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Announcements

Deadline for labl extended to Wednesday 4/30 at 11:59 p.m
This is the due date for the writeup

The lab evaluation is still on Thursday 4/25
from 9.00 a.m - 12:00 p.m

Please continue to update blogs by Friday of each week



What is a map?



Do all maps convey the same information?
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Do all maps convey the same information?
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Do all maps convey the same information?
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Maps are a summary of information about the world



Maps are a summary of information about the world

What sort of information? Depends on the task



Maps are a summary of information about the world

What sort of information? Depends on the task

Task also determines how we
query, update, store maps



Today's objective

1. Framework / taxonomy to think about maps

2. Look at various maps and the underlying tasks they serve

3. Distance map



What do we want from maps?’

. Information - What task does it help me solve?
(Help me localize, help me navigate, help humans

navigate / plan their lives etc)

. Query - Can we query it online?” How often?

. Updatable - Can we update it online? Can it deal with

noisy measurements?

. Memory - How much storage does it need? Is it
transportable?” How does it scale with time? Scale with

amount of stuff we see 7



Example 1: Occupancy grids




Example 1: Occupancy grids

Category Details

Information

Query

Update

Memory



Occupancy grids in action

“Autonomous Multi-Floor Indoor Navigation with a Computationally
Constrained MAV”, S. Shen, N. Michael, V.Kumar, 2010
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Occupancy grids in action

“Autonomous Multi-Floor Indoor Navigation with a Computationally
Constrained MAV”, S. Shen, N. Michael, V.Kumar, 2010
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Example 1: Occupancy grids

Category

Details

Information

Query

Update

Memory
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Example 1: Occupancy grids

Category Details

Discretized likelihood of occupancy ( free/occ/unknown)
Information Useful for exploration (go to unknown areas)
Useful for safe navigation (keep robot in known free space)

Query

Update

Memory

11



Example 1: Occupancy grids

Category Details

Discretized likelihood of occupancy ( free/occ/unknown)
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Example 1: Occupancy grids

Category Details

Discretized likelihood of occupancy ( free/occ/unknown)
Information Useful for exploration (go to unknown areas)
Useful for safe navigation (keep robot in known free space)

Query Cheap: O(1)

Can deal with noisy sensors (log likelihood update)

Update Updates equal ray-casting (O(l) where 1 is length of ray)

Memory
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Example 1: Occupancy grids

Category Details

Discretized likelihood of occupancy ( free/occ/unknown)
Information Useful for exploration (go to unknown areas)
Useful for safe navigation (keep robot in known free space)

Query Cheap: O(1)

Can deal with noisy sensors (log likelihood update)

Update Updates equal ray-casting (O(1) where 1 is length of ray)
Bounded
Memory Can still be large if we want really fine resolution

Need to allocate all the memory upfront

11



Problems with occupancy grids



Problems with occupancy grids

1. Memory scales with distance travelled in any
one direction
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Problems with occupancy grids

1. Memory scales with distance travelled in any
one direction

2. Do | need high resolution information
everywhere?

12



Example 2: Occupancy Trees (OctoMap)

Hornung et al. 2013

Tree-based data structure

Recursive sub-division of space

Query maps at multiple-resolutions!
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Example 2: Occupancy Trees (OctoMap)

Hornung et al. 2013

Tree-based data structure

Recursive sub-division of space

Query maps at multiple-resolutions!

https://octomap.github.io/
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Example 2: OctoMap
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Example 2: OctoMap
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Example 2: OctoMap

Category Details

Information

Query

Update

Memory
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Example 2: OctoMap

Category Details

Same as occupancy grids
Information Stores information at multiple resolutions.
Usetul for large scale exploration, multi-res planning.

Query

Update

Memory
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Example 2: OctoMap

Category Details

Same as occupancy grids
Information Stores information at multiple resolutions.
Usetul for large scale exploration, multi-res planning.

Little expensive : O(log n), where n is the number of nodes

Query

In tree

Update

Memory
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Example 2: OctoMap

Category Details

Same as occupancy grids

Information Stores information at multiple resolutions.

Query

Update

Memory

Usetul for large scale exploration, multi-res planning.

Little expensive : O(log n), where n is the number of nodes

In tree

Similar to occupancy grids, extra O(log n) complexity
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Example 2: OctoMap

Category Details
Same as occupancy grids
Information Stores information at multiple resolutions.
Usetul for large scale exploration, multi-res planning.
Quer Little expensive : O(log n), where n is the number of nodes
Y in tree
Update Similar to occupancy grids, extra O(log n) complexity
Much smaller than occupancy grids (proportional to
Memory pancy grids (prop

amount of stuff in the world)

15



ls the world always 3D?



—ls—the—worta—atways—sb-+—

Do we care about 3D7



ight map

2.5D he

Example 3
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Example 3: 2.5D height map

Category

Details

Information

Query

Update

Memory
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Example 3: 2.5D height map

Category Details
Image where each pixel denotes height.
Information Useful for mapping terrain where for overhead flight.
Don’t use when flying underneath objects
Query
Update

Memory
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Example 3: 2.5D height map

Category Details
Image where each pixel denotes height.
Information Useful for mapping terrain where for overhead flight.
Don’t use when flying underneath objects
Query O(1)
Update

Memory
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Example 3: 2.5D height map

Category Details
Image where each pixel denotes height.
Information Useful for mapping terrain where for overhead flight.
Don’t use when flying underneath objects
Query O(1)
Can handle noisy measurements by defining a Bayes filter
Update

Memory

for height of each cell.
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Example 3: 2.5D height map

Category Details
Image where each pixel denotes height.
Information Useful for mapping terrain where for overhead flight.
Don’t use when flying underneath objects
Query O(1)
Can handle noisy measurements by defining a Bayes filter
Update

Memory

for height of each cell.

Very cheap! (2D grid)
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What are my options if | don't want
to discretize?

19



Selection Box Editing Mode
Max coordinates: (0.47053, 0.148309, 0.366711)
Min coordinates: (-0.250932, -0.810572, 0.138992)

Example 4: Point cloud

courtesy Ji Zhang

20



Example 4: Point cloud




Example 4: Point cloud




Example 4: Point clouds

Category Details

Surface of obstacles (no discretization)
Information Usetul for 3D reconstruction
Very accurate laser based odometry.

Typical query - give me the closest point / set of points

uer
Query Naive query is O(N) (remember N is huge!!!)
Easy to update (just dump points)
Update Cannot deal with noisy measurements
Unbounded - can always keep adding points on top of each
Memory ys keep g p D

other indefinitely:.
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Example 5:

RN
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Surface representations

* Handheld RGB-D
sensor ($180)

e Real-time with
GPU processing

LSS,

courtesy M.Kaess
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Example 5: Surface representations

Category Details
List of triangles representing surface
Information No discretization, arbitrary surfaces
Used for computing object object interactions
Find the closest surface.
Query . |
Very naively O(N) but can get massive speedups
Can be updated online (albeit non-trivial
Update pee . ( )
Very susceptible to noisy sensors
Memory Proportional to amount of surface

24



Maps that help robots localize

25



Example 6: Landmark maps

http://www.informatik.uni-bremen.de/~ufrese/slamvideos1 _e.html Courtesy U. Frese
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Example 6: Landmark maps

Category Details
: Localization (correspondence between images at different
Information .
timesteps)
Typical query - give me the closest landmark
Query . .
Naive query is O(N)
Easy to update (just dump landmarks
Update v o EDTE : . P )
Need outlier rejection
Memory Unbounded (but usually small as landmarks are sparse)

27



Example 7: Topological representations
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Example 7: Topological representations

Category Details
Graph where vertices are landmarks (e.g. rooms in a
building), and edges represent relationships (connections)
: High level navigation tasks which are specified on the
Information
topomap.
Localize robot on the map by finding correspondence with
vertices.
Query Cheap graph query
Update Non-trivial / mostly done offline
Memory Low

29



Applications with multiple map representations

Bonnatti et al. 2019

30



Applications with multiple map representations

Bonnatti et al. 2019
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Maps are not just ways of storing
sensor data

Some maps are computational
operations on other maps

31



Distance map

32



Why do we need distance?

Plan a path
Why do we

need a map”?’

that penalizes
proximity to
obstacles

33



Desiderata: Map storing (truncated) distance

Input:
Binary map
of the world

Output:
Map of
same slze
storing
truncated
distance

34



Example 8: Distance map

Category Details
Information Truncated distance to obstacles
Query O(1)
We want to incrementally update this map
Update Ideally O(k) where k is the number of cells which changed

Memory

distance value

Same as the underlying occupancy grid

35



How do we efficiently calculate
distance map?

36



Dynamic programming to the rescue!

Initialize distance d(i) for free cells to Inf

Insert all boundary pixels to queue Q)
While Q not empty

x = Q.pop()

for each n in Neigbour(x)
d(n) = min(d(n), v(x) + dis(x,n)
if d(n) <= dmax

Q.insert(n)

37



Dynamic programming to the rescue!

Initialize distance d(i) for free cells to Inf

Insert all boundary pixels to queue Q)
While Q not empty

x = Q.pop()

for each n in Neigbour(x)
d(n) = min(d(n), v(x) + dis(x,n)
if d(n) <= dmax

Q.insert(n)
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How can we incrementally update
this map?

38



Tale of two wavefronts

LOWER (when you add obstacle)

RAISE (when you delete obstacle)



When obstacle is added

New obstacle
Existing '-i added.
distance LOWER
map \i\ wavefront
started
Overwrite
distances ot
0
if smaller fp ‘
wavelron
value.
whenever
ou meet
N Remember yh, b
igher
closest
distance
obstacle 10




When obstacle is deleted

Existing

distance

map

Set d=dmax

if closest

obstacle was

deleted.

Stop

wavefront

otherwise.

Obstacle
deleted
RAISE

wavefront
started

Boundary
cells
trigger
LOWER

wavelront
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Template for incremental dynamic programming

Input: Cells which changed status (obstacles added / removed)

Insert all changed cells into a queue Q

While Q not empty

Node n = Q.pop()
If n is over consistent (d_old > d new), lower value

If n is under consistent (d_old < d new), raise value

Add neighbors whose values need to be changed.

42



Incremental Euclidean Distance Mapping

py BRI | |
&y
Bed ]
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7. Lau et al. 2010 43

“Improved updating of Euclidean distance maps and Voronoi diagrams
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Incremental Euclidean Distance Mapping

py BRI | |
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“Improved updating of Euclidean distance maps and Voronoi diagrams”, Lau et al. 2010 43



Incremental Euclidean Distance Mapping
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Truncated signed distance map

We can easily modify this algorithm to tell us distance
inside an object.

Signed distance - negative inside object, positive outside

Signed distance important in motion planning!
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