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Recap: PID / Pure Pursuit control

Pros Cons
PID Control Simple law that works Tuning parameters! Doesn’t
pretty well! understand dynamics
Pure Pursuit Cars can travel in arc! No proof of convergence

Can we get some control law that has formal guarantees”
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Stability:

Prove error goes to zero
and stays there



Today s lecture

1. Motivate why underactuated systems are hard to stabilize

2. Lyapunov functions as a tool for stability
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Lyapunov control in action
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What is stability?
lim e(t) =0
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So we want both e(t) — 0 and é(t) — 0

Question: Why does the error oscillate?
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Let’s say we were interested in driving both e.; and 6. to zero

ect = —SIN(Oref)(T — Trer) + cOS(Orer)(Y — Yrer) Oc =0 — Orcy

éct:VSinee Hezw:u

Notice how our control variable affects all the error terms
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How does error evolve in time?
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Let’s say we were interested in driving both e.; and 6. to zero

ect = —SIN(Oref)(T — Trer) + cOS(Orer)(Y — Yrer) Oc =0 — Orcy

éct:VSinee Hezw:u

@ . / » sin(.) > / €t
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Why is this tricky?

Is it because of non-linearity?
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E= —Tref =T —0=2<x

u = —ke = —kx

t = (a — bk)xr = —(bk — a)x

x(t) = x(0) exp(—(bk — a)t)

a
Stability guaranteed when k> —

b
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Myth: Non-linearity makes things hard

Say I want to solve the same problem with a non-linear system
z = f(z)+ g(z)u

e=T — Tt = —0=2x

U= (—f(z) = kx)

& =—kx  x(t) = x(0)exp(—Fkt)

Stability guaranteed when k& > () g(x) # 0
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Why is this tricky?

s it because -linearity?

Because of underactuated dynamics...
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Fundamental problem with underactuated systems
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Fundamental problem with underactuated systems
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Detour: How do we make a pendulum stable?
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Detour: How do we make a pendulum stable?

mi? + mglsinf = wu

What control law should we use to stabilize the pendulum, 1.e.

Choose 4 = 7 (6’7 6’) such that 6 — (0
0 — 0 ;
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How does the passive error dynamics behave?

e1=0—-0=20 eo =0 —0=0

Set u=0. Dynamics is not stable.
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How do we verify it a controller is stable?

! R ml?0 + mglsin§ = u

m

Lets pick the following law:
u=—K6

Is this stable” How do we know?

We can simulate the dynamics from different start point and check....

but how many points do we check” what if we miss some points?
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Key ldea: Think about energy!

V(6,0)
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Make energy decay to O and stay there

. 1 .
V(0,0) = §ml2¢92 + mgl(1 — cos 0)

> ()

V(0,0) = ml?00 + mgl(sin 6)6
= 0(u — mglsin6) + mgl(sin 6)0
— Qu
Choose a control law U = — k0

V(0,0) = —k6? <0
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Lyapunov function:
A generalization of energy
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Lyapunov function for a closed-loop system

1. Construct an energy function that is always positive

Vi(x) > 0,Vx

Energy is only 0 at the origin, i.c. V (0) = 0

2. Choose a control law such that this energy always decreases

Vi(x) <0,Vx

Energy rate is 0 at origin, i.e. V(O) — ()

No matter where you start, energy will decay and you will reach 0! ,



Let's get provable control for our car!

Dynamics of the car

r =V cos@

y =V sinf

.V

0 = —tanu

B
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Let's get provable control for our car!

Let’s define the following Lyapunov function

1 1
Viee,0:) = iklegt + 5«92 > ()

Compute derivative

V(Gct, 96) — klecteét + 6696

: |74
Viee,0.) = kieqVsinb, + HQE tan u
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Let's get provable control for our car!

: |74
Viee,0e) = ki1eqV sinb, + HBE tan u

Trick: Set u intelligently to get this term to always be negative

v

HGE tanu = —kje.V sinf, — kgé’g
kie+B . B
tanu = 12; sin 0, — ngé’e

kie+B B
u:tanl( 1Zt sin 0, — Vk296>
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(Advanced Reading)

Bank-to-Turn Control for a Small UAV using Backstepping

and Parameter Adaptation

Dongwon Jung and Panagiotis Tsiotras
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Overcoming simple assumptions

1. Reference point selection logic does not depend on error
2. Feedforward not taken into account

3. More sophisticated heading error

4. How can we handle steering rate, acceleration, jerk, snap constraints?
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