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Geometric Path Planning Problem

Also known as
Piano Mover’s Problem (Reif 79)

Given:
1. A workspace W, where either W = R? or W = R3.
2. An obstacle region O C W.

3. A robot defined in WW. Either a rigid body A or a
collection of m links: Ay, As, ..., A,,.

4. The configuration space C (Cops and Ctree are then
defined).

5. An initial configuration qr € Ctree.

6. A goal configuration qg € Ctree- The initial and
goal configuration are often called a query (qr, g ).

Compute a (continuous) path, 7 : [0,1] — Crree, such
that 7(0) = qr and 7(1) = qg.

Also may want to minimize cost ¢(7)



But | just want to know

how to plan for my racecar!




But | just want to know

how to plan for my racecar!

Patience! Upcoming lec on differential constraints
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Piano Mover's Problem
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Theoretical guarantees that we desire

Completeness

A planner is complete if for any input, it correctly reports whether
or not a feasible path exists is finite time

Optimality

Returns the best solution in finite time.



Is there any planner that guarantees this?

Yes! 2D Visibility Graphs!

qr
qG

E.g. 2D polygon robots / obstacles can be solved

with visibility graphs

Typical runtime: O(N2 10g N)
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So, are we done ... 7

No! Planning in general is hard



Hardness of motion planning
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Hardness of motion planning

Piano Mover’s problem is PSPACE-hard (Reif et al. 79)

@ NP PSPACE

EXPTIME

Certain 3D robot planning

under uncertainty is
NEXPTIME-hard!

Even planning for translating (Canny et al. 87)

rectangles is PSPACE-hard!
(Hopcroft et al. 84)




Why is it so hard?

1. Computing the C-space obstacle in high dimensions is hard

2. Planning in continuous high-dimension space is hard

Exponential dependency on dimension
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Why is it so hard?
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We won’t! Instead we will use a collision checker!

2. Planning in continuous high-dimension space is hard
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Why is it so hard?

We won’t! Instead we will use a collision checker!
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Why is it so hard?

-’ ak a A ave
° AW N WAL U U _/ M U J KRJ)J U U

We won’t! Instead we will use a collision checker!

We will bring it to discrete space by sampling configurations!
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Research in Motion Planning:

Make good approximations



Research in Motion Planning:

Make good approximations

(that have guarantees)



Today's objective

1. General framework for motion planning
2. Inputs to any planner: Collision checking and steering

3. Planning on roadmaps - one class of instantiations of the

framework
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Why an abstract framework?

Ly more and more
y non-trivial
' algorithms



General framework for motion planning
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General framework for motion planning
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General framework for motion planning

Any planni
ny planning Create graph  Search graph  Interleave
algorithm
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General framework for motion planning

A lanni
P .nmng Create graph  Search graph Interleave

algorithm

RRT*,)(\(Z
€.g. fancy e.g. fancy €.g. fancy

random X heuristic X way of

sampler densifying
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General framework for motion planning

Any plannin
Y P . e Create graph  Search graph Interleave

algorithm

RRT*,)(\(Z
€.g. fancy e.g. fancy €.g. fancy

— rtandom X heuristic X way of
sampler densifying

Whats the best Whats the best Whats the best
we can do? we can do? we can do?
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For this lecture....

Assume you are given a super awesome search subroutine!

Optimal Path = SHORTESTPATH(V,E, start, goal)

(Next lecture we will talk about how we get this)
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For this lecture....

Assume you are given a super awesome search subroutine!

Optimal Path = SHORTESTPATH(V,E, start, goal)

(Next lecture we will talk about how we get this)

Assume complexity is O(‘V‘ log ‘V‘ —+ |ED
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API for motion planning

Input

1. A collision checker

coll(q)
-

2. Steering method

steer(q1, q2)

Planner

-

Output

Collision
free path
jolning

start and goal

17



Let's take a look at the inputs

We need to give the planner a collision checker

0 in collision, i.e. q¢ € Cpps

coll(q) = {

1 free, i.e. ¢ € Ctree

What work does this function have to do?

18



Let's take a look at the inputs

We need to give the planner a collision checker

0 in collision, i.e. q¢ € Cpps
coll(q) = | free
ree, 1.e. ¢ € Crree

What work does this function have to do?

Collision checking is expensive!
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| et's take

a look at the inputs

We need to give the planner a steer function

steer(qi, q2)

A steer function tries to j

oin two configurations with a feasible path

Computes simple path, call

s coll(q), and returns success if path is free
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Let's take a look at the inputs

We need to give the planner a steer function

Steer(ql, qQ)

A steer function tries to join two configurations with a feasible path

Computes simple path, calls coll(q), and returns success if path is free

Example: Connect them with a straight line and check for feasibility



Can steer be smart about collision checking?

steer(qi, g2) has to assure us line is collision free (upto a resolution)

Things we can try:
1. Step forward along the line and check each point

2. Step backwards along the line and check each point

20



Can steer be smart about collision checking?

Say we chunk the line into 16 parts

21



Can steer be smart about collision checking?

Say we chunk the line into 16 parts

(1 —a)g1 + ago

d1

Any collision checking strategy corresponds to sequence

I 2 3 15

Nai _ 0 I
(Naive) =0, 76, 762767 " 16
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Can steer be smart about collision checking?

Say we chunk the line into 16 parts

d1

Any collision checking strategy corresponds to sequence

-1
—
(

[ ] 7 3

(Naive)

(Bisection)

a=1{(

T 7167167167

a =0,

I 2 3

8 4

] 2
—

16”16 1

e

° 7 3

16
15
6
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Ans: Van der Corput sequence

Naive
Sequence

O ~J O O i W DN |

—_ = = = = = = O
S O == W N — O

0
1/16
1/8
3/16
1/4
5/16
3/8
7/16
1/2
9/16
5/8
11/16
3/4
13/16
7/8
15/16
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Ans: Van der Corput sequence

Naive
¢ Sequence Binary
1 O .0000
2 1/16 .0001
3 1/8 .0010
4 3/16 0011
b 1/4 .0100
6 5/16 0101
7 3/8 0110
8 T7/16 0111
9 1/2 .1000
10 9/16 .1001
11 5/8 1010
12 11/16 1011
13 3/4 1100
14 13/16 1101
15 7/8 1110
16 15/16 1111
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Ans: Van der Corput sequence

Naive Reverse
©  Sequence DBinary DBinary
1 O .0000  .0000
2 1/16 .0001  .1000
3 1/8 0010  .0100
4 3/16 0011  .1100
b 1/4 .0100  .0010
6 5/16 0101  .1010
7 3/8 0110  .0110
8 T7/16 0111  .1110
9 1/2 1000  .0001
10 9/16 1001 .1001
11 5/8 1010  .0101
12 11/16 1011 .1101
13 3/4 1100  .0011
14 13/16 1101 .1011
15 7/8 1110 .0111
16 15/16 1111 1111
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Ans: Van der Corput sequence

Naive Reverse Van de
¢ Sequence Binary Binary Corput
1 O .0000  .0000 0
2 1/16 .0001  .1000 1/2
3 1/8 0010  .0100 1/4
4 3/16 0011  .1100 3/4
b 1/4 .0100  .0010 1/8
6 5/16 0101  .1010 5/8
7 3/8 0110  .0110 3/8
8 T7/16 0111  .1110 7/8
9 1/2 .1000  .0001 1/16
10 9/16 1001 .1001 9/16
11 5/8 1010  .0101 5/16
12 11/16 1011 .1101 13/16
13 3/4 1100  .0011 3/16
14 13/16 1101 .1011 11/16
15 7/8 1110 .0111 7/16
16 15/16 1111 1111 15/16
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Ans: Van der Corput sequence

Naive Reverse Van der

i  Sequence Binary Binary Corput Points in [0, 1]/ ~

I 0 .0000  .0000 0 ® ®
2> 1/16 0001 1000 1/2 o o O
3 1/8 0010 .0100  1/4 o—e—o0 O
4 3/16 .0011 1100 3/4 O O O ® O
5 1/4 0100  .0010 1/8 o—e——0 O O O
6 5/16 .0101 1010 5/8 o—0——0 O—8—O O
7T 3/8 0110  .0110 3/8 O—O0—0C08O0O00—=0
8 7/16 0111 1110 7/8 O—O0—0O0~0000e0
9 1/2 1000 .0001 1/16 ce0—O0—0—0000C=0
10 9/16 1001 1001 9/16 OCO0—0O0—0C—080—0C—0-0
11 5/8 1010  .0101 5/16 OOO0—080—000—0—0-70
12 11/16 1011 1101 13/16 OOO0—000—000—080—0
13 3/4 1100 .0011 3/16 0,00, (0,0,0,0,0,0,,0,0,.0,0
14 13/16 1101 1011 11/16 9,0,0,0,0,0,0,,0,0,0, ,0,.0,0,0
15 7/8 1110 .0111 7/16 9,0,0,0,0,0,0, ,0,0,0,0,0,0,0,0
16 15/16 111 1111 15/16 9,0,0,0,0,0,0,0,0,0,0,0,0,0,0, .0
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Now we are ready to talk about planner!

Input Output

1. A collision checker

coll ((]) Collision

f h
Planner tec pat

jolning

2. Steering method start and goal

steer(q1, ¢2)
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Framework for planner

1. Create a graph

(Think about what makes a good graph as we go along)

2. Search the graph (assume solved for now)

24



Creating a graph: Abstract algorithm
G=(V,FE)

Vertices: set of configurations Fdges: paths connecting
configurations

25



Creating a graph: Abstract algorithm

() —

Vertices: set of configurations

1. Sample a set of collision

(V, E)

Edges: paths connecting

configurations

free vertices V (add start and goal)

Sample a configuration g
if coll(q) =1
V +— VU{q}

20



Creating a graph: Abstract algorithm

Vertices: set of configurations

G=(V,FE)

Edges: paths connecting

configurations

1. Sample a set of collision free vertices V (add start and goal)

2. Connect “neighboring” vertices to get edges E

\

for each candidate pair (v1,vs)
if steer(vy,vy) succeeds
E <+ EU (Ul, ?JQ)
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Strategy 1: Discretize configuration space

Create a lattice. Connect neighboring points (4-conn, 8-conn, ..

11

Theoretical guarantees: Resolution complete

What are the pros? What are the cons?

)
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Strategy 2: Uniformly randomly sample

If C-space is a real vector space

for each dimension ¢
sample q(i) ~ [Ib, ub]

29



Strategy 2: Uniformly randomly sample

If C-space is a real vector space

for each dimension ¢
sample q(i) ~ [Ib, ub]

What are the pros of random sampling? Cons?
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Strategy 2: Uniformly randomly sample

If C-space is a real vector space

for each dimension ¢
sample q(i) ~ [Ib, ub]

What are the pros of random sampling? Cons?

(Question:
How do we decide which vertices to connect?

29



Strategy 2: Uniformly randomly sample

Connect vertices that are a within a radius

(Alternatively can connect k-nearest neighbors)

30



This is the PRM Algorithm!

PRM = Probabilistic Roadmap

1. Sample vertices randomly
2. Connect vertices within radius (or k N..,

3. Search graph to find a solution

Theoretical Guarantees: It depends ...

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilis- tic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Transactions on Robotics & Automation,
12(4):566-580, June 1996.
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Questions we can ask PRM

Probabilistic Roadmap

0 5 10 15 20 25 30 35
X [meters]

40

45
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Questions we can ask PRM

1. When is it a good idea to collision
CheCk every Single edgE? Probabilistic Roadmap

Ans: Multi-query!

0 5 10 15 20 25 30 35
X [meters]

40
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Questions we can ask PRM

1. When is it a good idea to collision
CheCk every Single edgE? Probabilistic Roadmap

Ans: Multi-query!

2. How should we efficiently find
nearest neighbors?

Ans: Use a KD-Tree data-structure

0 5 10 15 20 25 30 35

3. How should we choose which X [meters]

vertices to connect?

Ans: Up Next!

40

45

50
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What is the optimal radius?

What happens if radius too large?” too small?

33



What is the optimal radius?

log |V > /4 where magic constant!

N > 2(1 4 1/d)1/d:u(cf’ree)
Cd

Set the radius to r =y (

Also known as a Random Geometric Graph (RGG)



Aside: Percolation theory

http://www.univ-orleans.fr/mapmo/membres/berglund/ressim.html

[ P =0.078 Edge probability
— Open edge

Connected
Component

Closed edge —

Other uses of percolation theory in planning

Theoretical Limits of Speed and Resolution for Kinodynamic Planning in a Poisson Forest
Sanjiban Choudhury, Sebastian Scherer and J. Andrew (Drew) Bagnell
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http://www.univ-orleans.fr/mapmo/membres/berglund/ressim.html

This is the PRM* Algorithm!

1. Sample vertices randomly
2. Use optimal radius formula to connect vertices

3. Search graph to find a solution

Theorem: Probabilistically complete AND Asymptotically optimal

“Sampling-based Algorithms for Optimal Motion Planning”
Sertac Karaman and Emilio Frazzoli, IJRR 2011
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Can we do better than random?
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want points to be
spread out evenly
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Halton Sequence

(Generalization of
Van de Coruput Sequence

Intuition: Create a sequence
using prime numbers that

uniformly density space

Link for exact algorithm:
https://observablehq.com/@jrus/halton
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Halton Sequence

(Generalization of
Van de Coruput Sequence

Intuition: Create a sequence
using prime numbers that

uniformly density space

Link for exact algorithm:
https://observablehq.com/@jrus/halton
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How do we connect vertices?

-

Halton sequences have much better coverage

(i.e. they are low dispersion)

Connect vertices that are within a radius of

1
r = —
T\

>1/d

(as opposed to:)

. log [V \ "/*
AN
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This is the gPRM Algorithm!

1. Sample vertices randomly
2. Use optimal radius formula to connect vertices
3. Search graph to find a solution

Theorem: Probabilistically complete AND Asymptotically optimal
AND Asymptotic rate of convergence

“Deterministic Sampling-Based Motion Planning: Optimality, Complexity, and Performance”
Lucas Janson, Brian Ichter, Marco Pavone, IJRR 2017
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What makes a good graph?



What makes a good graph?

1. A good graph must be sparse (both in vertices and edges)
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What makes a good graph?

1. A good graph must be sparse (both in vertices and edges)

2. A good graph must have good coverage

Probabilistic Roadmap
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What makes a good graph?

1. A good graph must be sparse (both in vertices and edges)

2. A good graph must have good coverage

Probabilistic Roadmap

3. A good graph must have the same connectivity of free space
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The Narrow Passage: Planning’s boogie man!

isolated clumps

Why is narrow passage mathematically hard to plan in?
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The Narrow Passage: Planning’s boogie man!

isolated clumps

Why is narrow passage mathematically hard to plan in?

Mathematical Question:
How many samples do we need to connect the space

(with high probability)?

42



How many samples do we need?

Theorem |[Hsu et al., 1999| Let 2n vertices be sampled from Xpee -
Then the roadmap is connected with probability at least 1 — ~ if:

- log (-8
n> |8 (GV)ISIZ

> ) 5

The shape of free C-space is dictated by v, [, € € [0, 1]




How many samples do we need?

Theorem |[Hsu et al., 1999| Let 2n vertices be sampled from Xpee -

Then the roadmap is connected with probability at least 1 — ~ if:

i log(

n> |8

€

The shape of free C-space is dictated by v, [, € € [0, 1]

Visibility of free space (¢)

=0

Expansion of visibility ( ; )

=0

Narrow passage has small values of v, [J, €

Hence, needs more samples to find a path
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How do we bias sampling?

We somehow need more samples here

/]

1. Sample near obstacle surtace?
V. Boor, M. H. Overmars, and A. F. van der Stappen. The Gaussian sampling strategy for probabilistic roadmap planners. 1999

2. Add samples that are in between two obstacles?
D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling narrow passages with probabilistic roadmap planners.2003.

3. Train a learner to detect the narrow passages?

B. Ichter, J. Harrison, M. Pavone. Learning Sampling Distributions for Robot Motion Planning, 2018
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Summary of ways to

Lattice
PRM
PRM*

gsPRM
Bridge
Gaussian

MAPRM

Approx. Visibility
Graph

Learnt Sampler

How to sample

vertices?

Discretize
Uniform random

Uniform random

Halton sequence

Sample with bridge test
Sample near obstacles

Sample along medial axis

Sample on surface of obstacles

Use CVAE to approximate
free space

create graphs

How to connect

vertices?

connectivity rule
r-disc, k-nn

optimal r-disc, k-nn

optimal r-disc, k-nn
any visible points
r-disc, k-nn

r-disc, k-nn
any visible points
optimal r-disc, k-nn
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