to require doubly exponential time to solve.

The lower bound or hardness results depend significantly on the precise repre-
sentation of the problem. For example, it is possible to make problems look easier
by making instance encodings that are exponentially longer than they should be.
The running time or space required is expressed in terms of n, the input size. If
the motion planning problem instances are encoded with exponentially more bits
than necessary, then a language that belongs to P is obtained. As long as the
instance encoding is within a polynomial factor of the optimal encoding (this can
be made precise using Kolmogorov complexity [630]), then this bizarre behavior
is avoided. Another important part of the representation is to pay attention to
how parameters in the problem formulation can vary. We can redefine motion

Even planning for translating 
rectangles is PSPACE-hard!

(Hopcroft et al. 84)
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Even planning for translating 
rectangles is PSPACE-hard!

(Hopcroft et al. 84)

Certain 3D robot planning  
under uncertainty is  
NEXPTIME-hard! 

(Canny et al. 87)
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Exponential dependency on dimension
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1. Computing the C-space obstacle in high dimensions is hard

2. Planning in continuous high-dimension space is hard

We won’t! Instead we will use a collision checker!

We will bring it to discrete space by sampling configurations!
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Research in Motion Planning: 

Make good approximations
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Research in Motion Planning: 

Make good approximations
(that have guarantees)



Today’s objective
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1. General framework for motion planning

3. Planning on roadmaps - one class of instantiations of the 
framework

2. Inputs to any planner: Collision checking and steering



Why an abstract framework?
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Algorithms we will cover

Framework 
extends to 

more and more 
non-trivial 
algorithmsM
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Any planning  
algorithm Create graph Search graph Interleave

Whats the best 
we can do?

Whats the best 
we can do?

Whats the best 
we can do?

General framework for motion planning

RRT*-XYZ
e.g. fancy 
random 
sampler

e.g. fancy 
heuristic

e.g. fancy 
way of 
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Assume you are given a super awesome search subroutine!

Optimal Path = SHORTESTPATH(V,E, start, goal)

(Next lecture we will talk about how we get this)
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Assume you are given a super awesome search subroutine!

Optimal Path = SHORTESTPATH(V,E, start, goal)

O(|V | log |V |+ |E|)Assume complexity is

(Next lecture we will talk about how we get this)
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Input Output

Planner

1. A collision checker

2. Steering method

coll(q)

steer(q1, q2)

Collision  
free path 
joining 

start and goal
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coll(q) =

(
0 in collision, i.e. q 2 C

obs

1 free, i.e. q 2 C
free

We need to give the planner a collision checker

What work does this function have to do?
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coll(q) =

(
0 in collision, i.e. q 2 C

obs

1 free, i.e. q 2 C
free

We need to give the planner a collision checker

What work does this function have to do?

Collision checking is expensive!



Let’s take a look at the inputs

 19

We need to give the planner a steer function

A steer function tries to join two configurations with a feasible path

steer(q1, q2)

Computes simple path, calls coll(q), and returns success if path is free
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We need to give the planner a steer function

A steer function tries to join two configurations with a feasible path

steer(q1, q2)

Computes simple path, calls coll(q), and returns success if path is free

q1

q2

Example: Connect them with a straight line and check for feasibility

(1� ↵)q1 + ↵q2
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q1

q2

Things we can try: 

1. Step forward along the line and check each point 

2. Step backwards along the line and check each point 
 

…….

has to assure us line is collision free (upto a resolution)steer(q1, q2)

(1� ↵)q1 + ↵q2
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Can steer be smart about collision checking? 

q1

q2

Say we chunk the line into 16 parts

(1� ↵)q1 + ↵q2
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Can steer be smart about collision checking? 

q1

q2

Say we chunk the line into 16 parts

(1� ↵)q1 + ↵q2

Any collision checking strategy corresponds to sequence

↵ = 0,
1

16
,
2

16
,
3

16
, · · · , 15

16
, 1(Naive)

↵ = 0,
8

16
,
4

16
,
12

16
, · · · , 15

16
(Bisection)
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Ans: Van der Corput sequence5.2. SAMPLING THEORY 197

Naive Reverse Van der
i Sequence Binary Binary Corput Points in [0, 1]/ ∼
1 0 .0000 .0000 0
2 1/16 .0001 .1000 1/2
3 1/8 .0010 .0100 1/4
4 3/16 .0011 .1100 3/4
5 1/4 .0100 .0010 1/8
6 5/16 .0101 .1010 5/8
7 3/8 .0110 .0110 3/8
8 7/16 .0111 .1110 7/8
9 1/2 .1000 .0001 1/16
10 9/16 .1001 .1001 9/16
11 5/8 .1010 .0101 5/16
12 11/16 .1011 .1101 13/16
13 3/4 .1100 .0011 3/16
14 13/16 .1101 .1011 11/16
15 7/8 .1110 .0111 7/16
16 15/16 .1111 .1111 15/16

Figure 5.2: The van der Corput sequence is obtained by reversing the bits in the
binary decimal representation of the naive sequence.

In contrast to the naive sequence, each ν(i) lies far away from ν(i + 1). Fur-
thermore, the first i points of the sequence, for any i, provide reasonably uniform
coverage of C. When i is a power of 2, the points are perfectly spaced. For other
i, the coverage is still good in the sense that the number of points that appear in
any interval of length l is roughly il. For example, when i = 10, every interval of
length 1/2 contains roughly 5 points.

The length, 16, of the naive sequence is actually not important. If instead
8 is used, the same ν(1), . . ., ν(8) are obtained. Observe in the reverse binary
column of Figure 5.2 that this amounts to removing the last zero from each binary
decimal representation, which does not alter their values. If 32 is used for the naive
sequence, then the same ν(1), . . ., ν(16) are obtained, and the sequence continues
nicely from ν(17) to ν(32). To obtain the van der Corput sequence from ν(33) to
ν(64), six-bit sequences are reversed (corresponding to the case in which the naive
sequence has 64 points). The process repeats to produce an infinite sequence that
does not require a fixed number of points to be specified a priori. In addition to
the nice uniformity properties for every i, the infinite van der Corput sequence is
also dense in [0, 1]/ ∼. This implies that every open subset must contain at least
one sample.

You have now seen ways to generate nice samples in a unit interval both ran-
domly and deterministically. Sections 5.2.2–5.2.4 explain how to generate dense
samples with nice properties in the complicated spaces that arise in motion plan-
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Now we are ready to talk about planner!
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Input Output

Planner

1. A collision checker

2. Steering method

coll(q)

steer(q1, q2)

Collision  
free path 
joining 

start and goal
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Framework for planner

1. Create a graph

2. Search the graph (assume solved for now)

(Think about what makes a good graph as we go along)



Creating a graph: Abstract algorithm

 25

G = (V,E)

Vertices: set of configurations Edges: paths connecting 
configurations 
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G = (V,E)

Vertices: set of configurations Edges: paths connecting 
configurations 

1. Sample a set of collision free vertices V (add start and goal)

Creating a graph: Abstract algorithm

Sample a configuration q

V  V [ {q}
if coll(q) = 1
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G = (V,E)

Vertices: set of configurations Edges: paths connecting 
configurations 

1. Sample a set of collision free vertices V (add start and goal)

2. Connect “neighboring” vertices to get edges E 

Creating a graph: Abstract algorithm

for each candidate pair (v1, v2)

if steer(v1, v2) succeeds

E  E [ (v1, v2)



Strategy 1: Discretize configuration space

 28
What are the pros? What are the cons?

Create a lattice. Connect neighboring points (4-conn, 8-conn, …)

Theoretical guarantees: Resolution complete
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Strategy 2: Uniformly randomly sample

for each dimension i
sample q(i) ⇠ [lb, ub]

If C-space is a real vector space
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Strategy 2: Uniformly randomly sample

for each dimension i
sample q(i) ⇠ [lb, ub]

If C-space is a real vector space

What are the pros of random sampling? Cons?



 29

Strategy 2: Uniformly randomly sample

for each dimension i
sample q(i) ⇠ [lb, ub]

If C-space is a real vector space

Question: 
How do we decide which vertices to connect?

What are the pros of random sampling? Cons?
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Strategy 2: Uniformly randomly sample
Connect vertices that are a within a radius

(Alternatively can connect k-nearest neighbors)



This is the PRM Algorithm!

 31

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilis- tic roadmaps for path 
planning in high-dimensional configuration spaces. IEEE Transactions on Robotics & Automation, 
12(4):566–580, June 1996. 

PRM = Probabilistic Roadmap

1. Sample vertices randomly

2. Connect vertices within radius (or k NN)

3. Search graph to find a solution
Figure 7: Visualization of the first of three articulated motion planning problems in which the HERB robot must move its right
arm from the start configuration (pictured) to any of seven grasp configurations for a mug. Shown is the progression of the
Alternate selector on one of the randomly generated roadmaps; approximately 2% of the 7D roadmap is shown in gray by
projecting onto the space of end-effector positions.

This form is derived from simplifying the induced geomet-
ric series; note that if exp(�wab)  Zba, the value Z

0
xy is

infinite. One can also derive the inverse: given values Z

0,
calculate the values Z if an edge were removed.

This incremental formulation of (7) allows for the corre-
sponding score p(e) for edges to be updated efficiently dur-
ing each iteration of LazySP as the wlazy value for edges
chosen for evaluation are updated. In fact, if the values Z

are stored in a square matrix, the update for all pairs after an
edge weight change consists of a single vector outer product.

5 Experiments
We compared the seven edge selectors on three classes of
shortest path problems. The average number of edges evalu-
ated by each, as well as timing results from our implementa-
tions, are shown in Figure 8. In each case, the estimate was
chosen so that west  w, so that all runs produced optimal
paths. The experimental results serve primarily to illustrate
that the A* and LWA* algorithms (i.e. Expand and Forward)
are not optimally edge-efficient, but they also expose dif-
ferences in behavior and prompt future research directions.
All experiments were conducted using an open-source im-
plementation.1 Motion planning results were implemented
using OMPL (Şucan, Moll, and Kavraki 2012).

Random partially-connected graphs. We tested on a set
of 1000 randomly-generated undirected graphs with |V | =
100, with each pair of vertices sharing an edge with prob-
ability 0.05. Edges have an independent 0.5 probability of
having infinite weight, else the weight is uniformly dis-
tributed on [1, 2]; the estimated weight was unity for all
edges. For the WeightSamp selector, we drew 1000 w sam-
ples at each iteration from the above edge weight distribu-
tion. For the Partition selector, we used � = 2.

Roadmap graphs on the unit square. We considered
roadmap graphs formed via the first 100 points of the (2, 3)-
Halton sequence on the unit square with a connection radius
of 0.15, with 30 pairs of start and goal vertices chosen ran-
domly. The edge weight function was derived from 30 sam-
pled obstacle fields consisting of 10 randomly placed axis-

1https://github.com/personalrobotics/lemur

aligned boxes with dimensions uniform on [0.1, 0.3], with
each edge having infinite weight on collision, and weight
equal to its Euclidean length otherwise. One of the resulting
900 example problems is shown in Figure 2. For the Weight-
Samp selector, we drew 1000 w samples with a naı̈ve edge
weight distribution with each having an independent 0.1 col-
lision probability. For the Partition selector, we used � = 21.

Roadmap graphs for robot arm motion planning. We
considered roadmap graphs in the configuration space corre-
sponding to the 7-DOF right arm of the HERB home robot
(Srinivasa et al. 2012) across three motion planning prob-
lems inspired by a table clearing scenario (see Figure 7). The
problems consisted of first moving from the robot’s home
configuration to one of 7 feasible grasp configurations for
a mug (pictured), second transferring the mug to one of 72
feasible configurations with the mug above the blue bin, and
third returning to the home configuration. Each problem was
solved independently. This common scenario spans various
numbers of starts/goals and allows a comparison w.r.t. diffi-
culty at different problem stages as discussed later.

For each problem, 50 random graphs were constructed by
applying a random offset to the 7D Halton sequence with
N = 1000, with additional vertices for each problem start
and goal configuration. We used an edge connection radius
of 3 rad, resulting |E| ranging from 23404 to 28109. Each
edge took infinite weight on collision, and weight equal to its
Euclidean length otherwise. For the WeightSamp selector,
we drew 1000 w samples with a naı̈ve edge weight distribu-
tion in which each edge had an independent 0.1 probability
of collision. For the Partition selector, we used � = 3.

6 Discussion
The first observation that is evident from the experimen-
tal results is that lazy evaluation – whether using Forward
(LWA*) or one of the other selectors – grossly outperforms
Expand (A*). The relative penalty that Expand incurs by
evaluating all edges from each expanded vertex is a func-
tion of the graph’s branching factor.

Since the Forward and Reverse selectors are simply mir-
rors of each other, they exhibit similar performance averaged
across the PartConn and UnitSquare problem classes, which

Theoretical Guarantees: It depends … 



Questions we can ask PRM

 32



Questions we can ask PRM

 32

1. When is it a good idea to collision 
check every single edge?

Ans: Multi-query!



Questions we can ask PRM

 32

1. When is it a good idea to collision 
check every single edge?

Ans: Multi-query!

2. How should we efficiently find 
nearest neighbors?

Ans: Use a KD-Tree data-structure



Questions we can ask PRM

 32

1. When is it a good idea to collision 
check every single edge?

Ans: Multi-query!

3. How should we choose which 
vertices to connect?

Ans: Up Next!

2. How should we efficiently find 
nearest neighbors?

Ans: Use a KD-Tree data-structure
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What is the optimal radius?

What happens if radius too large? too small?
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What is the optimal radius?
Set the radius to

� � 2(1 + 1/d)1/d
µ(Cfree)

⇣d

where magic constant!

Also known as a Random Geometric Graph (RGG)

r = �

✓
log |V |
|V |

◆1/d



Aside: Percolation theory
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Connected 
Component

Edge probability
Open edge Closed edge

http://www.univ-orleans.fr/mapmo/membres/berglund/ressim.html

Theoretical Limits of Speed and Resolution for Kinodynamic Planning in a Poisson Forest 
Sanjiban Choudhury, Sebastian Scherer and J. Andrew (Drew) Bagnell 

Other uses of percolation theory in planning

http://www.univ-orleans.fr/mapmo/membres/berglund/ressim.html
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Open edge Closed edge

http://www.univ-orleans.fr/mapmo/membres/berglund/ressim.html

Theoretical Limits of Speed and Resolution for Kinodynamic Planning in a Poisson Forest 
Sanjiban Choudhury, Sebastian Scherer and J. Andrew (Drew) Bagnell 

Other uses of percolation theory in planning

http://www.univ-orleans.fr/mapmo/membres/berglund/ressim.html


This is the PRM* Algorithm!

 36

1. Sample vertices randomly

2. Use optimal radius formula to connect vertices

3. Search graph to find a solution

Theorem: Probabilistically complete AND Asymptotically optimal

“Sampling-based Algorithms for Optimal Motion Planning”  
Sertac Karaman and Emilio Frazzoli, IJRR 2011



Can we do better than random?

 37

Uniform random  
sampling tends to  

clump

Ideally we would 
want points to be 
spread out evenly

Question: How do we do this without discretization?



Halton Sequence

 38

Generalization of  
Van de Coruput Sequence

Intuition: Create a sequence 
using prime numbers that 
uniformly densify space

Link for exact algorithm: 
https://observablehq.com/@jrus/halton



Halton Sequence

 38

Generalization of  
Van de Coruput Sequence

Intuition: Create a sequence 
using prime numbers that 
uniformly densify space

Link for exact algorithm: 
https://observablehq.com/@jrus/halton



How do we connect vertices?

 39

Halton sequences have much better coverage

(i.e. they are low dispersion)

Connect vertices that are within a radius of 

r = �

✓
1

|V |

◆1/d (as opposed to:)
r = �

✓
log |V |
|V |

◆1/d



This is the gPRM Algorithm!
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1. Sample vertices randomly

2. Use optimal radius formula to connect vertices

3. Search graph to find a solution

Theorem: Probabilistically complete AND Asymptotically optimal 
AND Asymptotic rate of convergence

“Deterministic Sampling-Based Motion Planning: Optimality, Complexity, and Performance”  
Lucas Janson, Brian Ichter, Marco Pavone, IJRR 2017



What makes a good graph?

 41



What makes a good graph?

 41

1. A good graph must be sparse (both in vertices and edges)
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What makes a good graph?

 41

1. A good graph must be sparse (both in vertices and edges)

2. A good graph must have good coverage

3. A good graph must have the same connectivity of free space 
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The Narrow Passage: Planning’s boogie man!

isolated clumps

Why is narrow passage mathematically hard to plan in?
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The Narrow Passage: Planning’s boogie man!

Mathematical Question:
How many samples do we need to connect the space  

(with high probability)?

isolated clumps

Why is narrow passage mathematically hard to plan in?



How many samples do we need?

 43

Theorem [Hsu et al., 1999]  Let 2n vertices be sampled from         . 
Then the roadmap is connected with probability at least         if:

Xfree

1� �

n �
&
8
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8
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�
+ 2
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The shape of free C-space is dictated by ↵, �, ✏ 2 [0, 1]



How many samples do we need?

 43

Theorem [Hsu et al., 1999]  Let 2n vertices be sampled from         . 
Then the roadmap is connected with probability at least         if:

Xfree

1� �

n �
&
8

log(

8
✏↵� )

✏↵
+

3

�
+ 2

'

The shape of free C-space is dictated by ↵, �, ✏ 2 [0, 1]

Expansion of visibility (↵,�)Visibility of free space(✏)

Narrow passage has small values of  ↵, �, ✏
Hence, needs more samples to find a path



How do we bias sampling?

 44

We somehow need more samples here

1. Sample near obstacle surface?

2. Add samples that are in between two obstacles? 

3. Train a learner to detect the narrow passages?

V. Boor, M. H. Overmars, and A. F. van der Stappen. The Gaussian sampling strategy for probabilistic roadmap planners. 1999

D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling narrow passages with probabilistic roadmap planners.2003. 

B. Ichter, J. Harrison, M. Pavone. Learning Sampling Distributions for Robot Motion Planning, 2018



Summary of ways to create graphs

 45

How to sample 
vertices?

How to connect 
vertices?

PRM

PRM*

gPRM

Lattice

Bridge

MAPRM

Approx. Visibility 
Graph

Gaussian

Learnt Sampler

Discretize

Uniform random

Uniform random

Halton sequence

Sample with bridge test

Sample near obstacles

Sample along medial axis

Sample on surface of obstacles

Use CVAE to approximate 
free space

connectivity rule

r-disc, k-nn

optimal r-disc, k-nn

optimal r-disc, k-nn

any visible points

r-disc, k-nn

r-disc, k-nn

any visible points

optimal r-disc, k-nn


