PID and Pure Pursuit Control

Sanjiban Choudhury

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle
The Control API
The Control API

$x(\tau), y(\tau), \theta(\tau), v(\tau)$

Input
1. Reference path

Output

Control Law
The Control API

\[x(\tau), y(\tau), \theta(\tau), v(\tau) \]

1. Reference path
2. Current state

Output

[\begin{bmatrix} x \\ y \\ \theta \end{bmatrix}]

Input

Control Law
The Control API

\[x(\tau), y(\tau), \theta(\tau), v(\tau) \]

Input
1. Reference path
2. Current state

Output
Control action

Control Law

\[\begin{bmatrix} x \\ y \\ \theta \end{bmatrix} \]

\[\delta \]
Steps to designing a controller

1. Get a reference path / trajectory to track

2. Pick a point on the reference

3. Compute error to reference point

4. Compute control law to minimize error
Rough idea of what happens across timesteps

Robot is trying to **track a desired state** on the reference path

(Take an action to drive down **error** between desired and current state)
Rough idea of what happens across timesteps

Robot is trying to track a desired state on the reference path

(Take an action to drive down error between desired and current state)
Rough idea of what happens across timesteps

Robot is trying to track a desired state on the reference path
(Take an action to drive down error between desired and current state)
Rough idea of what happens across timesteps

Robot is trying to **track a desired state** on the reference path

(Take an action to drive down **error** between desired and current state)
Rough idea of what happens across timesteps

Robot is trying to track a desired state on the reference path

(Take an action to drive down error between desired and current state)
Rough idea of what happens across timesteps

Robot is trying to **track a desired state** on the reference path

(Take an action to drive down **error** between desired and current state)
Steps to designing a controller

1. Get a reference path / trajectory to track

2. Pick a point on the reference

3. Compute error to reference point

4. Compute control law to minimize error
Step 1: Get a reference path

\[x(\tau), y(\tau), \theta(\tau), v(\tau) \]
Step 2: Pick a reference (desired) state

E.g. Pick nearest state / pick state L distance ahead
Step 3: Compute error to this state

Error is simply the state of the car expressed in the frame of the reference (desired) state

\[
\begin{bmatrix}
 x \\
 y \\
 \theta
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 e_{at} \\
 e_{ct} \\
 \theta_e
\end{bmatrix}
\]
Step 3: Compute error to this state

\[
\begin{bmatrix}
x \\
y \\
\theta \\
x_{ref} \\
y_{ref} \\
\theta_{ref}
\end{bmatrix}
\]
Step 3: Compute error to this state
Step 3: Compute error to this state
Step 3: Compute error to this state

Position in frame A

\[A_e = \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} x_{ref} \\ y_{ref} \end{bmatrix} \]
Step 3: Compute error to this state

We want position in frame B

\[B_e = B^A R^A e \]

(rotation of A w.r.t B)
Step 3: Compute error to this state

We want position in frame B

\[
B e = B_A R_A e = R(-\theta_{ref}) \left(\begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} x_{ref} \\ y_{ref} \end{bmatrix} \right)
\]

(rotation of A w.r.t B)

(rotation of A w.r.t B)
Step 3: Compute error to this state

We want position in frame B

\[
B \mathbf{e} = \begin{bmatrix} e_{at} \\ e_{ct} \end{bmatrix} = \begin{bmatrix} \cos(\theta_{ref}) & \sin(\theta_{ref}) \\ -\sin(\theta_{ref}) & \cos(\theta_{ref}) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} x_{ref} \\ y_{ref} \end{bmatrix}
\]
Step 3: Compute error to this state

We heading in frame B

\[\theta_e = \theta - \theta_{ref} \]
Step 3: Compute error to this state

(Along-track) \[e_{at} = \cos(\theta_{ref})(x - x_{ref}) + \sin(\theta_{ref})(y - y_{ref}) \]

(Cross-track) \[e_{ct} = -\sin(\theta_{ref})(x - x_{ref}) + \cos(\theta_{ref})(y - y_{ref}) \]

(Heading) \[\theta_e = \theta - \theta_{ref} \]
1. We will **only control steering angle**; speed set to reference speed.

2. Hence, no real control on along-track error. Ignore for now.

3. Some control laws will only minimize cross-track error, others both heading and cross-track error.
Step 4: Compute control law

Compute control action based on instantaneous error

\[u = K(e) \]

control \hspace{1cm} error

Different laws have different trade-offs, make different assumptions, look at different errors
Different control laws

1. PID control

2. Pure-pursuit control

3. Lyapunov control

4. LQR

5. MPC
Proportional–integral–derivative (PID) controller

Used widely in industrial control from 1900s
Regulate temp, press, speed etc

Do not try this with PID!!!
PID control overview

Select a control law that tries to drive error to zero (and keep it there)
PID control overview

Select a control law that tries to drive error to zero (and keep it there)

\[u = - \left(K_p e_{ct} + K_i \int e_{ct}(t) dt + K_d \dot{e}_{ct} \right) \]

- Proportional (current)
- Integral (past)
- Derivative (future)
Some intuition ...

\[u = - \left(K_p e_{ct} + K_i \int e_{ct}(t) \, dt + K_d \dot{e}_{ct} \right) \]

Proportional (current)
Integral (past)
Derivative (future)

Proportional - get rid of the current error!

Integral - if I am accumulating error, try harder!

Derivative - if I am going to overshoot, slow down!
Proportional control

\[u = -K_p e_{ct} \]

(Gain)
Proportional control

\[u = -K_p e_{ct} \]

(Gain)

\(e_{ct} < 0, u > 0 \)
Proportional control

\[u = -K_p e_{ct} \]

(Gain)

\(e_{ct} > 0, u < 0 \)

\(e_{ct} < 0, u > 0 \)
The proportional gain matters!

What happens when gain is low?

e_{ct}
The proportional gain matters!

What happens when gain is low?
The proportional gain matters!

What happens when gain is low?

What happens when gain is high?
The proportional gain matters!

What happens when gain is low?

What happens when gain is high?
Proportional term

What happens when gain is too high?

\[e_{ct} \gg \frac{u_{\text{max}}}{K_p} \]
Proportional term

What happens when gain is too high?

\[e_{ct} \gg \frac{u_{max}}{K_p} \]
Proportional derivative control

$u = - (K_p e_{ct} + K_d e_{ct})$
Proportional derivative control

\[u = - (K_p e_{ct} + K_d e_{ct}) \]
Proportional derivative control

\[u = - (K_p e_{ct} + K_d \dot{e}_{ct}) \]

where \(e_{ct} \ll 0, \dot{e}_{ct} \approx 0, u \gg 0 \)
Proportional derivative control

\[u = - (K_p e_{ct} + K_d \dot{e}_{ct}) \]
Proportional derivative control

\[u = - \left(K_p e_{ct} + K_d \dot{e}_{ct} \right) \]
How do you evaluate the derivative term?
How do you evaluate the derivative term?

Terrible way: Numerically differentiate error. Why is this a bad idea?
How do you evaluate the derivative term?

Terrible way: Numerically differentiate error. Why is this a bad idea?

Smart way: Analytically compute the derivative of the cross track error.
How do you evaluate the derivative term?

Terrible way: Numerically differentiate error. Why is this a bad idea?

Smart way: Analytically compute the derivative of the cross track error

\[e_{ct} = -\sin(\theta_{ref})(x - x_{ref}) + \cos(\theta_{ref})(y - y_{ref}) \]
How do you evaluate the derivative term?

Terrible way: Numerically differentiate error. Why is this a bad idea?

Smart way: Analytically compute the derivative of the cross track error

\[e_{ct} = -\sin(\theta_{ref})(x - x_{ref}) + \cos(\theta_{ref})(y - y_{ref}) \]

\[\dot{e}_{ct} = -\sin(\theta_{ref})\dot{x} + \cos(\theta_{ref})\dot{y} \]

\[= -\sin(\theta_{ref})V \cos(\theta) + \cos(\theta_{ref})V \sin(\theta) \]

\[= V \sin(\theta - \theta_{ref}) = V \sin(\theta_e) \]
How do you evaluate the derivative term?

Terrible way: Numerically differentiate error. Why is this a bad idea?

Smart way: Analytically compute the derivative of the cross track error

$$e_{ct} = -\sin(\theta_{ref})(x - x_{ref}) + \cos(\theta_{ref})(y - y_{ref})$$

$$\dot{e}_{ct} = -\sin(\theta_{ref})\dot{x} + \cos(\theta_{ref})\dot{y}$$

$$= -\sin(\theta_{ref})V\cos(\theta) + \cos(\theta_{ref})V\sin(\theta)$$

$$= V\sin(\theta - \theta_{ref}) = V\sin(\theta_{e})$$

New control law! Penalize error in cross track and in heading

$$u = -\left(K_p e_{ct} + K_d V \sin \theta_{e}\right)$$
Proportional integral control

\[u = - \left(K_p e_{ct} + K_i \int e_{ct}(t) \, dt \right) \]
Proportional integral control

\[u = -\left(K_p e_{ct} + K_i \int e_{ct}(t) \, dt \right) \]

Only Proportional cannot overcome wind!
Proportional integral control

\[u = - \left(K_p e_{ct} + K_i \int e_{ct}(t) dt \right) \]

Only Proportional cannot overcome wind!
Different control laws

1. PID control

2. Pure-pursuit control

3. Lyapunov control

4. LQR

5. MPC
Pure Pursuit Control

Aerial combat in which aircraft *pursues* another aircraft by pointing its nose directly towards it

Similar to carrot on a stick!
Key Idea:

The car is always moving in a circular arc
Consider a reference at a lookahead distance

Problem: Can we solve for a steering angle that guarantees that the car will pass through the reference?

\[
\left\| \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} x_{ref} \\ y_{ref} \end{bmatrix} \right\| = L
\]
Solution: Compute a circular arc

We can always solve for an arc that passes through a lookahead point.

Note: As the car moves forward, the point keeps moving.
1. Find a lookahead and compute arc
2. Move along the arc
3. Go to step 1
Pure pursuit: Keep chasing lookahead

1. Find a lookahead and compute arc
2. Move along the arc
3. Go to step 1
Pure pursuit: Keep chasing looakahead

1. Find a lookahead and compute arc
2. Move along the arc
3. Go to step 1
Pure pursuit: Keep chasing lookahead

1. Find a lookahead and compute arc
2. Move along the arc
3. Go to step 1
Pure pursuit: Keep chasing lookahead

1. Find a lookahead and compute arc
2. Move along the arc
3. Go to step 1
Pure pursuit: Keep chasing lookahead

1. Find a lookahead and compute arc
2. Move along the arc
3. Go to step 1
Pure pursuit: Keep chasing lookahead

1. Find a lookahead and compute arc
2. Move along the arc
3. Go to step 1
Control law derivation: Solve for arc R
Control law derivation: Solve for arc
Control law derivation: Solve for arc

\[\alpha = \tan^{-1}\left(\frac{y_{\text{ref}} - y}{x_{\text{ref}} - x}\right) - \theta \]
Control law derivation: Solve for arc

\[\alpha = \tan^{-1} \left(\frac{y_{\text{ref}} - y}{x_{\text{ref}} - x} \right) - \theta \]

\[\sin \alpha = \frac{L}{2R} \]
Control law derivation: Solve for arc

\[\alpha = \tan^{-1} \left(\frac{y_{ref} - y}{x_{ref} - x} \right) - \theta \]

\[\sin \alpha = \frac{L}{2R} \]

\[R = \frac{L}{2 \sin \alpha} \]
Control law derivation

\[\dot{\theta} = \omega = \frac{V}{R} = \frac{2V \sin \alpha}{L} \]

\[\dot{\theta} = \frac{V}{B} \tan u \]

\[u = \tan^{-1} \left(\frac{2B \sin \alpha}{L} \right) \]
Question: How do I choose L?
Question: How do I choose L?
Question: How do I choose L?