Content adapted from LaValle

1

Introduction to Motion Planning

Sanjiban Choudhury

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle

Plan a sequence of motions

Control robot to follow plan

A prospective grad student: "Is planning just A*?"

A prospective grad student: "Is planning just A*?"

Piece 1: How do I get out of this classroom?

Piece 1: How do I get out of this classroom?

Piece 2: Even if we have an in-depth plan get to our terminal, and some idea how to check-in and board plane, do you bother to plan your path through Pittsburgh terminal?

Piece 1: How do I get out of this classroom?

Piece 2: Even if we have an in-depth plan get to our terminal, and some idea how to check-in and board plane, do you bother to plan your path through Pittsburgh terminal?

Piece 3: What if you wanted a rental car? That's something you have to plan in advance right?

Piece 1: How do I get out of this classroom?

Piece 2: Even if we have an in-depth plan get to our terminal, and some idea how to check-in and board plane, do you bother to plan your path through Pittsburgh terminal?

Piece 3: What if you wanted a rental car? That's something you have to plan in advance right?

Motion Planning

Today's objective

1. Broad scope and challenges in motion planning

2. Formalizing motion planning

3. Hardness of planning, extensions to differential constraints

Games

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

Discrete Feasible Planning

- 1. A nonempty state space X, which is a finite or countably infinite set of states.
- 2. For each state $x \in X$, a finite action space U(x).
- 3. A state transition function f that produces a state $f(x, u) \in X$ for every $x \in X$ and $u \in U(x)$. The state transition equation is derived from f as x' = f(x, u).
- 4. An initial state $x_I \in X$.
- 5. A goal set $X_G \subset X$.

Mastering the game of Go

Why it's not straight forward to extend?

Discrete state space -

no recipe for going to continuous state action space

Easy to simulate moves - no expensive physics / geometric computation

Rules of game already known no notion of model uncertainty

The Piano Mover's Problem

1990s!

(Bruce Donald)

 $\underline{https://www.youtube.com/watch?v{=}UBAGTsnzAbk}$

1990s!

(Bruce Donald)

 $\underline{https://www.youtube.com/watch?v{=}UBAGTsnzAbk}$

Volvo Cars plant in Sweden (courtesy of Volvo Cars and FCC)

High dimension planning

(Lau and Kuffner, 2005)

Honda H7 (Kuffner, 2003)

Willow garage, 2009

Willow garage, 2009

Stanford DARPA Challenge, 2007

Stanford DARPA Challenge, 2007

Real time helicopter planning

Real time helicopter planning

Generality of planning algorithms

Generality of planning algorithms

Challenges that we will focus on

1. Search in continuous space such that a feasible path exists? optimal path?

2. Solve this problems in real-time

Planning ingredients

(a) Translating Triangle

(b) 2-joint planar arm

The configuration space or C-space is the manifold that contains the set of transformations achievable by the robot.

C

Complete specification of the location of every point on robot geometry

The configuration space is a topological space

The configuration space is a topological space

A set X is called a *topological space* if there is a collection of subsets of X called *open sets* for which the following axioms hold:

- 1. The union of any number of open sets is an open set.
- 2. The intersection of a finite number of open sets is an open set.
- 3. Both X and \emptyset are open sets.

The configuration space is a topological space

A set X is called a *topological space* if there is a collection of subsets of X called *open sets* for which the following axioms hold:

- 1. The union of any number of open sets is an open set.
- 2. The intersection of a finite number of open sets is an open set.
- 3. Both X and \emptyset are open sets.

Intuition: Most general notion of space that allows for definition of continuity, connectedness and convergence
The Configuration Space

The configuration space is a manifold

The Configuration Space

The configuration space is a manifold

Manifold definition A topological space $M \subseteq \mathbb{R}^m$ is a manifold⁴ if for every $x \in M$, an open set $O \subset M$ exists such that: 1) $x \in O$, 2) O is homeomorphic to \mathbb{R}^n , and 3) n is fixed for all $x \in M$. The fixed n is referred to as the dimension of the manifold, M. The second condition is the most important. It states that in the vicinity of any point, $x \in M$, the space behaves just like it would in the vicinity of any point $y \in \mathbb{R}^n$; intuitively, the set of directions that one can move appears the same in either case. Several simple examples that may or may not be manifolds are shown in Figure 4.4.

The Configuration Space

The configuration space is a manifold

Manifold definition A topological space $M \subseteq \mathbb{R}^m$ is a manifold⁴ if for every $x \in M$, an open set $O \subset M$ exists such that: 1) $x \in O$, 2) O is homeomorphic to \mathbb{R}^n , and 3) n is fixed for all $x \in M$. The fixed n is referred to as the dimension of the manifold, M. The second condition is the most important. It states that in the vicinity of any point, $x \in M$, the space behaves just like it would in the vicinity of any point $y \in \mathbb{R}^n$; intuitively, the set of directions that one can move appears the same in either case. Several simple examples that may or may not be manifolds are shown in Figure 4.4.

Intuition: Manifold is a nice topological space that locally behaves like a surface

$\mathbb{R}\times\mathbb{R}=\mathbb{R}^2$

(cartesian product)

 θ_2

 $\mathbb{S}^1 \times \mathbb{S}^1$

Circle $\mathbb{S}^1 = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \}.$

 $\mathbb{S}^1 \times \mathbb{S}^1$

Circle $\mathbb{S}^1 = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \}.$

$$\mathbb{S}^1 \times \mathbb{S}^1 = \mathbb{T}^2$$

Circle
$$\mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$$

Example 3: Racecar

Example 3: Racecar

 $\mathbb{R}^2 \times \mathbb{S}^1$

Example 3: Racecar

 $\mathbb{R}^2 \times \mathbb{S}^1$

special euclidean group SE(2)

Common C-spaces

Type of RobotMobile robot translating in the planeMobile robot translating and rotating in the planeRigid body translating in the three-spaceA spacecraftAn n-joint revolute armA planar mobile robot with an attached n-joint arm

 $\mathcal{C} ext{-space Representation} \ \mathbb{R}^2 \ SE(2) ext{ or } \mathbb{R}^2 imes S^1 \ \mathbb{R}^3 \ SE(3) ext{ or } \mathbb{R}^3 imes SO(3) \ T^n \ SE(2) imes T^n \ SE(2$

(Kavraki and LaValle)

Obstacles

Robot operates in a 2D / 3D workspace $\mathcal{W} = \mathbb{R}^2$ or \mathbb{R}^3

Robot operates in a 2D / 3D workspace $\mathcal{W} = \mathbb{R}^2$ or \mathbb{R}^3

Subset of this space is obstacles

 $\mathcal{O}\subset\mathcal{W}$

semi-algebraic models (polygons, polyhedra)

Robot operates in a 2D / 3D workspace $\mathcal{W} = \mathbb{R}^2$ or \mathbb{R}^3

Subset of this space is obstacles

 $\mathcal{O} \subset \mathcal{W}$

semi-algebraic models (polygons, polyhedra)

Geometric shape of the robot (set of points occupied by robot at a config)

 $\mathcal{A}(q) \subset \mathcal{W}$

Robot operates in a 2D / 3D workspace $\mathcal{W} = \mathbb{R}^2$ or \mathbb{R}^3

Subset of this space is obstacles

$$\mathcal{O}\subset\mathcal{W}$$

semi-algebraic models (polygons, polyhedra)

Geometric shape of the robot (set of points occupied by robot at a config) $\mathcal{A}(q) \subset \mathcal{W}$

C-space obstacle region

$$\mathcal{C}_{obs} = \{ \boldsymbol{q} \in \mathcal{C} \mid \mathcal{A}(\boldsymbol{q}) \cap \mathcal{O} \neq \emptyset \}$$
$$\mathcal{C}_{free} = \mathcal{C} \setminus \mathcal{C}_{obs}$$
³²

Can be efficiently computed using Minkowski sum

https://www.gamasutra.com/blogs/MattKlingensmith/20130907/199787/Overview_of_Motion_Planning.php 35

Example 3: 2-link planar arm

Courtesy Tapomayukh Bhattacharya

Example 3: 2-link planar arm

Courtesy Tapomayukh Bhattacharya

Geometric Path Planning Problem

Geometric Path Planning Problem

Also known as Piano Mover's Problem (Reif 79)

Given:

- 1. A workspace \mathcal{W} , where either $\mathcal{W} = \mathbb{R}^2$ or $\mathcal{W} = \mathbb{R}^3$.
- 2. An obstacle region $\mathcal{O} \subset \mathcal{W}$.
- 3. A robot defined in \mathcal{W} . Either a rigid body \mathcal{A} or a collection of m links: $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_m$.
- 4. The configuration space C (C_{obs} and C_{free} are then defined).
- 5. An initial configuration $q_I \in C_{free}$.
- 6. A goal configuration $q_{G} \in C_{free}$. The initial and goal configuration are often called a query (q_{I}, q_{G}) .

Compute a (continuous) path, $\tau : [0,1] \to C_{free}$, such that $\tau(0) = q_I$ and $\tau(1) = q_G$.

Also may want to minimize cost $c(\tau)$

Can we solve this for so

Yes! E.g. 2D polygon robots / obstacles can be solved with visibility graphs

So, are we done?

No! Planning is hard

Hardness of motion planning
Piano Mover's problem is PSPACE-hard (Reif et al.)

Piano Mover's problem is PSPACE-hard (Reif et al.)

Piano Mover's problem is PSPACE-hard (Reif et al.)

Even planning for translating rectangles is PSPACE-hard! (Hopcroft et al. 84)

Piano Mover's problem is PSPACE-hard (Reif et al.)

Even planning for translating rectangles is PSPACE-hard! (Hopcroft et al. 84) Certain 3D robot planning under uncertain is NEXPTIME-hard!

(Canny et al. 87)

Why is it hard?

1. Computing the C-space obstacle is hard

2. Planning in continuous high-dimension space is hard

Exponential dependency on dimension

Research in Motion Planning:

Tractable approximations with provable guarantees

Differential constraints

In geometric path planning, we were only dealing with C-space

 $q \in \mathcal{C}$

Differential constraints

In geometric path planning, we were only dealing with C-space

 $q\in \mathcal{C}$

We now introduce differential constraints

Differential constraints

In geometric path planning, we were only dealing with C-space

 $q\in \mathcal{C}$

We now introduce differential constraints

$$\begin{bmatrix} \dot{q} \\ \ddot{q} \end{bmatrix} = f(\begin{bmatrix} q \\ q \end{bmatrix}, u)$$

Let the state space x be the following augmented C-space

$$x = (q, \dot{q}) \qquad \qquad \dot{x} = f(x, u)$$

Motion planning under differential constraints

- 1. Given world, obstacles, C-space, robot geometry (same)
- 2. Introduce state space X. Compute free and obstacle state space.
- 3. Given an action space U
- 4. Given a state transition equations $\dot{x} = f(x, u)$
- 5. Given initial and final state, cost function

 $J(x(t), u(t)) = \int c(x(t), u(t))dt$

6. Compute action trajectory that satisfies boundary conditions, stays in free state space and minimizes cost.

Differential constraints make things even harder

These are examples of non-holonomic system

non-holonomic differential constraints are not completely integrable

i.e. the system is trapped in some sub-manifold of the config space

Differential constraints make things even harder

"Left-turning-car"

These are examples of non-holonomic system

non-holonomic differential constraints are not completely integrable

i.e. the system is trapped in some sub-manifold of the config space

Regions of inevitable collision

Research in Motion Planning:

Tractable approximations with provable guarantees