Introduction to Motion Planning

Sanjiban Choudhury

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle
Estimate state

Plan a sequence of motions

Control robot to follow plan
A prospective grad student:
“Is planning just A*?”
A prospective grad student:
“Is planning just A*?”
Challenge: Flying from Seattle to Pittsburgh?
(from Leslie Kaebling)
Challenge: Flying from Seattle to Pittsburgh?
(from Leslie Kaebling)

Piece 1: How do I get out of this classroom?
Challenge: Flying from Seattle to Pittsburgh?
(from Leslie Kaebling)

Piece 1: How do I get out of this classroom?

Piece 2: Even if we have an in-depth plan get to our terminal, and some idea how to check-in and board plane, do you bother to plan your path through Pittsburgh terminal?
Challenge: Flying from Seattle to Pittsburgh?
(from Leslie Kaelbling)

Piece 1: How do I get out of this classroom?

Piece 2: Even if we have an in-depth plan get to our terminal, and some idea how to check-in and board plane, do you bother to plan your path through Pittsburgh terminal?

Piece 3: What if you wanted a rental car? That’s something you have to plan in advance right?
Challenge: Flying from Seattle to Pittsburgh?
(from Leslie Kaebling)

Piece 1: How do I get out of this classroom?

Piece 2: Even if we have an in-depth plan get to our terminal, and some idea how to check-in and board plane, do you bother to plan your path through Pittsburgh terminal?

Piece 3: What if you wanted a rental car? That’s something you have to plan in advance right?
Motion Planning
Today’s objective

1. Broad scope and challenges in motion planning

2. Formalizing motion planning

3. Hardness of planning, extensions to differential constraints
1.2 Motivational Examples and Applications

Planning problems abound. This section surveys several examples and applications to inspire you to read further.

Why study planning algorithms? There are at least two good reasons. First, it is fun to try to get machines to solve problems for which even humans have great difficulty. This involves exciting challenges in modeling planning problems, designing efficient algorithms, and developing robust implementations. Second, planning algorithms have achieved widespread successes in several industries and academic disciplines, including robotics, manufacturing, drug design, and aerospace applications. The rapid growth in recent years indicates that many or fascinating applications may be on the horizon. These are exciting times to study planning algorithms and contribute to their development and use.

Discrete puzzles, operations, and scheduling

Chapter 2 covers discrete planning, which can be applied to solve familiar puzzles, such as those shown in Figure 1.1. They are also good at games such as chess or bridge [898]. Discrete planning techniques have been used in space applications, including a rover that traveled on Mars and the Earth Observing One satellite [207, 382, 896].
Discrete Feasible Planning

1. A nonempty state space X, which is a finite or countably infinite set of states.

2. For each state $x \in X$, a finite action space $U(x)$.

3. A state transition function f that produces a state $f(x, u) \in X$ for every $x \in X$ and $u \in U(x)$. The state transition equation is derived from f as $x' = f(x, u)$.

4. An initial state $x_I \in X$.

5. A goal set $X_G \subset X$.
Mastering the game of Go
Why it’s not straightforward to extend?

Discrete state space -
no recipe for going to continuous state action space

Easy to simulate moves -
no expensive physics / geometric computation

Rules of game already **known** -
no notion of model uncertainty
The Piano Mover’s Problem

[Schwartz and Sharir, ’83]
1990s!

3D Robots

3 DOF Motion

https://www.youtube.com/watch?v=UBAGTsnzAbk

(Bruce Donald)
1990s!

3D Robots

3 DOF Motion

https://www.youtube.com/watch?v=UBAGTsnzAbk

(Bruce Donald)
Volvo Cars plant in Sweden (courtesy of Volvo Cars and FCC)
High dimension planning

(Lau and Kuffner, 2005)
Real-time planning

Willow garage, 2009

https://www.youtube.com/watch?v=qbQDJ1c_Nxk&feature=youtu.be
Real-time planning

Willow garage, 2009

https://www.youtube.com/watch?v=qbQDJ1c_Nxk&feature=youtu.be
Real-time planning

Stanford DARPA Challenge, 2007

https://www.youtube.com/watch?v=qXZt-B7iUyw&feature=youtu.be
Real-time planning

Stanford DARPA Challenge, 2007

https://www.youtube.com/watch?v=qXZt-B7iUyw&feature=youtu.be
Real time helicopter planning
Real time helicopter planning
Generality of planning algorithms
Generality of planning algorithms
Challenges that we will focus on

1. Search in *continuous space* such that a feasible path exists? optimal path?

2. Solve this problems in *real-time*
Planning ingredients
Configuration Space
The Configuration Space

(a) Translating Triangle
(b) 2-joint planar arm
(c) Racecar
(d) Manipulator
The Configuration Space

The configuration space or C-space is the manifold that contains the set of transformations achievable by the robot.

\[C \]

Complete specification of the location of every point on robot geometry
The Configuration Space

The configuration space is a topological space.

(Planning Algorithms, Ch 4.1.1)
The Configuration Space

The configuration space is a topological space

A set X is called a topological space if there is a collection of subsets of X called open sets for which the following axioms hold:

1. The union of any number of open sets is an open set.
2. The intersection of a finite number of open sets is an open set.
3. Both X and \emptyset are open sets.
The Configuration Space

The configuration space is a topological space.

A set X is called a topological space if there is a collection of subsets of X called open sets for which the following axioms hold:

1. The union of any number of open sets is an open set.
2. The intersection of a finite number of open sets is an open set.
3. Both X and \emptyset are open sets.

Intuition: Most general notion of space that allows for definition of continuity, connectedness and convergence.
The Configuration Space

The configuration space is a manifold

(Planning Algorithms, Ch 4.1.2)
The Configuration Space

The configuration space is a manifold

Manifold definition A topological space \(M \subseteq \mathbb{R}^m \) is a manifold \(^4\) if for every \(x \in M \), an open set \(O \subseteq M \) exists such that: 1) \(x \in O \), 2) \(O \) is homeomorphic to \(\mathbb{R}^n \), and 3) \(n \) is fixed for all \(x \in M \). The fixed \(n \) is referred to as the dimension of the manifold, \(M \). The second condition is the most important. It states that in the vicinity of any point, \(x \in M \), the space behaves just like it would in the vicinity of any point \(y \in \mathbb{R}^n \); intuitively, the set of directions that one can move appears the same in either case. Several simple examples that may or may not be manifolds are shown in Figure 4.4.
The Configuration Space

The configuration space is a **manifold**

Manifold definition A topological space $M \subseteq \mathbb{R}^m$ is a manifold if for every $x \in M$, an open set $O \subset M$ exists such that: 1) $x \in O$, 2) O is homeomorphic to \mathbb{R}^n, and 3) n is fixed for all $x \in M$. The fixed n is referred to as the **dimension** of the manifold, M. The second condition is the most important. It states that in the vicinity of any point, $x \in M$, the space behaves just like it would in the vicinity of any point $y \in \mathbb{R}^n$; intuitively, the set of directions that one can move appears the same in either case. Several simple examples that may or may not be manifolds are shown in Figure 4.4.

Intuition: Manifold is a nice topological space that locally behaves like a surface

(Planning Algorithms, Ch 4.1.2)
Example 1: Translating triangle
Example 1: Translating triangle

\[\mathbb{R} \times \mathbb{R} = \mathbb{R}^2 \]

(cartesian product)
Example 2: 2-joint planar arm

\[\begin{align*}
\theta_1 & \quad \theta_2 \\
\end{align*} \]
Example 2: 2-joint planar arm

\[S^1 \times S^1 \]
Example 2: 2-joint planar arm

\[S^1 \times S^1 \]

Circle

\[S^1 = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \}. \]
Example 2: 2-joint planar arm

\[S^1 \times S^1 \]

Circle

\[S^1 = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \} \]
Example 2: 2-joint planar arm

\[S^1 \times S^1 = \mathbb{T}^2 \]

Circle

\[S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}. \]
Example 3: Racecar
Example 3: Racecar

$\mathbb{R}^2 \times S^1$
Example 3: Racecar

\[\mathbb{R}^2 \times S^1 \]

special euclidean group \(SE(2) \)
Common C-spaces

Type of Robot
- Mobile robot translating in the plane
- Mobile robot translating and rotating in the plane
- Rigid body translating in the three-space
 - A spacecraft
 - An n-joint revolute arm
- A planar mobile robot with an attached n-joint arm

C-space Representation

- Mobile robot translating in the plane: \mathbb{R}^2
- Mobile robot translating and rotating in the plane: $SE(2)$ or $\mathbb{R}^2 \times S^1$
- Rigid body translating in the three-space: \mathbb{R}^3
- A spacecraft: $SE(3)$ or $\mathbb{R}^3 \times SO(3)$
- An n-joint revolute arm: T^n
- A planar mobile robot with an attached n-joint arm: $SE(2) \times T^n$

(Kavraki and LaValle)
Obstacles
Obstacle specification
Obstacle specification

Robot operates in a 2D / 3D workspace \(\mathcal{W} = \mathbb{R}^2 \) or \(\mathbb{R}^3 \)
Obstacle specification

Robot operates in a 2D / 3D workspace $\mathcal{W} = \mathbb{R}^2$ or \mathbb{R}^3

Subset of this space is obstacles $\mathcal{O} \subset \mathcal{W}$

semi-algebraic models (polygons, polyhedra)
Obstacle specification

Robot operates in a 2D / 3D workspace \(\mathcal{W} = \mathbb{R}^2 \) or \(\mathbb{R}^3 \)

Subset of this space is obstacles \(\mathcal{O} \subseteq \mathcal{W} \)

semi-algebraic models (polygons, polyhedra)

Geometric shape of the robot (set of points occupied by robot at a config) \(\mathcal{A}(q) \subseteq \mathcal{W} \)
Obstacle specification

Robot operates in a 2D / 3D workspace \(\mathcal{W} = \mathbb{R}^2 \) or \(\mathbb{R}^3 \)

Subset of this space is obstacles \(\mathcal{O} \subset \mathcal{W} \)

semi-algebraic models (polygons, polyhedra)

Geometric shape of the robot (set of points occupied by robot at a config) \(\mathcal{A}(q) \subset \mathcal{W} \)

C-space obstacle region

\[
\mathcal{C}_{\text{obs}} = \{ q \in \mathcal{C} \mid \mathcal{A}(q) \cap \mathcal{O} \neq \emptyset \} \\
\mathcal{C}_{\text{free}} = \mathcal{C} \setminus \mathcal{C}_{\text{obs}}
\]
Example 1: Translating triangle

\[O \subset W \]

\[\mathcal{A}(q) \]

\[(x,y) \]

Robot

Obstacle

\[\mathcal{O} \subset \mathcal{W} \]
Example 1: Translating triangle

\[A(q) \]

\[\mathcal{O} \subset \mathcal{W} \]

configuration space obstacle

\[\mathcal{C}_{\text{obs}} \]
Example 1: Translating triangle

\[\mathcal{O} \subset \mathcal{W} \]

Can be efficiently computed using Minkowski sum

\[\mathcal{C}_{\text{obs}} \]
Example 2: SE(2) robot
Example 2: SE(2) robot

(Courtesy Matt Klingensmith)

Example 3: 2-link planar arm
Example 3: 2-link planar arm

Courtesy Tapomayukh Bhattacharya
Geometric Path Planning Problem
Geometric Path Planning Problem

Also known as
Piano Mover’s Problem (Reif 79)

Given:
1. A \textit{workspace} \(\mathcal{W} \), where either \(\mathcal{W} = \mathbb{R}^2 \) or \(\mathcal{W} = \mathbb{R}^3 \).
2. An \textit{obstacle region} \(\mathcal{O} \subset \mathcal{W} \).
3. A \textit{robot} defined in \(\mathcal{W} \). Either a rigid body \(\mathcal{A} \) or a collection of \(m \) links: \(A_1, A_2, \ldots, A_m \).
4. The \textit{configuration space} \(\mathcal{C} \) (\(\mathcal{C}_{\text{obs}} \) and \(\mathcal{C}_{\text{free}} \) are then defined).
5. An \textit{initial configuration} \(q_I \in \mathcal{C}_{\text{free}} \).
6. A \textit{goal configuration} \(q_G \in \mathcal{C}_{\text{free}} \). The initial and goal configuration are often called a \textit{query} \((q_I, q_G) \).

Compute a (continuous) path, \(\tau : [0, 1] \to \mathcal{C}_{\text{free}} \), such that \(\tau(0) = q_I \) and \(\tau(1) = q_G \).

Also may want to minimize cost \(c(\tau) \)
Can we solve this for some problems?

Yes! E.g. 2D polygon robots / obstacles can be solved with visibility graphs.
So, are we done?

No! Planning is hard
Hardness of motion planning
Hardness of motion planning

Piano Mover’s problem is PSPACE-hard (Reif et al.)
Hardness of motion planning

Piano Mover’s problem is PSPACE-hard (Reif et al.)
Hardness of motion planning

Piano Mover’s problem is PSPACE-hard (Reif et al.)

Even planning for translating rectangles is PSPACE-hard!

(Hopcroft et al. 84)
Hardness of motion planning

Piano Mover’s problem is PSPACE-hard (Reif et al.)

Certain 3D robot planning under uncertain is NEXPTIME-hard!

(Hopcroft et al. 84)
Why is it hard?

1. Computing the C-space obstacle is hard

2. Planning in continuous high-dimension space is hard

Exponential dependency on dimension
Research in Motion Planning:
Tractable approximations with provable guarantees
Differential constraints

In geometric path planning, we were only dealing with C-space

\[q \in C \]
In geometric path planning, we were only dealing with C-space
\[q \in \mathcal{C} \]

We now introduce differential constraints

\[
\begin{bmatrix}
\dot{q} \\
\ddot{q}
\end{bmatrix} = f\left(\begin{bmatrix} q \end{bmatrix}, u \right)
\]
Differential constraints

In geometric path planning, we were only dealing with C-space

\[q \in \mathcal{C} \]

We now introduce differential constraints

\[
\begin{bmatrix}
\dot{q} \\
\ddot{q}
\end{bmatrix}
= f \left(\begin{bmatrix} q \\ \dot{q} \end{bmatrix}, u \right)
\]

Let the \textit{state space} \(x \) be the following augmented C-space

\[x = (q, \dot{q}) \quad \dot{x} = f(x, u) \]
Motion planning under differential constraints

1. Given world, obstacles, C-space, robot geometry (same)

2. Introduce state space X. Compute free and obstacle state space.

3. Given an action space U

4. Given a state transition equations $\dot{x} = f(x, u)$

5. Given initial and final state, cost function

$$J(x(t), u(t)) = \int c(x(t), u(t)) dt$$

6. Compute action trajectory that satisfies boundary conditions, stays in free state space and minimizes cost.
Differential constraints make things **even harder**

These are examples of **non-holonomic system**

non-holonomic differential constraints are not completely integrable

i.e. the system is trapped in some sub-manifold of the config space
Differential constraints make things even harder.

These are examples of non-holonomic system.

Non-holonomic differential constraints are not completely integrable.

i.e. the system is trapped in some sub-manifold of the config space.

Emergency landing where UAV can only turn left.

“Left-turning-car”
Consider a car going at 100 mph towards a wall 10 m ahead.

 Regions of inevitable collision

\[X_{ric} = \{ x(0) \in X \mid \text{for any } \hat{u} \in U_{\infty}, \exists t > 0 \text{ such that } x(t) \in X_{obs} \}, \]
Research in Motion Planning:

Tractable approximations with provable guarantees