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Planning




Today's objective

1. Broad scope and challenges in motion planning

2. Formalizing motion planning

3. Hardness of planning, extensions to differential constraints
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Discrete Feasible Planning

. A nonempty state space X, which is a finite or countably infinite set of states.
. For each state x € X, a finite action space U(x).

. A state transition function f that produces a state f(z,u) € X for every
r € X and u € U(x). The state transition equation is derived from f as

v = f(x,u).
. An waitial state x7 € X.

. A goal set X C X.



Mastering the game of Go
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Why it's not straight forward to extend?

Discrete state space -
no recipe for going to continuous state action space

Fasy to simulate moves -

no expensive physics / geometric computation

Rules of game already known -

no notion of model uncertainty
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The Piano Mover's Problem
|Schwartz and Sharir, ’83|
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Volvo Cars plant in Sweden (courtesy of Volvo Cars and FCC)



High dimension planning

(Lau and Kuffner, 2005) Honda H7
(Kuffner, 2003)
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Real-time planning

Willow garage, 2009

https://www.youtube.com/watch?v=gbQDJ1c Nxk&feature=youtu.be
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Real-time planning

| RUN | H E

00.00 m/h

Stanford DARPA Challenge, 2007
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Challenges that we will focus on

1. Search in continuous space such that a
feasible path exists?” optimal path?

2. Solve this problems in real-time

20



Planning ingredients




Configuration Space



The Configuration Space

(a) Translating Triangle (b) 2-joint planar arm

0

) Racecar (d) Manipulator
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The Configuration Space

The configuration space or C-space is the manifold that
contains the set of transformations achievable by the robot.

C

Complete specification of the
location of every point on robot geometry
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The Configuration Space

The configuration space is a topological space

(Planning Algorithms, Ch 4.1.1)
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open sets for which the following axioms hold:

1. The union of any number of open sets is an open set.
2. The intersection of a finite number of open sets is an open set.

3. Both X and () are open sets.

Intuition: Most general notion of space that allows for definition of

continuity, connectedness and convergence

(Planning Algorithms, Ch 4.1.1)
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The Configuration Space

The configuration space is a manifold

Manifold definition A topological space M C R™ is a manifold* if for every
r € M, an open set O C M exists such that: 1) z € O, 2) O is homeomorphic to
R™ and 3) n is fixed for all x € M. The fixed n is referred to as the dimension
of the manifold, M. The second condition is the most important. It states that
in the vicinity of any point, x € M, the space behaves just like it would in the
vicinity of any point y € R"; intuitively, the set of directions that one can move
appears the same in either case. Several simple examples that may or may not be
manifolds are shown in Figure 4.4.
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The configuration space is a manifold

Manifold definition A topological space M C R™ is a manifold* if for every
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R™ and 3) n is fixed for all x € M. The fixed n is referred to as the dimension
of the manifold, M. The second condition is the most important. It states that
in the vicinity of any point, x € M, the space behaves just like it would in the
vicinity of any point y € R"; intuitively, the set of directions that one can move
appears the same in either case. Several simple examples that may or may not be
manifolds are shown in Figure 4.4.

Intuition: Manifold is a nice topological space that locally behaves
like a surface

(Planning Algorithms, Ch 4.1.2)



Example 1: Translating triangle
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Example 1: Translating triangle

A

R x R = R~

(cartesian product)
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Example 2: 2-joint planar arm
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Example 3: Racecar
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Example 3: Racecar
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Example 3: Racecar

£

R? x St

special euclidean group S E (2)



Common C-spaces

Type of Robot C-space Representation
Mobile robot translating in the plane R?
Mobile robot translating and rotating in the plane SE(2) or R? x St
Rigid body translating in the three-space RS
A spacecraft SE(3) or R? x SO(3)
An n-joint revolute arm T
A planar mobile robot with an attached n-joint arm SE(2) xT"

(Kavraki and LaValle)

30



Obstacles
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Obstacle specitication
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Obstacle specitication

Robot operates in a 2D / 3D workspace

W = R? or R?
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Obstacle specitication

Robot operates in a 2D / 3D workspace VY — RZ or Rg

Subset of this space is obstacles O C W

semi-algebraic models (polygons, polyhedra)

(Geometric shape of the robot ./4 ( ) W
(set of points occupied by robot at a config) q

Cobs ={q€C | A(q)NO #£D}
Cfree =C \ Cobs 30

(C-space obstacle region



Example 1: Translating triangle
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Example 1: Translating triangle

Roboy' (X.y)
A(q)

Obstacle

OcCwWw configuration space obstacle

Can be efficiently computed using Minkowski sum
33




Example 2: SE(2) robot
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Example 2: SE(2) robot

(Courtesy Matt Klingensmith)

https://www.gamasutra.com/blogs/MattKlingensmith/20130907/199787/Overview_of Motion_Planning.php 35
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Example 2: SE(2) robot

2D
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(Courtesy Matt Klingensmith)

https://www.gamasutra.com/blogs/MattKlin

ensmith/20130907/199787/Overview_of Motion Planning.
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Example 2: SE(2) robot

8

2D Conflguratlon space

-

(Courtesy Matt Klingensmith)

https://www.gamasutra.com/blogs/MattKlingensmith/20130907/199787/Overview_of Motion Planning.php 35
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Example 2: SE(2) robot

Trajectory:

(Courtesy Matt Klingensmith)

https://www.gamasutra.com/blogs/MattKlingensmith/20130907/199787/Overview_of Motion Planning.php 35
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Example 3: 2-link planar arm

45 90 135 180

Courtesy Tapomayukh Bhattacharya -



Example 3: 2-link planar arm

18

Courtesy Tapomayukh Bhattacharya
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Geometric Path Planning Problem



Geometric Path Planning Problem

Also known as
Piano Mover’s Problem (Reif 79)

Given:
1. A workspace VW, where either W = R? or W = R3.
2. An obstacle region O C W.

3. A robot defined in W. Either a rigid body A or a
collection of m links: Ay, Ao, ..., An.

4. The configuration space C (Cops and Cree are then
defined).

5. An initial configuration qr € Cfree-

6. A goal configuration qg € Cfree. The initial and
goal configuration are often called a query (qr, qa).

Compute a (continuous) path, 7 : [0,1] — Cfree, Such
that 7(0) = qr and 7(1) = qa -

Also may want to minimize cost

c(7)
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Can we solve this for some problems?

qr
qdG

Yes! E.g. 2D polygon robots / obstacles can be solved

with visibility graphs

40



So, are we done?

No! Planning is hard



Hardness of motion planning
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Hardness of motion planning

Piano Mover’s problem is PSPACE-hard (Reif et al.)
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@ NP PSPACE | EXPTIME
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Hardness of motio

n planning

Piano Mover’s problem is PSPACI

@ NP PSPACE

Even planning for translating

rectangles is PSPACE-hard!
(Hopcroft et al. 84)

-hard (Reif et al.)

EXPTIME
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Hardness of motion planning

Piano Mover’s problem is PSPACE-hard (Reif et al.)

@ NP PSPACE

EXPTIME

Certain 3D robot planning

under uncertain is
NEXPTIME-hard!

Even planning for translating (Canny et al. 87)

rectangles is PSPACE-hard!
(Hopcroft et al. 84)
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Why is it hard?

1. Computing the C-space obstacle is hard

2. Planning in continuous high-dimension space is hard

Exponential dependency on dimension
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Research in Motion Planning:

Tractable approximations with
provable guarantees
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Differential constraints

In geometric path planning, we were only dealing with C-space

qgeC
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Differential constraints

In geometric path planning, we were only dealing with C-space

qgeC

We now introduce differential constraints

C] :f( ! 7u>
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Differential constraints

In geometric path planning, we were only dealing with C-space

qgeC
We now introduce difterential constraints
q q
= f(17,u)
q q

Let the state space x be the following augmented C-space

37:((],(]) j;:f(xau)



Motion planning under differential constraints

1. Given world, obstacles, C-space, robot geometry (same)

2. Introduce state space X. Compute free and obstacle state space.
3. Given an action space [/

4. Given a state transition equations & = f(x, u)

5. Given initial and final state, cost function

T (t),u(t) = | ela(t). u(t)
6. Compute action trajectory that satisfies boundary conditions,

stays in free state space and minimizes cost. i



Differential constraints make things even harder

These are examples of non-holonomic system

non-holonomic differential constraints are not completely integrable

i.e. the system is trapped in some sub-manifold of the config space

47



Differential constraints make things even harder

“Left-turning-car”

These are examples of non-holonomic system

non-holonomic differential constraints are not completely integrable

i.e. the system is trapped in some sub-manifold of the config space
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Regions of inevitable collision

Consider a car going at 100 mph
towards a wall 10 m ahead

Xrie ={x(0) € X | for any @ € Uy, Jt >0
such that x(t) € Xops},

49



Research in Motion Planning:

Tractable approximations with
provable guarantees
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