CSE 490R: Mobile Robots

Instructor: Sanjiban Choudhury

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle

We will be programming RACECARs!

RACECAR 1.0

RACECAR 2.0

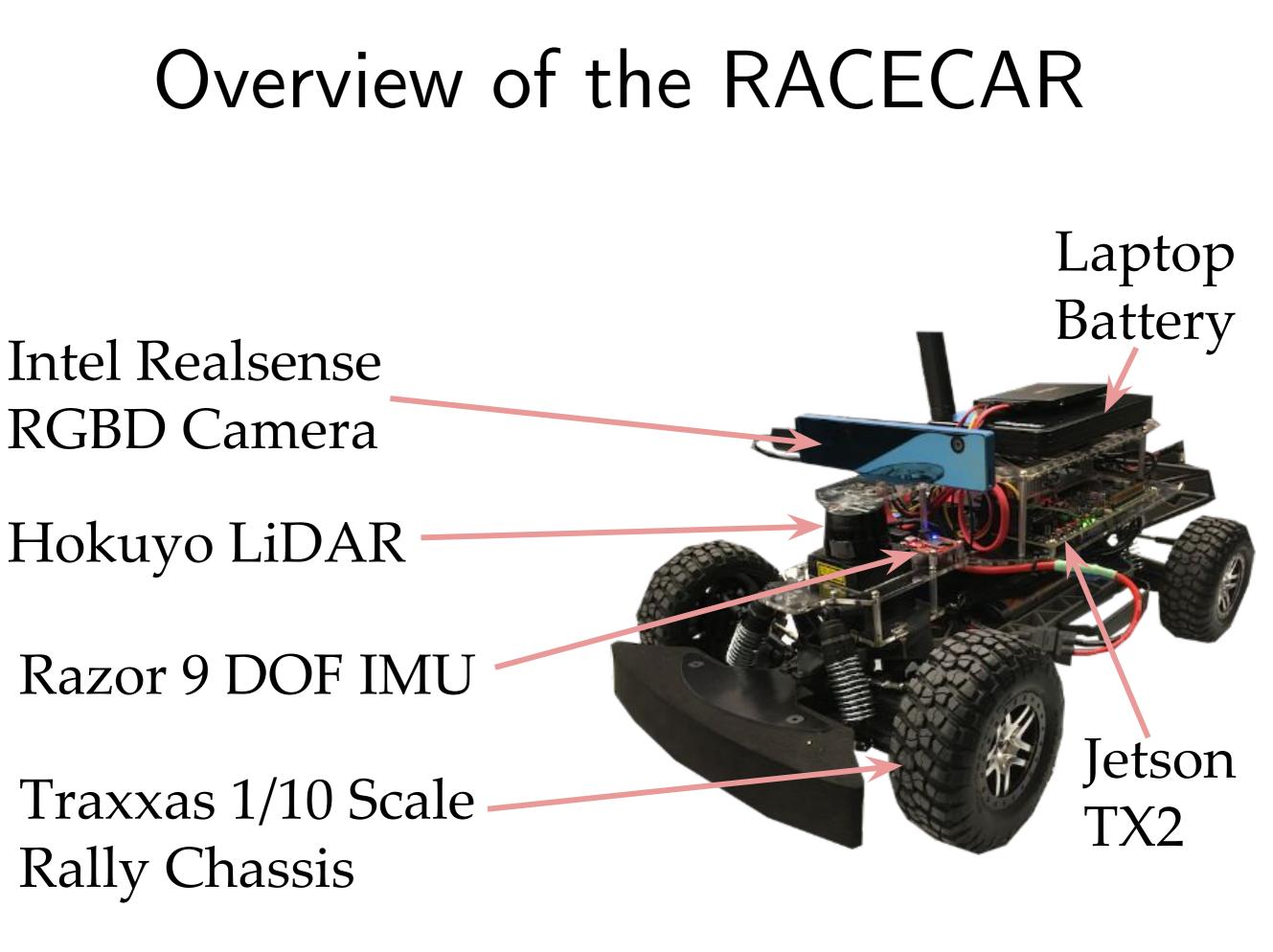
Big thanks to the MuSHR team!

Multi-agent System for non-Holonomic Racing

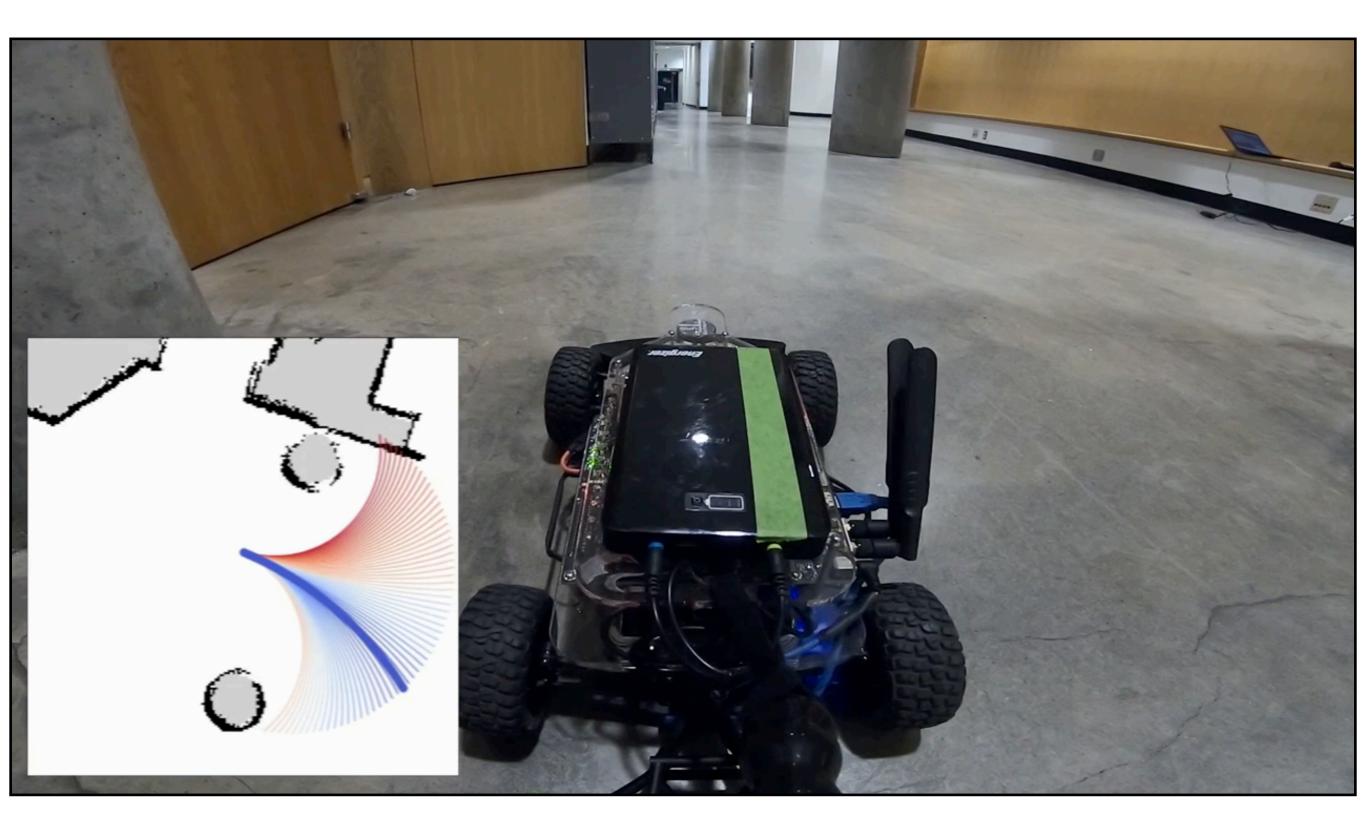
Patrick Lancaster

Johan Michalove

Matt Schmittle



Matthew Rockett



Colin Summers

... and growing!

Where you will be by week 7!

Highlights from last year ...

Thanks to Johan Michalove, Nicholas Ruhland, Ariel Lin and Rajat Chand!

... and what's different this year!

1. New content that dives deeper into fundamentals

2. New assignments that emphasize robustness and repeatability.

3. Higher standards for robots - faster, more precise, more robust

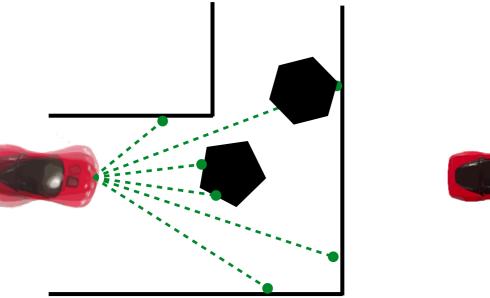
Objective 1

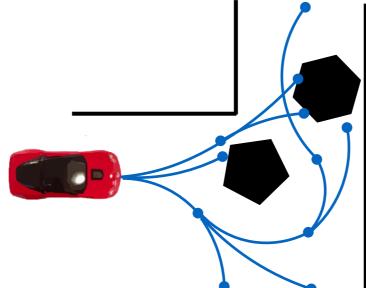
Learn algorithms for autonomous driving and implement them on the RACECAR

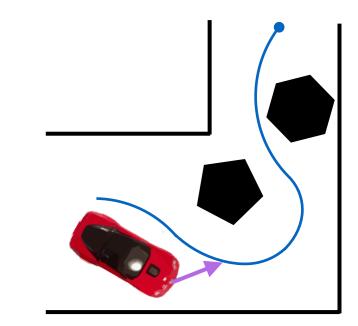
in 11 weeks!

Objective 2

Learn a small set of fundamental tools


that


solve a wide range of robotics problems



Concrete learning objectives

Estimate Plan a Control state sequence of robot to motions follow plan

Course outline

Week	Lectures	Assignments
Week 1	Introduction	Lab 0: Introduction to ROS, Python, Simulation, RACECAR
Weeks 2-4	State Estimation	Lab 1: Localize robot on a known map with particle filters
Weeks 5-6	Control	Lab 2: Feedback control to track paths while avoiding obstacles
Weeks 7-8	Planning	Lab 3: Plan a complex maneuver around obstacles at high speeds
Weeks 9-10	Learning / Special Topics	Final project

Week 11, Final project: Combine modules to navigate around a track and solve tasks!

Scope of this course

Mobile robots

Soft-Robotics

Manipulation

Humanoids

Nano-robotics

Mobile robots are exciting!

Dealing with uncertainty in the real world outside of laboratory

Old algorithms - new technology! (better compute, sensors, batteries)

Today's objective

1. Team introductions

2. Logistics

3. Getting started

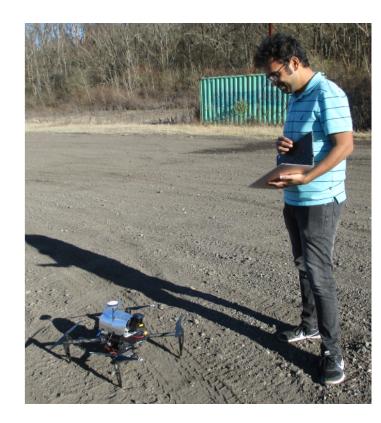
Today's objective

1. Team introductions

2. Logistics

3. Getting started

Sanjiban Choudhury

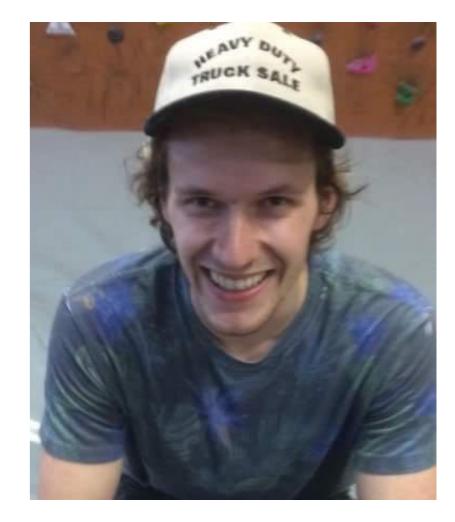

Post-doc in Personal Robotics Lab

Ph.D from Carnegie Mellon University

Worked on motion planning for full-scale helicopters, bunch of smaller UAVs (explore forest canopies, fly inside submarines, long-term autonomy, aerial cinematography, etc)

Research:

How should robots leverage prior experience when planning?


Matthew Rockett

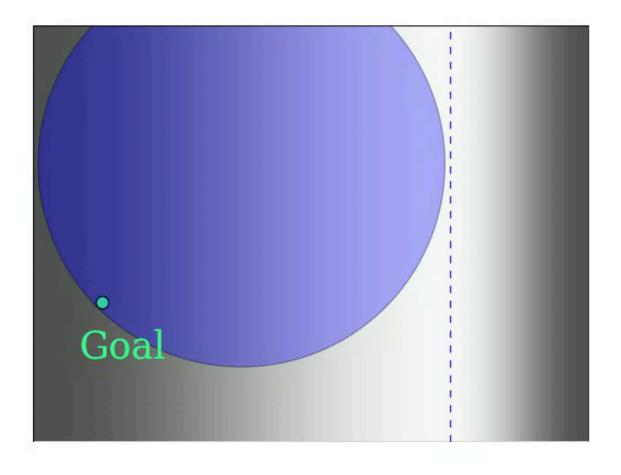
-5th BS/MS Student.

-Maintains MuSHR code base with ~ 3 other grad students.

-Interests lie broadly in control and planning of mobile robots.

-Working towards "fast" indoor navigation of the cars.

Gilwoo Lee


Bayesian RL: Bayes-optimal way for **robust** and **belief-aware** agents

Object pose, friction, terrain, human intention,

The world is full of uncertainty

. . .

Matt Schmittle

- P.h.D. Student in PRL & RSE Labs
- Advised by Dieter Fox and Sidd Srinivasa
- Interested in mobile robot navigation, learning and vision
- Current Research: Learning online from corrective feedback

Today's objective

1. Team introductions

2. Logistics

3. Getting started

Course management tools

- Website: https://courses.cs.washington.edu/courses/cse490r/19sp/
 - one stop for all information, slides, notes, assignments
- Piazza: https://piazza.com/class/jtf0fx11ysxmw
 - announcements, discussions, finding team-mates, contacting instructors
- Canvas: <u>https://canvas.uw.edu/courses/1272916</u>
 - submitting assignments, receiving grades

Lectures / Recitations

- Lectures on Mon Wed Fri, 10:30-11:20, MOR 234
 - Will introduce the topic and focus on fundamental principles, algorithms and theory
- Recitation on Thur, 9:30-10:20/10:30-11:20, CSE1 022
 - Will focus on specific implementation details, hardware / software details and issues relevant to assignments / projects.
 - Topic announced every week on Piazza

When can I get a car?

- First you need to form a team of 3
 - Everything as a team assignments, projects, etc
 - Team remains the same throughout course
 - Use Piazza to find team members
 - Send a private note to instructors with team member names
 - Form a team by Wednesday 4/3
- Each team will get a car during the first recitation on Thursday 4/4

Lab logisitics

- We have a separate lab for teams to work on robots
 - CSE1 022 (Basement)
 - Card-key operated
- Each team gets a desktop (same machine for duration of class)
 - Ubuntu + Python + ROS-Kinetic pre-installed.
- Each team gets a racecar (same robot for duration of class)
 - Robots need to stay in Room (unless TA present)

Car logistics

- Please treat cars with respect.
- Do not change the passwords on the cars.
- Each team maintains own batteries do not use others.
- Keep your space clean

Office hours

- Come to office hours!
- TA office hours:
 - MR: Thur 11:20-12:30, CSE1 022
 - GL: Tue 9:00 10:00, CSE1 022
 - MS: Tue 11:00 12:00, CSE1 022
- Sanjiban's office hours: Mon 3:00 4:00, CSE1 212
- For assignment specific clarifications, its more fruitful to talk to TAs they worked hard to design it!

Assignments

- All assignments will be done as a team of 3
- All assignments involve work with the robot
- Each team submits one writeup
- Assignments due 11:59 p.m on Friday
- Assignments have live demos on Thursday (day before)
 - TA will test your code on the robot
 - Timeslot for each group announced on Piazza

Team blog

- Each team will maintain a blog. Why?
 - Consistently making progress on your assignments
 - Record of what you did over the course
- Format: A repo with a template will be provided
- Content:
 - Progress on the assignment
 - 1 para from EACH member on what they worked on
 - Challenges faced, lessons learned and videos (if any).
- Update blog every week
 - 10% of your grade will go towards regularly updating the blog.

Administrative policies

- Check website/canvas for details
- Late day policy
 - Each team gets 4 late days
 - After which 10 pts deduction every day
- Collaboration policy
 - Ok to discuss with other groups, but no sharing of writeup / code
 - Ok to look at online resources (cite when you do!) but don't use code.
 - <u>https://www.cs.washington.edu/academics/misconduct/</u>

Today's objective

1. Team introductions

2. Logistics

3. Getting started

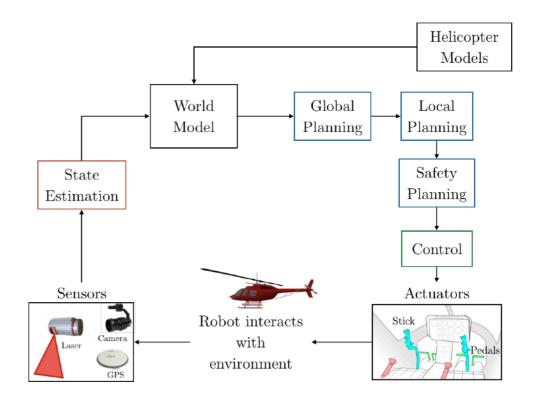
Knowledge survey

- We have sent out a knowledge survey on Piazza.
 - Ubuntu / Python experience
 - Math knowledge
 - Robot experience, etc
- Help us customize lectures and assignments to the class

Assignment 0 is out!

- Introduction to Python, ROS, Simulator & Robot
 - Introduction to ROS Tools
 - How to receive, process, and send data in ROS
 - Control the racecar in simulation
 - Interface and operate with robot (involves significant time with the robot)
- Due date: April 12 (get started now!)
 - Submit write-up, data, videos
 - More details in Canvas / Piazza
 - Come to recitation on Thurs 4/4

TL;DR


- Submit knowledge survey TODAY
- Form a 3 person team by Wednesday 4/3 (send a private note to instructors in Piazza)
- Assignment 0 is released and due on 4/12.
 - Familiarize yourself with ROS
- Come to recitation on Thursday, get your robot and start working on Assignment 0.

Next lecture: Anatomy of an autonomous vehicle

Urmson et al. 2008

