
 1

Sanjiban Choudhury

Lyapunov Stability

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle

Recap: PID / Pure Pursuit control

 2

Pros Cons

PID Control

Pure Pursuit

Recap: PID / Pure Pursuit control

 2

Pros Cons

Simple law that works
pretty well!

PID Control

Pure Pursuit

Recap: PID / Pure Pursuit control

 2

Pros Cons

Simple law that works
pretty well!

PID Control Tuning parameters! Doesn’t
understand dynamics

Pure Pursuit

Recap: PID / Pure Pursuit control

 2

Pros Cons

Simple law that works
pretty well!

PID Control Tuning parameters! Doesn’t
understand dynamics

Pure Pursuit Cars can travel in arc!

Recap: PID / Pure Pursuit control

 2

Pros Cons

Simple law that works
pretty well!

PID Control Tuning parameters! Doesn’t
understand dynamics

Pure Pursuit Cars can travel in arc! No proof of convergence

Recap: PID / Pure Pursuit control

 2

Can we get some control law that has formal guarantees?

Pros Cons

Simple law that works
pretty well!

PID Control Tuning parameters! Doesn’t
understand dynamics

Pure Pursuit Cars can travel in arc! No proof of convergence

Table of Controllers

 3

Control Law Uses model Stability
Guarantee

PID No No

Pure Pursuit Circular arcs Yes - with
assumptions

u = Kpe+ ...

u = tan�1

✓
2B sin↵

L

◆

 4

Stability:

Prove error goes to zero
and stays there

Today’s lecture

 5

1. Motivate why underactuated systems are hard to stabilize

2. Lyapunov functions as a tool for stability

Lyapunov control in action

 6

“Rapidly Exponentially Stabilizing Control Lyapunov Functions and
Hybrid Zero Dynamics”, Ames et al. 2012

Lyapunov control in action

 6

“Rapidly Exponentially Stabilizing Control Lyapunov Functions and
Hybrid Zero Dynamics”, Ames et al. 2012

 7

Lyapunov control in action

“The Dynamics Projection Filter (DPF) - Real-Time Nonlinear
Trajectory Optimization Using Projection Operators” Choudhury et al.

2015

The Dynamics Projection Filter (DPF) - Real-Time Nonlinear
Trajectory Optimization Using Projection Operators

Sanjiban Choudhury1 and Sebastian Scherer1

Abstract— Robotic navigation applications often require on-
line generation of trajectories that respect underactuated non-
linear dynamics, while optimizing a cost function that depends
only on a low-dimensional workspace (collision avoidance).
Approaches to non-linear optimization, such as differential
dynamic programming (DDP), suffer from the drawbacks of
slow convergence by being limited to stay within the trust-
region of the linearized dynamics and having to integrate the
dynamics with fine granularity at each iteration. We address
the problem of decoupling the workspace optimization from the
enforcement of non-linear constraints.

In this paper, we introduce the Dynamics Projection Filter,
a nonlinear projection operator based approach that first
optimizes a workspace trajectory with reduced constraints
and then projects (filters) it to a feasible configuration space
trajectory that has a bounded sub-optimality guarantee. We
show simulation results for various curvature and curvature-
derivatives constrained systems, where the dynamics projection
filter is able to, on average, produce similar quality solution 50
times faster than DDP. We also show results from flight tests
on an autonomous helicopter that solved these problems on-
line while avoiding mountains at high speed as well as trees
and buildings as it came in to land.

I. INTRODUCTION

A common problem faced in robotics navigation ap-
plications is to generate on-line a smooth collision free
trajectory that respects the non-linear constraints imposed
by the dynamics of an under-actuated system. This problem
is difficult because real-time perceptual information requires
a fast response. At the same time, the trajectory computed
must be dynamically feasible, have a low cost and reach the
goal.

Trajectory optimization with non-linear constraints is com-
monly solved using variants of differential dynamic pro-
gramming [1] or sequential convex optimization [2]. [3] uses
sequential quadratic programming and deals with obstacles
through the use of signed distances. More complex dynamics
models have been considered by [4], [5], [6]. However the
nonlinear nature of the constraint makes this method slow.
There has been a lot of success in the field of fast high
quality unconstrained optimizations, such as CHOMP [7].
The reason for this is the use of workspace gradients and
parameterization invariance.

In this paper, we attempt to make a bridge between fast
optimization of objectives that depend only on the low
dimensional workspace and ensuring high dimensional con-
straint satisfaction using projection operators. [8] learns a low
dimensional structure automatically, but only for holonomic

1The Robotics Institute, Carnegie Mellon University, 5000 Forbes Av-
enue, Pittsburgh, PA 15213, USA sanjiban,basti@cmu.edu

(a) (b)

(c)

Fig. 1: (a) Boeing’s Unmanned LittleBird is guided by the optimization
computing trajectories in real-time. (b) A typical scenario where the
helicopter has discovered some mountains in the way and has to plan around
them (c) An illustration of our approach. We optimize a workspace trajectory
⇠(⌧) subject to smoothness constraints, project it to a feasible configuration
space ẋ = f(x, u) while ensuring bounded suboptimality using Lyapunov
bounds V (x, ⇠, ⌧).

optimization. The work most similar to ours [9] uses a
projection operator, however, the underlying trajectory is still
high dimensional, the gradients contain the nonlinear con-
straint artifacts requiring small step sizes and the projection
has no guarantees.

In this paper, we present the Dynamics Projection Filter.
Our main contributions are as follows:

• We present a real-time approach to solving a non-linear
trajectory optimization where the cost function only
depends on a low-dimensional workspace.(Fig. 1)

• We define a nonlinear projection operator as a control
Lyapunov function that takes an optimized workspace
trajectory and projects it to a configuration space tra-
jectory with guarantees on sub-optimality.

• Results on an autonmous helicopter performing mis-
sions at high speeds.

II. PROBLEM STATEMENT

Let X ⇢ Rn be the configuration space of the vehicle,
W ⇢ Rw be the workspace of the vehicle (w is either 2
or 3) and U ⇢ Rm be the control space. Let T be the

2015 IEEE International Conference on Robotics and Automation (ICRA)

Washington State Convention Center

Seattle, Washington, May 26-30, 2015

U.S. Government work not protected by

U.S. copyright

644

 8

Stability:

Prove error goes to zero
and stays there

What is stability?

 9

lim
t!1

e(t) = 0

t

e(t)

Time

Er
ro

r

Question: Why does the error oscillate?

So we want both e(t) ! 0 and ė(t) ! 0

How does error evolve in time?

 10

xref , yref , ✓ref
eatect

✓e

How does error evolve in time?

 10

xref , yref , ✓ref
eatect

✓e

Let’s say we were interested in driving both ect and ✓e to zero

How does error evolve in time?

 10

xref , yref , ✓ref
eatect

✓e

Let’s say we were interested in driving both ect and ✓e to zero

ect = � sin(✓ref)(x� xref) + cos(✓ref)(y � yref) ✓e = ✓ � ✓ref

How does error evolve in time?

 10

xref , yref , ✓ref
eatect

✓e

Let’s say we were interested in driving both ect and ✓e to zero

ect = � sin(✓ref)(x� xref) + cos(✓ref)(y � yref) ✓e = ✓ � ✓ref

Notice how our control variable affects all the error terms

ėct = V sin ✓e ✓̇e = ! = u

 11

xref , yref , ✓ref
eatect

✓e

Let’s say we were interested in driving both ect and ✓e to zero

ect = � sin(✓ref)(x� xref) + cos(✓ref)(y � yref) ✓e = ✓ � ✓ref

ėct = V sin ✓e ✓̇e = ! = u

u sin(.)

Z Z

✓̇e ✓e ėct

ect

How does error evolve in time?

 12

Why is this tricky?

Is it because of non-linearity?

Easy problem: Stability in a linear system

 13

Easy problem: Stability in a linear system

 13

ẋ = ax+ bu

Easy problem: Stability in a linear system

 13

e = x� xref = x� 0 = x

ẋ = ax+ bu

Easy problem: Stability in a linear system

 13

e = x� xref = x� 0 = x

ẋ = ax+ bu

u = �ke = �kx

Easy problem: Stability in a linear system

 13

e = x� xref = x� 0 = x

ẋ = ax+ bu

u = �ke = �kx

ẋ = (a� bk)x = �(bk � a)x

Easy problem: Stability in a linear system

 13

e = x� xref = x� 0 = x

ẋ = ax+ bu

u = �ke = �kx

ẋ = (a� bk)x = �(bk � a)x

x(t) = x(0) exp(�(bk � a)t)

Easy problem: Stability in a linear system

 13

e = x� xref = x� 0 = x

ẋ = ax+ bu

u = �ke = �kx

ẋ = (a� bk)x = �(bk � a)x

x(t) = x(0) exp(�(bk � a)t)

Stability guaranteed when k >
a

b

Myth: Non-linearity makes things hard

 14

Myth: Non-linearity makes things hard

 14

Say I want to solve the same problem with a non-linear system

ẋ = f(x) + g(x)u

Myth: Non-linearity makes things hard

 14

Say I want to solve the same problem with a non-linear system

ẋ = f(x) + g(x)u

e = x� xref = x� 0 = x

Myth: Non-linearity makes things hard

 14

Say I want to solve the same problem with a non-linear system

ẋ = f(x) + g(x)u

u =
1

g(x)
(�f(x)� kx)

e = x� xref = x� 0 = x

Myth: Non-linearity makes things hard

 14

Say I want to solve the same problem with a non-linear system

ẋ = f(x) + g(x)u

u =
1

g(x)
(�f(x)� kx)

ẋ = �kx

x(t) = x(0) exp(�kt)

e = x� xref = x� 0 = x

Myth: Non-linearity makes things hard

 14

Say I want to solve the same problem with a non-linear system

ẋ = f(x) + g(x)u

u =
1

g(x)
(�f(x)� kx)

ẋ = �kx

x(t) = x(0) exp(�kt)

e = x� xref = x� 0 = x

k > 0 g(x) 6= 0Stability guaranteed when

 15

Why is this tricky?

Is it because of non-linearity?

Because of underactuated dynamics…

Fundamental problem with underactuated systems

 16

Fundamental problem with underactuated systems

 16

Detour: How do we make a pendulum stable?

 17

Detour: How do we make a pendulum stable?

 17

ml2✓̈ +mgl sin ✓ = u

Detour: How do we make a pendulum stable?

 17

ml2✓̈ +mgl sin ✓ = u

What control law should we use to stabilize the pendulum, i.e.

Choose u = ⇡(✓, ✓̇) such that ✓ ! 0

✓̇ ! 0

How does the passive error dynamics behave?

 18

How does the passive error dynamics behave?

 18

e1 = ✓ � 0 = ✓ e2 = ✓̇ � 0 = ✓̇

How does the passive error dynamics behave?

 18

e1 = ✓ � 0 = ✓ e2 = ✓̇ � 0 = ✓̇

e1

e2

Set u=0. Dynamics is not stable.

How do we verify if a controller is stable?

 19

How do we verify if a controller is stable?

 19

ml2✓̈ +mgl sin ✓ = u

How do we verify if a controller is stable?

 19

ml2✓̈ +mgl sin ✓ = u

Lets pick the following law:

u = �K ✓̇

How do we verify if a controller is stable?

 19

ml2✓̈ +mgl sin ✓ = u

Is this stable? How do we know?

Lets pick the following law:

u = �K ✓̇

How do we verify if a controller is stable?

 19

ml2✓̈ +mgl sin ✓ = u

Is this stable? How do we know?

We can simulate the dynamics from different start point and check….

but how many points do we check? what if we miss some points?

Lets pick the following law:

u = �K ✓̇

Key Idea: Think about energy!

 20

V (✓, ✓̇)

✓ ✓̇

Make energy decay to 0 and stay there

 21

Make energy decay to 0 and stay there

 21

V (✓, ˙✓) =
1

2

ml2 ˙✓2 +mgl(1� cos ✓)

> 0

Make energy decay to 0 and stay there

 21

V̇ (✓, ✓̇) = ml2✓̇✓̈ +mgl(sin ✓)✓̇

= ✓̇(u�mgl sin ✓) +mgl(sin ✓)✓̇

= ✓̇u

V (✓, ˙✓) =
1

2

ml2 ˙✓2 +mgl(1� cos ✓)

> 0

Make energy decay to 0 and stay there

 21

V̇ (✓, ✓̇) = ml2✓̇✓̈ +mgl(sin ✓)✓̇

= ✓̇(u�mgl sin ✓) +mgl(sin ✓)✓̇

= ✓̇u

Choose a control law u = �k✓̇

V̇ (✓, ✓̇) = �k✓̇2 < 0

V (✓, ˙✓) =
1

2

ml2 ˙✓2 +mgl(1� cos ✓)

> 0

 22

Lyapunov function:
A generalization of energy

Lyapunov function for a closed-loop system

 23

1. Construct an energy function that is always positive

V (x) > 0, 8x
Energy is only 0 at the origin, i.e. V (0) = 0

2. Choose a control law such that this energy always decreases

V̇ (x) < 0, 8x
Energy rate is 0 at origin, i.e. V̇ (0) = 0

No matter where you start, energy will decay and you will reach 0!

Let’s get provable control for our car!

 24

ẋ = V cos ✓

ẏ = V sin ✓

✓̇ =
V

B
tanu

Dynamics of the car

 25

Let’s get provable control for our car!

V (ect, ✓e) =
1

2
k1e

2
ct +

1

2
✓2e > 0

V̇ (ect, ✓e) = k1ect ˙ect + ✓e✓̇e

Let’s define the following Lyapunov function

Compute derivative

V̇ (ect, ✓e) = k1ectV sin ✓e + ✓e
V

B
tanu

 26

Let’s get provable control for our car!

V̇ (ect, ✓e) = k1ectV sin ✓e + ✓e
V

B
tanu

Trick: Set u intelligently to get this term to always be negative

✓e
V

B
tanu = �k1ectV sin ✓e � k2✓

2
e

tanu = �k1ectB

✓e
sin ✓e �

B

V
k2✓e

u = tan�1

✓
�k1ectB

✓e
sin ✓e �

B

V
k2✓e

◆

 27

(Advanced Reading)

Bank-to-Turn Control for a Small UAV using Backstepping
and Parameter Adaptation

Dongwon Jung and Panagiotis Tsiotras

Overcoming simple assumptions

 28

1. Reference point selection logic does not depend on error

2. Feedforward not taken into account

3. More sophisticated heading error

4. How can we handle steering rate, acceleration, jerk, snap constraints?

