
 1

Sanjiban Choudhury

Map Representations

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle

Slides adapted from Cyrill Stachniss, Michael Kaess, S.Scherer

Announcements

 2

Deadline for lab1 extended to Wednesday 4/30 at 11:59 p.m

This is the due date for the writeup 

The lab evaluation is still on Thursday 4/25
from 9.00 a.m - 12:00 p.m

Please continue to update blogs by Friday of each week

 3

What is a map?

Do all maps convey the same information?

 4

Do all maps convey the same information?

 4

Do all maps convey the same information?

 4

Do all maps convey the same information?

 4

 5

 5

Maps are a summary of information about the world

 5

Maps are a summary of information about the world

What sort of information? Depends on the task

 5

Maps are a summary of information about the world

What sort of information? Depends on the task

Task also determines how we
query, update, store maps

Today’s objective

 6

1. Framework / taxonomy to think about maps

2. Look at various maps and the underlying tasks they serve

3. Distance map

What do we want from maps?

 7

1. Information - What task does it help me solve?  
(Help me localize, help me navigate, help humans
navigate / plan their lives etc)

3. Updatable - Can we update it online? Can it deal with
noisy measurements?

2. Query - Can we query it online? How often?

4. Memory - How much storage does it need? Is it
transportable? How does it scale with time? Scale with
amount of stuff we see ?

Example 1: Occupancy grids

 8
16-833, Spring 201843

Occupancy Grid Laser Map

 9

Category Details

Information
Discretized likelihood of occupancy (free/occ/unknown)
Useful for exploration (go to unknown areas)  
Useful for safe navigation (keep robot in known free space)

Query Cheap: O(1)

Update Can deal with noisy sensors (log likelihood update)
Updates equal ray-casting (O(l) where l is length of ray)

Memory
Bounded
Can still be large if we want really fine resolution
Need to allocate all the memory upfront

Example 1: Occupancy grids

Occupancy grids in action

 10

“Autonomous Multi-Floor Indoor Navigation with a Computationally
Constrained MAV”, S. Shen, N. Michael, V.Kumar, 2010

Occupancy grids in action

 10

“Autonomous Multi-Floor Indoor Navigation with a Computationally
Constrained MAV”, S. Shen, N. Michael, V.Kumar, 2010

 11

Category Details

Information
Discretized likelihood of occupancy (free/occ/unknown)
Useful for exploration (go to unknown areas)  
Useful for safe navigation (keep robot in known free space)

Query Cheap: O(1)

Update Can deal with noisy sensors (log likelihood update)
Updates equal ray-casting (O(l) where l is length of ray)

Memory
Bounded
Can still be large if we want really fine resolution
Need to allocate all the memory upfront

Example 1: Occupancy grids

 11

Category Details

Information
Discretized likelihood of occupancy (free/occ/unknown)
Useful for exploration (go to unknown areas)  
Useful for safe navigation (keep robot in known free space)

Query Cheap: O(1)

Update Can deal with noisy sensors (log likelihood update)
Updates equal ray-casting (O(l) where l is length of ray)

Memory
Bounded
Can still be large if we want really fine resolution
Need to allocate all the memory upfront

Example 1: Occupancy grids

 11

Category Details

Information
Discretized likelihood of occupancy (free/occ/unknown)
Useful for exploration (go to unknown areas)  
Useful for safe navigation (keep robot in known free space)

Query Cheap: O(1)

Update Can deal with noisy sensors (log likelihood update)
Updates equal ray-casting (O(l) where l is length of ray)

Memory
Bounded
Can still be large if we want really fine resolution
Need to allocate all the memory upfront

Example 1: Occupancy grids

 11

Category Details

Information
Discretized likelihood of occupancy (free/occ/unknown)
Useful for exploration (go to unknown areas)  
Useful for safe navigation (keep robot in known free space)

Query Cheap: O(1)

Update Can deal with noisy sensors (log likelihood update)
Updates equal ray-casting (O(l) where l is length of ray)

Memory
Bounded
Can still be large if we want really fine resolution
Need to allocate all the memory upfront

Example 1: Occupancy grids

 11

Category Details

Information
Discretized likelihood of occupancy (free/occ/unknown)
Useful for exploration (go to unknown areas)  
Useful for safe navigation (keep robot in known free space)

Query Cheap: O(1)

Update Can deal with noisy sensors (log likelihood update)
Updates equal ray-casting (O(l) where l is length of ray)

Memory
Bounded
Can still be large if we want really fine resolution
Need to allocate all the memory upfront

Example 1: Occupancy grids

Problems with occupancy grids

 12

Problems with occupancy grids

 12

1. Memory scales with distance travelled in any
one direction

Problems with occupancy grids

 12

1. Memory scales with distance travelled in any
one direction

2. Do I need high resolution information
everywhere?

Example 2: Occupancy Trees (OctoMap)

 13

5

Map Representations

3D voxel grids

§  Pro:
§  Probabilistic update
§ Constant access time

§  Contra:
§ Memory requirement

§ Extent of map has to be known
§ Complete map is allocated in memory

Map Representations

2.5D Maps
§  2D grid
§  Height value(s) in each cell

§  Pro:
§ Memory efficient

§  Contra:
§ Not completely probabilistic
§ No distinction between free and unknown

space

Map Representations

Octrees

§  Tree-based data structure
§  Recursive subdivision of

space into octants
§  Volumes allocated

as needed
§  Multi-resolution

Map Representations

Octrees

§  Pro:
§  Full 3D model
§  Probabilistic
§  Flexible, multi-resolution
§ Memory efficient

§  Contra:
§  Implementation can be tricky

(memory, update, map files, …)

5

Map Representations

3D voxel grids

§  Pro:
§  Probabilistic update
§ Constant access time

§  Contra:
§ Memory requirement

§ Extent of map has to be known
§ Complete map is allocated in memory

Map Representations

2.5D Maps
§  2D grid
§  Height value(s) in each cell

§  Pro:
§ Memory efficient

§  Contra:
§ Not completely probabilistic
§ No distinction between free and unknown

space

Map Representations

Octrees

§  Tree-based data structure
§  Recursive subdivision of

space into octants
§  Volumes allocated

as needed
§  Multi-resolution

Map Representations

Octrees

§  Pro:
§  Full 3D model
§  Probabilistic
§  Flexible, multi-resolution
§ Memory efficient

§  Contra:
§  Implementation can be tricky

(memory, update, map files, …)

Tree-based data structure

Recursive sub-division of space 
 
Query maps at multiple-resolutions!

Hornung et al. 2013

Example 2: Occupancy Trees (OctoMap)

 13

5

Map Representations

3D voxel grids

§  Pro:
§  Probabilistic update
§ Constant access time

§  Contra:
§ Memory requirement

§ Extent of map has to be known
§ Complete map is allocated in memory

Map Representations

2.5D Maps
§  2D grid
§  Height value(s) in each cell

§  Pro:
§ Memory efficient

§  Contra:
§ Not completely probabilistic
§ No distinction between free and unknown

space

Map Representations

Octrees

§  Tree-based data structure
§  Recursive subdivision of

space into octants
§  Volumes allocated

as needed
§  Multi-resolution

Map Representations

Octrees

§  Pro:
§  Full 3D model
§  Probabilistic
§  Flexible, multi-resolution
§ Memory efficient

§  Contra:
§  Implementation can be tricky

(memory, update, map files, …)

5

Map Representations

3D voxel grids

§  Pro:
§  Probabilistic update
§ Constant access time

§  Contra:
§ Memory requirement

§ Extent of map has to be known
§ Complete map is allocated in memory

Map Representations

2.5D Maps
§  2D grid
§  Height value(s) in each cell

§  Pro:
§ Memory efficient

§  Contra:
§ Not completely probabilistic
§ No distinction between free and unknown

space

Map Representations

Octrees

§  Tree-based data structure
§  Recursive subdivision of

space into octants
§  Volumes allocated

as needed
§  Multi-resolution

Map Representations

Octrees

§  Pro:
§  Full 3D model
§  Probabilistic
§  Flexible, multi-resolution
§ Memory efficient

§  Contra:
§  Implementation can be tricky

(memory, update, map files, …)

Tree-based data structure

Recursive sub-division of space 
 
Query maps at multiple-resolutions!

Hornung et al. 2013

4 Armin Hornung et al.

have a number of disadvantages as detailed at the beginning
of this section.

Yguel et al. (2007b) presented a 3D map based on
the Haar wavelet data structure. This representation is also
multi-resolution and probabilistic. However, the authors did
not evaluate applications to 3D modeling in-depth. In their
evaluation, unknown areas are not modeled and only a sin-
gle simulated 3D dataset is used. Whether this map structure
is as memory-efficient as octrees is hard to assess without a
publicly available implementation.

Surface representations such as the 3D Normal Dis-
tribution Transform (Magnusson et al., 2007) or Sur-
fels (Habbecke and Kobbelt, 2007) were recently used for
3D path planning (Stoyanov et al., 2010) and object model-
ing (Weise et al., 2009; Krainin et al., 2011). Similarly, an
accurate real-time 3D SLAM system based on a low-cost
depth camera and GPU processing was proposed by New-
combe et al. (2011) to reconstruct dense surfaces in indoor
scenes. Recently, this work has been extended to work in
larger indoor environments (Whelan et al., 2012). However,
surface representations are unable to distinguish between
free and unknown space, may require large memory partic-
ularly outdoors, and are often based on strong assumptions
about the corresponding environment. In mobile manipula-
tion scenarios, for example, being able to differentiate free
from unknown space is essential for safe navigation.

Finally, to the best of our knowledge, no open source im-
plementation of a 3D occupancy mapping framework meet-
ing the requirements outlined in the introduction is freely
available.

3 OctoMap Mapping Framework

The approach proposed in this paper uses a tree-based rep-
resentation to offer maximum flexibility with regard to the
mapped area and resolution. It performs a probabilistic oc-
cupancy estimation to ensure updatability and to cope with
sensor noise. Furthermore, compression methods ensure the
compactness of the resulting models.

3.1 Octrees

An octree is a hierarchical data structure for spatial subdi-
vision in 3D (Meagher, 1982; Wilhelms and Van Gelder,
1992). Each node in an octree represents the space contained
in a cubic volume, usually called a voxel. This volume is
recursively subdivided into eight sub-volumes until a given
minimum voxel size is reached, as illustrated in Fig. 2. The
minimum voxel size determines the resolution of the octree.
Since an octree is a hierarchical data structure, the tree can
be cut at any level to obtain a coarser subdivision if the in-
ner nodes are maintained accordingly. An example of an oc-

Fig. 2 Example of an octree storing free (shaded white) and occupied
(black) cells. The volumetric model is shown on the left and the corre-
sponding tree representation on the right.

Fig. 3 By limiting the depth of a query, multiple resolutions of the
same map can be obtained at any time. Occupied voxels are displayed
in resolutions 0.08 m, 0.64 , and 1.28 m.

tree map queried for occupied voxels at several resolutions
is shown in Fig. 3.

In its most basic form, octrees can be used to model a
Boolean property. In the context of robotic mapping, this
is usually the occupancy of a volume. If a certain volume
is measured as occupied, the corresponding node in the oc-
tree is initialized. Any uninitialized node could be free or
unknown in this Boolean setting. To resolve this ambigu-
ity, we explicitly represent free volumes in the tree. These
are created in the area between the sensor and the measured
end point, e.g., along a ray determined with raycasting. Ar-
eas that are not initialized implicitly model unknown space.
An illustration of an octree containing free and occupied
nodes from real laser sensor data can be seen in Fig. 4. Using
Boolean occupancy states or discrete labels allows for com-
pact representations of the octree: If all children of a node
have the same state (occupied or free) they can be pruned.
This leads to a substantial reduction in the number of nodes
that need to be maintained in the tree.

In robotic systems, one typically has to cope with sen-
sor noise and temporarily or permanently changing environ-
ments. In such cases, a discrete occupancy label will not
be sufficient. Instead, occupancy has to be modeled prob-
abilistically, for instance by applying occupancy grid map-
ping (Moravec and Elfes, 1985). However, such a proba-
bilistic model lacks the possibility of lossless compression
by pruning.

The approach presented in this paper offers means of
combining the compactness of octrees that use discrete la-
bels with the updatability and flexibility of probabilistic
modeling as we will discuss in Sect. 3.4.

https://octomap.github.io/

Example 2: OctoMap

 14

Example 2: OctoMap

 14

 15

Category Details

Information
Same as occupancy grids
Stores information at multiple resolutions.
Useful for large scale exploration, multi-res planning.

Query Little expensive : O(log n), where n is the number of nodes
in tree

Update Similar to occupancy grids, extra O(log n) complexity

Memory Much smaller than occupancy grids (proportional to
amount of stuff in the world)

Example 2: OctoMap

 15

Category Details

Information
Same as occupancy grids
Stores information at multiple resolutions.
Useful for large scale exploration, multi-res planning.

Query Little expensive : O(log n), where n is the number of nodes
in tree

Update Similar to occupancy grids, extra O(log n) complexity

Memory Much smaller than occupancy grids (proportional to
amount of stuff in the world)

Example 2: OctoMap

 15

Category Details

Information
Same as occupancy grids
Stores information at multiple resolutions.
Useful for large scale exploration, multi-res planning.

Query Little expensive : O(log n), where n is the number of nodes
in tree

Update Similar to occupancy grids, extra O(log n) complexity

Memory Much smaller than occupancy grids (proportional to
amount of stuff in the world)

Example 2: OctoMap

 15

Category Details

Information
Same as occupancy grids
Stores information at multiple resolutions.
Useful for large scale exploration, multi-res planning.

Query Little expensive : O(log n), where n is the number of nodes
in tree

Update Similar to occupancy grids, extra O(log n) complexity

Memory Much smaller than occupancy grids (proportional to
amount of stuff in the world)

Example 2: OctoMap

 15

Category Details

Information
Same as occupancy grids
Stores information at multiple resolutions.
Useful for large scale exploration, multi-res planning.

Query Little expensive : O(log n), where n is the number of nodes
in tree

Update Similar to occupancy grids, extra O(log n) complexity

Memory Much smaller than occupancy grids (proportional to
amount of stuff in the world)

Example 2: OctoMap

 16

Is the world always 3D?

 16

Is the world always 3D?

Do we care about 3D?

Example 3: 2.5D height map

 17

 18

Category Details

Information
Image where each pixel denotes height.
Useful for mapping terrain where for overhead flight.
Don’t use when flying underneath objects

Query O(1)

Update Can handle noisy measurements by defining a Bayes filter
for height of each cell.

Memory Very cheap! (2D grid)

Example 3: 2.5D height map

 18

Category Details

Information
Image where each pixel denotes height.
Useful for mapping terrain where for overhead flight.
Don’t use when flying underneath objects

Query O(1)

Update Can handle noisy measurements by defining a Bayes filter
for height of each cell.

Memory Very cheap! (2D grid)

Example 3: 2.5D height map

 18

Category Details

Information
Image where each pixel denotes height.
Useful for mapping terrain where for overhead flight.
Don’t use when flying underneath objects

Query O(1)

Update Can handle noisy measurements by defining a Bayes filter
for height of each cell.

Memory Very cheap! (2D grid)

Example 3: 2.5D height map

 18

Category Details

Information
Image where each pixel denotes height.
Useful for mapping terrain where for overhead flight.
Don’t use when flying underneath objects

Query O(1)

Update Can handle noisy measurements by defining a Bayes filter
for height of each cell.

Memory Very cheap! (2D grid)

Example 3: 2.5D height map

 18

Category Details

Information
Image where each pixel denotes height.
Useful for mapping terrain where for overhead flight.
Don’t use when flying underneath objects

Query O(1)

Update Can handle noisy measurements by defining a Bayes filter
for height of each cell.

Memory Very cheap! (2D grid)

Example 3: 2.5D height map

 19

What are my options if I don’t want
to discretize?

Example 4: Point cloud

 20courtesy Ji Zhang

 21

Example 4: Point cloud

 21

Example 4: Point cloud

Example 4: Point clouds

 22

Category Details

Information
Surface of obstacles (no discretization)
Useful for 3D reconstruction  
Very accurate laser based odometry.

Query Typical query - give me the closest point / set of points
Naive query is O(N) (remember N is huge!!!)

Update
Easy to update (just dump points)
Cannot deal with noisy measurements

Memory Unbounded - can always keep adding points on top of each
other indefinitely.

Example 5: Surface representations

 2316-833, Spring 201853

Surface Representations: Triangle Mesh
• Handheld RGB-D

sensor ($180)
• Real-time with

GPU processing

courtesy M.Kaess

Example 5: Surface representations

 24

Category Details

Information
List of triangles representing surface
No discretization, arbitrary surfaces
Used for computing object object interactions

Query Find the closest surface.
Very naively O(N) but can get massive speedups

Update Can be updated online (albeit non-trivial)
Very susceptible to noisy sensors

Memory Proportional to amount of surface

 25

Maps that help robots localize

Example 6: Landmark maps

 26
16-833, Spring 201835

http://www.informatik.uni-bremen.de/~ufrese/slamvideos1_e.html Courtesy U. Frese

Example 6: Landmark maps

 27

Category Details

Information Localization (correspondence between images at different
timesteps)

Query Typical query - give me the closest landmark
Naive query is O(N)

Update Easy to update (just dump landmarks)
Need outlier rejection

Memory Unbounded (but usually small as landmarks are sparse)

Example 7: Topological representations

 28

16-833, Spring 201856

Topologic vs. Geometric Maps

Courtesy M.Kaess

 29

Category Details

Information

Graph where vertices are landmarks (e.g. rooms in a
building), and edges represent relationships (connections)

High level navigation tasks which are specified on the
topomap. 

Localize robot on the map by finding correspondence with
vertices.

Query Cheap graph query

Update Non-trivial / mostly done offline

Memory Low

Example 7: Topological representations

 30

Applications with multiple map representations

Bonnatti et al. 2019

 30

Applications with multiple map representations

Bonnatti et al. 2019

 31

Maps are not just ways of storing
sensor data

Some maps are computational
operations on other maps

 32

Distance map

Why do we need distance?

 33

Plan a path
that penalizes
proximity to

obstacles

Why do we
need a map?

Desiderata: Map storing (truncated) distance

 34

Input:
Binary map
of the world

Output:
Map of

same size
storing

truncated
distance

Example 8: Distance map

 35

Category Details

Information Truncated distance to obstacles

Query O(1)

Update
We want to incrementally update this map
Ideally O(k) where k is the number of cells which changed
distance value

Memory Same as the underlying occupancy grid

 36

How do we efficiently calculate
distance map?

Dynamic programming to the rescue!

 37

Initialize distance d(i) for free cells to Inf

Insert all boundary pixels to queue Q

While Q not empty

x = Q.pop()

for each n in Neigbour(x)

d(n) = min(d(n), v(x) + dis(x,n)

if d(n) <= dmax

Q.insert(n)

Dynamic programming to the rescue!

 37

Initialize distance d(i) for free cells to Inf

Insert all boundary pixels to queue Q

While Q not empty

x = Q.pop()

for each n in Neigbour(x)

d(n) = min(d(n), v(x) + dis(x,n)

if d(n) <= dmax

Q.insert(n)

 38

How can we incrementally update
this map?

 39

Tale of two wavefronts

LOWER (when you add obstacle)

RAISE (when you delete obstacle)

When obstacle is added

 40

New obstacle
added.

LOWER
wavefront
started

Existing
distance

map

Overwrite
distances
if smaller

value.

Remember
closest
obstacle

Stop
wavefront
whenever
you meet
higher

distance

When obstacle is deleted

 41

Existing
distance

map

Obstacle
deleted
RAISE

wavefront
started

Set d=dmax
if closest

obstacle was
deleted.

Stop
wavefront
otherwise.

Boundary
cells

trigger
LOWER
wavefront

 42

Template for incremental dynamic programming
Input: Cells which changed status (obstacles added / removed)

Insert all changed cells into a queue Q

While Q not empty

Node n = Q.pop()

If n is over consistent (d_old > d_new), lower value

If n is under consistent (d_old < d_new), raise value

Add neighbors whose values need to be changed.

Incremental Euclidean Distance Mapping

 43

A

raise

lower

B

lower

lower

C

D

Fig. 2. Distance map update between two configurations (A) and (D). Black represents occupied cells, brightness increases with distance. The inserted
obstacle (blue) initiates a “lower” wavefront shown in the intermediate steps (B) and (C) that updates the distances in the cells up to the point where a
different obstacle is closer. The removed obstacle (red outline) starts a “raise” wavefront (B) that clears the cells that lost their closest obstacle. When it
comes to a halt it initiates a “lower” wavefront (C) that recomputes the distances for the cleared cells (white) on the basis of the remaining obstacles.

priority queue that sorts the enqueued cells by distance.
Both the raise wavefronts (Alg. 1, line 20) and the lower
wavefronts (line 28) enqueue the neighbors of a processed
cell to propagate the wavefront.

A. Data fields and initialization

The output of an update step is a distance map dist , which
stores in each cell s its Euclidean distance to the closest
occupied cell in the corresponding grid map. The obstacle
reference map obst stores for all cells the coordinates of their
closest occupied cell. If s is occupied, it has a distance of
dists=0 and refers to itself as closest obstacle location, i.e.,
obsts = s. The function isOcc(s) returns whether the latter
condition is true for a given cell s. Upon initialization, all
values are undetermined, i.e., dists=1 and obsts=cleared.
The function clearCell(s) used in the algorithm also resets
s to these values.

All cells that need processing by either a lower or raise
wavefront are inserted into a priority queue open that is
sorted by a distance value. The function pop(open) returns
the cell s with the lowest enqueued distance and removes
it from the queue. The method insert(open, s, d) inserts s
into the queue with distance d or updates the priority if
s is already enqueued. An additional flag toRaise is used
to ensure proper processing of cells in the wavefronts, in
particular where raise and lower wavefronts overlap.

B. Raise and lower: propagating wavefronts

While the priority queue is not empty, the function
UpdateDistanceMap() repeatedly retrieves the next unpro-
cessed cell s (lines 7–8). If s has been cleared but has not yet
propagated a raise wavefront, the function raise(s) is called
(lines 9–10). If s however has a valid closest obstacle, the
function lower(s) is called to propagate the lower wavefront
(lines 11–13).

The function raise(s) processes each cell n in the 8-
connected neighborhood Adj8(s) of s that is not yet part
of a raise wavefront and refers to a closest obstacle obstn

(lines 15–16). If obstn is not occupied, n is cleared, marked
to propagate the raise wavefront, and inserted into the priority
queue (lines 17–20). Otherwise, the raise wavefront comes
to a halt at n, leaves n unchanged but still enqueues it to
initiate a lower wavefront (line 20), as shown in Fig. 2 (C).

The function lower(s) considers each cell n in the 8-
connected neighborhood Adj8(s) of s that is not marked to
be part of a raise wavefront (lines 22–23). The Euclidean
distance from n to the closest obstacle of s is compared to

the current closest obstacle distance of n (lines 24–25). If it
is smaller, the values for distance and closest obstacle of n
are updated to reflect that obsts is now the closest obstacle
of n as well. Also, n is inserted into the priority queue to
propagate the lower wavefront (lines 26–28).

To avoid superfluous raise wavefronts where they would
overlap with lower wavefronts, the condition in line 25 can
be extended to also overwrite cells with equal distance that
refer to a deleted obstacle. The line then reads “if d<distn_
(d=distn ^ ¬isOcc(obstn)) then”.

The lines 12 and 29 update the GVD on the fly during the
update of the distance map as described in Sect. IV. If only
distance maps are required, the lines can be omitted.

C. Implementation Details

The distance map algorithm described above computes
and compares real-valued Euclidean distances stored in dist .
As previously done by Scherer et al. [10] and others, we
resort to integer squared distances which saves computational
expenses for the square-root.

A central data structure in our algorithm is the sorted
priority queue used for the queues open and voroQ . We
implement these queues using the bucketing technique pre-
sented by Cuisenaire and Macq [11]. It pools cells with the
same distance in unsorted lists and keeps track of the next
non-empty container. Thereby it reduces the insertion costs
from O(log n) to constant time.

To implement priority queues with unique entries and in-
creasable priorities we actually insert the elements whenever
they are updated, and carry a Boolean flag toProcess for
each cell s. It is set to true by insert(open, s, d) and reverted
to false by pop(open). The function pop(open) iteratively
dequeues elements until it reached an s with toProcesss =

true, and thus discards duplicated entries.

IV. RECONSTRUCTION OF VORONOI DIAGRAMS

Voronoi graphs in continuous spaces consist of infinitely
thin lines and curves. When GVDs are represented on
discretized grids, artifacts in the form of erroneous con-
nections can occur. Firstly, a pair of nearby Voronoi lines
that pass through adjacent cells becomes connected and
thus creates erroneous circles and interconnections in the
graph. Secondly, a single Voronoi line that lies between two
discrete cell locations in continuous space causes double
lines in the GVD. In both cases, the Voronoi graph looses its
sparseness property, i.e., not all paths in the GVD correspond
to topologically different routes with respect to obstacles.

“Improved updating of Euclidean distance maps and Voronoi diagrams”, Lau et al. 2010

A

raise

lower

B

lower

lower

C

D

Fig. 2. Distance map update between two configurations (A) and (D). Black represents occupied cells, brightness increases with distance. The inserted
obstacle (blue) initiates a “lower” wavefront shown in the intermediate steps (B) and (C) that updates the distances in the cells up to the point where a
different obstacle is closer. The removed obstacle (red outline) starts a “raise” wavefront (B) that clears the cells that lost their closest obstacle. When it
comes to a halt it initiates a “lower” wavefront (C) that recomputes the distances for the cleared cells (white) on the basis of the remaining obstacles.

priority queue that sorts the enqueued cells by distance.
Both the raise wavefronts (Alg. 1, line 20) and the lower
wavefronts (line 28) enqueue the neighbors of a processed
cell to propagate the wavefront.

A. Data fields and initialization

The output of an update step is a distance map dist , which
stores in each cell s its Euclidean distance to the closest
occupied cell in the corresponding grid map. The obstacle
reference map obst stores for all cells the coordinates of their
closest occupied cell. If s is occupied, it has a distance of
dists=0 and refers to itself as closest obstacle location, i.e.,
obsts = s. The function isOcc(s) returns whether the latter
condition is true for a given cell s. Upon initialization, all
values are undetermined, i.e., dists=1 and obsts=cleared.
The function clearCell(s) used in the algorithm also resets
s to these values.

All cells that need processing by either a lower or raise
wavefront are inserted into a priority queue open that is
sorted by a distance value. The function pop(open) returns
the cell s with the lowest enqueued distance and removes
it from the queue. The method insert(open, s, d) inserts s
into the queue with distance d or updates the priority if
s is already enqueued. An additional flag toRaise is used
to ensure proper processing of cells in the wavefronts, in
particular where raise and lower wavefronts overlap.

B. Raise and lower: propagating wavefronts

While the priority queue is not empty, the function
UpdateDistanceMap() repeatedly retrieves the next unpro-
cessed cell s (lines 7–8). If s has been cleared but has not yet
propagated a raise wavefront, the function raise(s) is called
(lines 9–10). If s however has a valid closest obstacle, the
function lower(s) is called to propagate the lower wavefront
(lines 11–13).

The function raise(s) processes each cell n in the 8-
connected neighborhood Adj8(s) of s that is not yet part
of a raise wavefront and refers to a closest obstacle obstn

(lines 15–16). If obstn is not occupied, n is cleared, marked
to propagate the raise wavefront, and inserted into the priority
queue (lines 17–20). Otherwise, the raise wavefront comes
to a halt at n, leaves n unchanged but still enqueues it to
initiate a lower wavefront (line 20), as shown in Fig. 2 (C).

The function lower(s) considers each cell n in the 8-
connected neighborhood Adj8(s) of s that is not marked to
be part of a raise wavefront (lines 22–23). The Euclidean
distance from n to the closest obstacle of s is compared to

the current closest obstacle distance of n (lines 24–25). If it
is smaller, the values for distance and closest obstacle of n
are updated to reflect that obsts is now the closest obstacle
of n as well. Also, n is inserted into the priority queue to
propagate the lower wavefront (lines 26–28).

To avoid superfluous raise wavefronts where they would
overlap with lower wavefronts, the condition in line 25 can
be extended to also overwrite cells with equal distance that
refer to a deleted obstacle. The line then reads “if d<distn_
(d=distn ^ ¬isOcc(obstn)) then”.

The lines 12 and 29 update the GVD on the fly during the
update of the distance map as described in Sect. IV. If only
distance maps are required, the lines can be omitted.

C. Implementation Details

The distance map algorithm described above computes
and compares real-valued Euclidean distances stored in dist .
As previously done by Scherer et al. [10] and others, we
resort to integer squared distances which saves computational
expenses for the square-root.

A central data structure in our algorithm is the sorted
priority queue used for the queues open and voroQ . We
implement these queues using the bucketing technique pre-
sented by Cuisenaire and Macq [11]. It pools cells with the
same distance in unsorted lists and keeps track of the next
non-empty container. Thereby it reduces the insertion costs
from O(log n) to constant time.

To implement priority queues with unique entries and in-
creasable priorities we actually insert the elements whenever
they are updated, and carry a Boolean flag toProcess for
each cell s. It is set to true by insert(open, s, d) and reverted
to false by pop(open). The function pop(open) iteratively
dequeues elements until it reached an s with toProcesss =

true, and thus discards duplicated entries.

IV. RECONSTRUCTION OF VORONOI DIAGRAMS

Voronoi graphs in continuous spaces consist of infinitely
thin lines and curves. When GVDs are represented on
discretized grids, artifacts in the form of erroneous con-
nections can occur. Firstly, a pair of nearby Voronoi lines
that pass through adjacent cells becomes connected and
thus creates erroneous circles and interconnections in the
graph. Secondly, a single Voronoi line that lies between two
discrete cell locations in continuous space causes double
lines in the GVD. In both cases, the Voronoi graph looses its
sparseness property, i.e., not all paths in the GVD correspond
to topologically different routes with respect to obstacles.

Incremental Euclidean Distance Mapping

 43

A

raise

lower

B

lower

lower

C

D

Fig. 2. Distance map update between two configurations (A) and (D). Black represents occupied cells, brightness increases with distance. The inserted
obstacle (blue) initiates a “lower” wavefront shown in the intermediate steps (B) and (C) that updates the distances in the cells up to the point where a
different obstacle is closer. The removed obstacle (red outline) starts a “raise” wavefront (B) that clears the cells that lost their closest obstacle. When it
comes to a halt it initiates a “lower” wavefront (C) that recomputes the distances for the cleared cells (white) on the basis of the remaining obstacles.

priority queue that sorts the enqueued cells by distance.
Both the raise wavefronts (Alg. 1, line 20) and the lower
wavefronts (line 28) enqueue the neighbors of a processed
cell to propagate the wavefront.

A. Data fields and initialization

The output of an update step is a distance map dist , which
stores in each cell s its Euclidean distance to the closest
occupied cell in the corresponding grid map. The obstacle
reference map obst stores for all cells the coordinates of their
closest occupied cell. If s is occupied, it has a distance of
dists=0 and refers to itself as closest obstacle location, i.e.,
obsts = s. The function isOcc(s) returns whether the latter
condition is true for a given cell s. Upon initialization, all
values are undetermined, i.e., dists=1 and obsts=cleared.
The function clearCell(s) used in the algorithm also resets
s to these values.

All cells that need processing by either a lower or raise
wavefront are inserted into a priority queue open that is
sorted by a distance value. The function pop(open) returns
the cell s with the lowest enqueued distance and removes
it from the queue. The method insert(open, s, d) inserts s
into the queue with distance d or updates the priority if
s is already enqueued. An additional flag toRaise is used
to ensure proper processing of cells in the wavefronts, in
particular where raise and lower wavefronts overlap.

B. Raise and lower: propagating wavefronts

While the priority queue is not empty, the function
UpdateDistanceMap() repeatedly retrieves the next unpro-
cessed cell s (lines 7–8). If s has been cleared but has not yet
propagated a raise wavefront, the function raise(s) is called
(lines 9–10). If s however has a valid closest obstacle, the
function lower(s) is called to propagate the lower wavefront
(lines 11–13).

The function raise(s) processes each cell n in the 8-
connected neighborhood Adj8(s) of s that is not yet part
of a raise wavefront and refers to a closest obstacle obstn

(lines 15–16). If obstn is not occupied, n is cleared, marked
to propagate the raise wavefront, and inserted into the priority
queue (lines 17–20). Otherwise, the raise wavefront comes
to a halt at n, leaves n unchanged but still enqueues it to
initiate a lower wavefront (line 20), as shown in Fig. 2 (C).

The function lower(s) considers each cell n in the 8-
connected neighborhood Adj8(s) of s that is not marked to
be part of a raise wavefront (lines 22–23). The Euclidean
distance from n to the closest obstacle of s is compared to

the current closest obstacle distance of n (lines 24–25). If it
is smaller, the values for distance and closest obstacle of n
are updated to reflect that obsts is now the closest obstacle
of n as well. Also, n is inserted into the priority queue to
propagate the lower wavefront (lines 26–28).

To avoid superfluous raise wavefronts where they would
overlap with lower wavefronts, the condition in line 25 can
be extended to also overwrite cells with equal distance that
refer to a deleted obstacle. The line then reads “if d<distn_
(d=distn ^ ¬isOcc(obstn)) then”.

The lines 12 and 29 update the GVD on the fly during the
update of the distance map as described in Sect. IV. If only
distance maps are required, the lines can be omitted.

C. Implementation Details

The distance map algorithm described above computes
and compares real-valued Euclidean distances stored in dist .
As previously done by Scherer et al. [10] and others, we
resort to integer squared distances which saves computational
expenses for the square-root.

A central data structure in our algorithm is the sorted
priority queue used for the queues open and voroQ . We
implement these queues using the bucketing technique pre-
sented by Cuisenaire and Macq [11]. It pools cells with the
same distance in unsorted lists and keeps track of the next
non-empty container. Thereby it reduces the insertion costs
from O(log n) to constant time.

To implement priority queues with unique entries and in-
creasable priorities we actually insert the elements whenever
they are updated, and carry a Boolean flag toProcess for
each cell s. It is set to true by insert(open, s, d) and reverted
to false by pop(open). The function pop(open) iteratively
dequeues elements until it reached an s with toProcesss =

true, and thus discards duplicated entries.

IV. RECONSTRUCTION OF VORONOI DIAGRAMS

Voronoi graphs in continuous spaces consist of infinitely
thin lines and curves. When GVDs are represented on
discretized grids, artifacts in the form of erroneous con-
nections can occur. Firstly, a pair of nearby Voronoi lines
that pass through adjacent cells becomes connected and
thus creates erroneous circles and interconnections in the
graph. Secondly, a single Voronoi line that lies between two
discrete cell locations in continuous space causes double
lines in the GVD. In both cases, the Voronoi graph looses its
sparseness property, i.e., not all paths in the GVD correspond
to topologically different routes with respect to obstacles.

“Improved updating of Euclidean distance maps and Voronoi diagrams”, Lau et al. 2010

A

raise

lower

B

lower

lower

C

D

Fig. 2. Distance map update between two configurations (A) and (D). Black represents occupied cells, brightness increases with distance. The inserted
obstacle (blue) initiates a “lower” wavefront shown in the intermediate steps (B) and (C) that updates the distances in the cells up to the point where a
different obstacle is closer. The removed obstacle (red outline) starts a “raise” wavefront (B) that clears the cells that lost their closest obstacle. When it
comes to a halt it initiates a “lower” wavefront (C) that recomputes the distances for the cleared cells (white) on the basis of the remaining obstacles.

priority queue that sorts the enqueued cells by distance.
Both the raise wavefronts (Alg. 1, line 20) and the lower
wavefronts (line 28) enqueue the neighbors of a processed
cell to propagate the wavefront.

A. Data fields and initialization

The output of an update step is a distance map dist , which
stores in each cell s its Euclidean distance to the closest
occupied cell in the corresponding grid map. The obstacle
reference map obst stores for all cells the coordinates of their
closest occupied cell. If s is occupied, it has a distance of
dists=0 and refers to itself as closest obstacle location, i.e.,
obsts = s. The function isOcc(s) returns whether the latter
condition is true for a given cell s. Upon initialization, all
values are undetermined, i.e., dists=1 and obsts=cleared.
The function clearCell(s) used in the algorithm also resets
s to these values.

All cells that need processing by either a lower or raise
wavefront are inserted into a priority queue open that is
sorted by a distance value. The function pop(open) returns
the cell s with the lowest enqueued distance and removes
it from the queue. The method insert(open, s, d) inserts s
into the queue with distance d or updates the priority if
s is already enqueued. An additional flag toRaise is used
to ensure proper processing of cells in the wavefronts, in
particular where raise and lower wavefronts overlap.

B. Raise and lower: propagating wavefronts

While the priority queue is not empty, the function
UpdateDistanceMap() repeatedly retrieves the next unpro-
cessed cell s (lines 7–8). If s has been cleared but has not yet
propagated a raise wavefront, the function raise(s) is called
(lines 9–10). If s however has a valid closest obstacle, the
function lower(s) is called to propagate the lower wavefront
(lines 11–13).

The function raise(s) processes each cell n in the 8-
connected neighborhood Adj8(s) of s that is not yet part
of a raise wavefront and refers to a closest obstacle obstn

(lines 15–16). If obstn is not occupied, n is cleared, marked
to propagate the raise wavefront, and inserted into the priority
queue (lines 17–20). Otherwise, the raise wavefront comes
to a halt at n, leaves n unchanged but still enqueues it to
initiate a lower wavefront (line 20), as shown in Fig. 2 (C).

The function lower(s) considers each cell n in the 8-
connected neighborhood Adj8(s) of s that is not marked to
be part of a raise wavefront (lines 22–23). The Euclidean
distance from n to the closest obstacle of s is compared to

the current closest obstacle distance of n (lines 24–25). If it
is smaller, the values for distance and closest obstacle of n
are updated to reflect that obsts is now the closest obstacle
of n as well. Also, n is inserted into the priority queue to
propagate the lower wavefront (lines 26–28).

To avoid superfluous raise wavefronts where they would
overlap with lower wavefronts, the condition in line 25 can
be extended to also overwrite cells with equal distance that
refer to a deleted obstacle. The line then reads “if d<distn_
(d=distn ^ ¬isOcc(obstn)) then”.

The lines 12 and 29 update the GVD on the fly during the
update of the distance map as described in Sect. IV. If only
distance maps are required, the lines can be omitted.

C. Implementation Details

The distance map algorithm described above computes
and compares real-valued Euclidean distances stored in dist .
As previously done by Scherer et al. [10] and others, we
resort to integer squared distances which saves computational
expenses for the square-root.

A central data structure in our algorithm is the sorted
priority queue used for the queues open and voroQ . We
implement these queues using the bucketing technique pre-
sented by Cuisenaire and Macq [11]. It pools cells with the
same distance in unsorted lists and keeps track of the next
non-empty container. Thereby it reduces the insertion costs
from O(log n) to constant time.

To implement priority queues with unique entries and in-
creasable priorities we actually insert the elements whenever
they are updated, and carry a Boolean flag toProcess for
each cell s. It is set to true by insert(open, s, d) and reverted
to false by pop(open). The function pop(open) iteratively
dequeues elements until it reached an s with toProcesss =

true, and thus discards duplicated entries.

IV. RECONSTRUCTION OF VORONOI DIAGRAMS

Voronoi graphs in continuous spaces consist of infinitely
thin lines and curves. When GVDs are represented on
discretized grids, artifacts in the form of erroneous con-
nections can occur. Firstly, a pair of nearby Voronoi lines
that pass through adjacent cells becomes connected and
thus creates erroneous circles and interconnections in the
graph. Secondly, a single Voronoi line that lies between two
discrete cell locations in continuous space causes double
lines in the GVD. In both cases, the Voronoi graph looses its
sparseness property, i.e., not all paths in the GVD correspond
to topologically different routes with respect to obstacles.

A

raise

lower

B

lower

lower

C

D

Fig. 2. Distance map update between two configurations (A) and (D). Black represents occupied cells, brightness increases with distance. The inserted
obstacle (blue) initiates a “lower” wavefront shown in the intermediate steps (B) and (C) that updates the distances in the cells up to the point where a
different obstacle is closer. The removed obstacle (red outline) starts a “raise” wavefront (B) that clears the cells that lost their closest obstacle. When it
comes to a halt it initiates a “lower” wavefront (C) that recomputes the distances for the cleared cells (white) on the basis of the remaining obstacles.

priority queue that sorts the enqueued cells by distance.
Both the raise wavefronts (Alg. 1, line 20) and the lower
wavefronts (line 28) enqueue the neighbors of a processed
cell to propagate the wavefront.

A. Data fields and initialization

The output of an update step is a distance map dist , which
stores in each cell s its Euclidean distance to the closest
occupied cell in the corresponding grid map. The obstacle
reference map obst stores for all cells the coordinates of their
closest occupied cell. If s is occupied, it has a distance of
dists=0 and refers to itself as closest obstacle location, i.e.,
obsts = s. The function isOcc(s) returns whether the latter
condition is true for a given cell s. Upon initialization, all
values are undetermined, i.e., dists=1 and obsts=cleared.
The function clearCell(s) used in the algorithm also resets
s to these values.

All cells that need processing by either a lower or raise
wavefront are inserted into a priority queue open that is
sorted by a distance value. The function pop(open) returns
the cell s with the lowest enqueued distance and removes
it from the queue. The method insert(open, s, d) inserts s
into the queue with distance d or updates the priority if
s is already enqueued. An additional flag toRaise is used
to ensure proper processing of cells in the wavefronts, in
particular where raise and lower wavefronts overlap.

B. Raise and lower: propagating wavefronts

While the priority queue is not empty, the function
UpdateDistanceMap() repeatedly retrieves the next unpro-
cessed cell s (lines 7–8). If s has been cleared but has not yet
propagated a raise wavefront, the function raise(s) is called
(lines 9–10). If s however has a valid closest obstacle, the
function lower(s) is called to propagate the lower wavefront
(lines 11–13).

The function raise(s) processes each cell n in the 8-
connected neighborhood Adj8(s) of s that is not yet part
of a raise wavefront and refers to a closest obstacle obstn

(lines 15–16). If obstn is not occupied, n is cleared, marked
to propagate the raise wavefront, and inserted into the priority
queue (lines 17–20). Otherwise, the raise wavefront comes
to a halt at n, leaves n unchanged but still enqueues it to
initiate a lower wavefront (line 20), as shown in Fig. 2 (C).

The function lower(s) considers each cell n in the 8-
connected neighborhood Adj8(s) of s that is not marked to
be part of a raise wavefront (lines 22–23). The Euclidean
distance from n to the closest obstacle of s is compared to

the current closest obstacle distance of n (lines 24–25). If it
is smaller, the values for distance and closest obstacle of n
are updated to reflect that obsts is now the closest obstacle
of n as well. Also, n is inserted into the priority queue to
propagate the lower wavefront (lines 26–28).

To avoid superfluous raise wavefronts where they would
overlap with lower wavefronts, the condition in line 25 can
be extended to also overwrite cells with equal distance that
refer to a deleted obstacle. The line then reads “if d<distn_
(d=distn ^ ¬isOcc(obstn)) then”.

The lines 12 and 29 update the GVD on the fly during the
update of the distance map as described in Sect. IV. If only
distance maps are required, the lines can be omitted.

C. Implementation Details

The distance map algorithm described above computes
and compares real-valued Euclidean distances stored in dist .
As previously done by Scherer et al. [10] and others, we
resort to integer squared distances which saves computational
expenses for the square-root.

A central data structure in our algorithm is the sorted
priority queue used for the queues open and voroQ . We
implement these queues using the bucketing technique pre-
sented by Cuisenaire and Macq [11]. It pools cells with the
same distance in unsorted lists and keeps track of the next
non-empty container. Thereby it reduces the insertion costs
from O(log n) to constant time.

To implement priority queues with unique entries and in-
creasable priorities we actually insert the elements whenever
they are updated, and carry a Boolean flag toProcess for
each cell s. It is set to true by insert(open, s, d) and reverted
to false by pop(open). The function pop(open) iteratively
dequeues elements until it reached an s with toProcesss =

true, and thus discards duplicated entries.

IV. RECONSTRUCTION OF VORONOI DIAGRAMS

Voronoi graphs in continuous spaces consist of infinitely
thin lines and curves. When GVDs are represented on
discretized grids, artifacts in the form of erroneous con-
nections can occur. Firstly, a pair of nearby Voronoi lines
that pass through adjacent cells becomes connected and
thus creates erroneous circles and interconnections in the
graph. Secondly, a single Voronoi line that lies between two
discrete cell locations in continuous space causes double
lines in the GVD. In both cases, the Voronoi graph looses its
sparseness property, i.e., not all paths in the GVD correspond
to topologically different routes with respect to obstacles.

Incremental Euclidean Distance Mapping

 43

A

raise

lower

B

lower

lower

C

D

Fig. 2. Distance map update between two configurations (A) and (D). Black represents occupied cells, brightness increases with distance. The inserted
obstacle (blue) initiates a “lower” wavefront shown in the intermediate steps (B) and (C) that updates the distances in the cells up to the point where a
different obstacle is closer. The removed obstacle (red outline) starts a “raise” wavefront (B) that clears the cells that lost their closest obstacle. When it
comes to a halt it initiates a “lower” wavefront (C) that recomputes the distances for the cleared cells (white) on the basis of the remaining obstacles.

priority queue that sorts the enqueued cells by distance.
Both the raise wavefronts (Alg. 1, line 20) and the lower
wavefronts (line 28) enqueue the neighbors of a processed
cell to propagate the wavefront.

A. Data fields and initialization

The output of an update step is a distance map dist , which
stores in each cell s its Euclidean distance to the closest
occupied cell in the corresponding grid map. The obstacle
reference map obst stores for all cells the coordinates of their
closest occupied cell. If s is occupied, it has a distance of
dists=0 and refers to itself as closest obstacle location, i.e.,
obsts = s. The function isOcc(s) returns whether the latter
condition is true for a given cell s. Upon initialization, all
values are undetermined, i.e., dists=1 and obsts=cleared.
The function clearCell(s) used in the algorithm also resets
s to these values.

All cells that need processing by either a lower or raise
wavefront are inserted into a priority queue open that is
sorted by a distance value. The function pop(open) returns
the cell s with the lowest enqueued distance and removes
it from the queue. The method insert(open, s, d) inserts s
into the queue with distance d or updates the priority if
s is already enqueued. An additional flag toRaise is used
to ensure proper processing of cells in the wavefronts, in
particular where raise and lower wavefronts overlap.

B. Raise and lower: propagating wavefronts

While the priority queue is not empty, the function
UpdateDistanceMap() repeatedly retrieves the next unpro-
cessed cell s (lines 7–8). If s has been cleared but has not yet
propagated a raise wavefront, the function raise(s) is called
(lines 9–10). If s however has a valid closest obstacle, the
function lower(s) is called to propagate the lower wavefront
(lines 11–13).

The function raise(s) processes each cell n in the 8-
connected neighborhood Adj8(s) of s that is not yet part
of a raise wavefront and refers to a closest obstacle obstn

(lines 15–16). If obstn is not occupied, n is cleared, marked
to propagate the raise wavefront, and inserted into the priority
queue (lines 17–20). Otherwise, the raise wavefront comes
to a halt at n, leaves n unchanged but still enqueues it to
initiate a lower wavefront (line 20), as shown in Fig. 2 (C).

The function lower(s) considers each cell n in the 8-
connected neighborhood Adj8(s) of s that is not marked to
be part of a raise wavefront (lines 22–23). The Euclidean
distance from n to the closest obstacle of s is compared to

the current closest obstacle distance of n (lines 24–25). If it
is smaller, the values for distance and closest obstacle of n
are updated to reflect that obsts is now the closest obstacle
of n as well. Also, n is inserted into the priority queue to
propagate the lower wavefront (lines 26–28).

To avoid superfluous raise wavefronts where they would
overlap with lower wavefronts, the condition in line 25 can
be extended to also overwrite cells with equal distance that
refer to a deleted obstacle. The line then reads “if d<distn_
(d=distn ^ ¬isOcc(obstn)) then”.

The lines 12 and 29 update the GVD on the fly during the
update of the distance map as described in Sect. IV. If only
distance maps are required, the lines can be omitted.

C. Implementation Details

The distance map algorithm described above computes
and compares real-valued Euclidean distances stored in dist .
As previously done by Scherer et al. [10] and others, we
resort to integer squared distances which saves computational
expenses for the square-root.

A central data structure in our algorithm is the sorted
priority queue used for the queues open and voroQ . We
implement these queues using the bucketing technique pre-
sented by Cuisenaire and Macq [11]. It pools cells with the
same distance in unsorted lists and keeps track of the next
non-empty container. Thereby it reduces the insertion costs
from O(log n) to constant time.

To implement priority queues with unique entries and in-
creasable priorities we actually insert the elements whenever
they are updated, and carry a Boolean flag toProcess for
each cell s. It is set to true by insert(open, s, d) and reverted
to false by pop(open). The function pop(open) iteratively
dequeues elements until it reached an s with toProcesss =

true, and thus discards duplicated entries.

IV. RECONSTRUCTION OF VORONOI DIAGRAMS

Voronoi graphs in continuous spaces consist of infinitely
thin lines and curves. When GVDs are represented on
discretized grids, artifacts in the form of erroneous con-
nections can occur. Firstly, a pair of nearby Voronoi lines
that pass through adjacent cells becomes connected and
thus creates erroneous circles and interconnections in the
graph. Secondly, a single Voronoi line that lies between two
discrete cell locations in continuous space causes double
lines in the GVD. In both cases, the Voronoi graph looses its
sparseness property, i.e., not all paths in the GVD correspond
to topologically different routes with respect to obstacles.

A

raise

lower

B

lower

lower

C

D

Fig. 2. Distance map update between two configurations (A) and (D). Black represents occupied cells, brightness increases with distance. The inserted
obstacle (blue) initiates a “lower” wavefront shown in the intermediate steps (B) and (C) that updates the distances in the cells up to the point where a
different obstacle is closer. The removed obstacle (red outline) starts a “raise” wavefront (B) that clears the cells that lost their closest obstacle. When it
comes to a halt it initiates a “lower” wavefront (C) that recomputes the distances for the cleared cells (white) on the basis of the remaining obstacles.

priority queue that sorts the enqueued cells by distance.
Both the raise wavefronts (Alg. 1, line 20) and the lower
wavefronts (line 28) enqueue the neighbors of a processed
cell to propagate the wavefront.

A. Data fields and initialization

The output of an update step is a distance map dist , which
stores in each cell s its Euclidean distance to the closest
occupied cell in the corresponding grid map. The obstacle
reference map obst stores for all cells the coordinates of their
closest occupied cell. If s is occupied, it has a distance of
dists=0 and refers to itself as closest obstacle location, i.e.,
obsts = s. The function isOcc(s) returns whether the latter
condition is true for a given cell s. Upon initialization, all
values are undetermined, i.e., dists=1 and obsts=cleared.
The function clearCell(s) used in the algorithm also resets
s to these values.

All cells that need processing by either a lower or raise
wavefront are inserted into a priority queue open that is
sorted by a distance value. The function pop(open) returns
the cell s with the lowest enqueued distance and removes
it from the queue. The method insert(open, s, d) inserts s
into the queue with distance d or updates the priority if
s is already enqueued. An additional flag toRaise is used
to ensure proper processing of cells in the wavefronts, in
particular where raise and lower wavefronts overlap.

B. Raise and lower: propagating wavefronts

While the priority queue is not empty, the function
UpdateDistanceMap() repeatedly retrieves the next unpro-
cessed cell s (lines 7–8). If s has been cleared but has not yet
propagated a raise wavefront, the function raise(s) is called
(lines 9–10). If s however has a valid closest obstacle, the
function lower(s) is called to propagate the lower wavefront
(lines 11–13).

The function raise(s) processes each cell n in the 8-
connected neighborhood Adj8(s) of s that is not yet part
of a raise wavefront and refers to a closest obstacle obstn

(lines 15–16). If obstn is not occupied, n is cleared, marked
to propagate the raise wavefront, and inserted into the priority
queue (lines 17–20). Otherwise, the raise wavefront comes
to a halt at n, leaves n unchanged but still enqueues it to
initiate a lower wavefront (line 20), as shown in Fig. 2 (C).

The function lower(s) considers each cell n in the 8-
connected neighborhood Adj8(s) of s that is not marked to
be part of a raise wavefront (lines 22–23). The Euclidean
distance from n to the closest obstacle of s is compared to

the current closest obstacle distance of n (lines 24–25). If it
is smaller, the values for distance and closest obstacle of n
are updated to reflect that obsts is now the closest obstacle
of n as well. Also, n is inserted into the priority queue to
propagate the lower wavefront (lines 26–28).

To avoid superfluous raise wavefronts where they would
overlap with lower wavefronts, the condition in line 25 can
be extended to also overwrite cells with equal distance that
refer to a deleted obstacle. The line then reads “if d<distn_
(d=distn ^ ¬isOcc(obstn)) then”.

The lines 12 and 29 update the GVD on the fly during the
update of the distance map as described in Sect. IV. If only
distance maps are required, the lines can be omitted.

C. Implementation Details

The distance map algorithm described above computes
and compares real-valued Euclidean distances stored in dist .
As previously done by Scherer et al. [10] and others, we
resort to integer squared distances which saves computational
expenses for the square-root.

A central data structure in our algorithm is the sorted
priority queue used for the queues open and voroQ . We
implement these queues using the bucketing technique pre-
sented by Cuisenaire and Macq [11]. It pools cells with the
same distance in unsorted lists and keeps track of the next
non-empty container. Thereby it reduces the insertion costs
from O(log n) to constant time.

To implement priority queues with unique entries and in-
creasable priorities we actually insert the elements whenever
they are updated, and carry a Boolean flag toProcess for
each cell s. It is set to true by insert(open, s, d) and reverted
to false by pop(open). The function pop(open) iteratively
dequeues elements until it reached an s with toProcesss =

true, and thus discards duplicated entries.

IV. RECONSTRUCTION OF VORONOI DIAGRAMS

Voronoi graphs in continuous spaces consist of infinitely
thin lines and curves. When GVDs are represented on
discretized grids, artifacts in the form of erroneous con-
nections can occur. Firstly, a pair of nearby Voronoi lines
that pass through adjacent cells becomes connected and
thus creates erroneous circles and interconnections in the
graph. Secondly, a single Voronoi line that lies between two
discrete cell locations in continuous space causes double
lines in the GVD. In both cases, the Voronoi graph looses its
sparseness property, i.e., not all paths in the GVD correspond
to topologically different routes with respect to obstacles.

“Improved updating of Euclidean distance maps and Voronoi diagrams”, Lau et al. 2010

A

raise

lower

B

lower

lower

C

D

Fig. 2. Distance map update between two configurations (A) and (D). Black represents occupied cells, brightness increases with distance. The inserted
obstacle (blue) initiates a “lower” wavefront shown in the intermediate steps (B) and (C) that updates the distances in the cells up to the point where a
different obstacle is closer. The removed obstacle (red outline) starts a “raise” wavefront (B) that clears the cells that lost their closest obstacle. When it
comes to a halt it initiates a “lower” wavefront (C) that recomputes the distances for the cleared cells (white) on the basis of the remaining obstacles.

priority queue that sorts the enqueued cells by distance.
Both the raise wavefronts (Alg. 1, line 20) and the lower
wavefronts (line 28) enqueue the neighbors of a processed
cell to propagate the wavefront.

A. Data fields and initialization

The output of an update step is a distance map dist , which
stores in each cell s its Euclidean distance to the closest
occupied cell in the corresponding grid map. The obstacle
reference map obst stores for all cells the coordinates of their
closest occupied cell. If s is occupied, it has a distance of
dists=0 and refers to itself as closest obstacle location, i.e.,
obsts = s. The function isOcc(s) returns whether the latter
condition is true for a given cell s. Upon initialization, all
values are undetermined, i.e., dists=1 and obsts=cleared.
The function clearCell(s) used in the algorithm also resets
s to these values.

All cells that need processing by either a lower or raise
wavefront are inserted into a priority queue open that is
sorted by a distance value. The function pop(open) returns
the cell s with the lowest enqueued distance and removes
it from the queue. The method insert(open, s, d) inserts s
into the queue with distance d or updates the priority if
s is already enqueued. An additional flag toRaise is used
to ensure proper processing of cells in the wavefronts, in
particular where raise and lower wavefronts overlap.

B. Raise and lower: propagating wavefronts

While the priority queue is not empty, the function
UpdateDistanceMap() repeatedly retrieves the next unpro-
cessed cell s (lines 7–8). If s has been cleared but has not yet
propagated a raise wavefront, the function raise(s) is called
(lines 9–10). If s however has a valid closest obstacle, the
function lower(s) is called to propagate the lower wavefront
(lines 11–13).

The function raise(s) processes each cell n in the 8-
connected neighborhood Adj8(s) of s that is not yet part
of a raise wavefront and refers to a closest obstacle obstn

(lines 15–16). If obstn is not occupied, n is cleared, marked
to propagate the raise wavefront, and inserted into the priority
queue (lines 17–20). Otherwise, the raise wavefront comes
to a halt at n, leaves n unchanged but still enqueues it to
initiate a lower wavefront (line 20), as shown in Fig. 2 (C).

The function lower(s) considers each cell n in the 8-
connected neighborhood Adj8(s) of s that is not marked to
be part of a raise wavefront (lines 22–23). The Euclidean
distance from n to the closest obstacle of s is compared to

the current closest obstacle distance of n (lines 24–25). If it
is smaller, the values for distance and closest obstacle of n
are updated to reflect that obsts is now the closest obstacle
of n as well. Also, n is inserted into the priority queue to
propagate the lower wavefront (lines 26–28).

To avoid superfluous raise wavefronts where they would
overlap with lower wavefronts, the condition in line 25 can
be extended to also overwrite cells with equal distance that
refer to a deleted obstacle. The line then reads “if d<distn_
(d=distn ^ ¬isOcc(obstn)) then”.

The lines 12 and 29 update the GVD on the fly during the
update of the distance map as described in Sect. IV. If only
distance maps are required, the lines can be omitted.

C. Implementation Details

The distance map algorithm described above computes
and compares real-valued Euclidean distances stored in dist .
As previously done by Scherer et al. [10] and others, we
resort to integer squared distances which saves computational
expenses for the square-root.

A central data structure in our algorithm is the sorted
priority queue used for the queues open and voroQ . We
implement these queues using the bucketing technique pre-
sented by Cuisenaire and Macq [11]. It pools cells with the
same distance in unsorted lists and keeps track of the next
non-empty container. Thereby it reduces the insertion costs
from O(log n) to constant time.

To implement priority queues with unique entries and in-
creasable priorities we actually insert the elements whenever
they are updated, and carry a Boolean flag toProcess for
each cell s. It is set to true by insert(open, s, d) and reverted
to false by pop(open). The function pop(open) iteratively
dequeues elements until it reached an s with toProcesss =

true, and thus discards duplicated entries.

IV. RECONSTRUCTION OF VORONOI DIAGRAMS

Voronoi graphs in continuous spaces consist of infinitely
thin lines and curves. When GVDs are represented on
discretized grids, artifacts in the form of erroneous con-
nections can occur. Firstly, a pair of nearby Voronoi lines
that pass through adjacent cells becomes connected and
thus creates erroneous circles and interconnections in the
graph. Secondly, a single Voronoi line that lies between two
discrete cell locations in continuous space causes double
lines in the GVD. In both cases, the Voronoi graph looses its
sparseness property, i.e., not all paths in the GVD correspond
to topologically different routes with respect to obstacles.

A

raise

lower

B

lower

lower

C

D

Fig. 2. Distance map update between two configurations (A) and (D). Black represents occupied cells, brightness increases with distance. The inserted
obstacle (blue) initiates a “lower” wavefront shown in the intermediate steps (B) and (C) that updates the distances in the cells up to the point where a
different obstacle is closer. The removed obstacle (red outline) starts a “raise” wavefront (B) that clears the cells that lost their closest obstacle. When it
comes to a halt it initiates a “lower” wavefront (C) that recomputes the distances for the cleared cells (white) on the basis of the remaining obstacles.

priority queue that sorts the enqueued cells by distance.
Both the raise wavefronts (Alg. 1, line 20) and the lower
wavefronts (line 28) enqueue the neighbors of a processed
cell to propagate the wavefront.

A. Data fields and initialization

The output of an update step is a distance map dist , which
stores in each cell s its Euclidean distance to the closest
occupied cell in the corresponding grid map. The obstacle
reference map obst stores for all cells the coordinates of their
closest occupied cell. If s is occupied, it has a distance of
dists=0 and refers to itself as closest obstacle location, i.e.,
obsts = s. The function isOcc(s) returns whether the latter
condition is true for a given cell s. Upon initialization, all
values are undetermined, i.e., dists=1 and obsts=cleared.
The function clearCell(s) used in the algorithm also resets
s to these values.

All cells that need processing by either a lower or raise
wavefront are inserted into a priority queue open that is
sorted by a distance value. The function pop(open) returns
the cell s with the lowest enqueued distance and removes
it from the queue. The method insert(open, s, d) inserts s
into the queue with distance d or updates the priority if
s is already enqueued. An additional flag toRaise is used
to ensure proper processing of cells in the wavefronts, in
particular where raise and lower wavefronts overlap.

B. Raise and lower: propagating wavefronts

While the priority queue is not empty, the function
UpdateDistanceMap() repeatedly retrieves the next unpro-
cessed cell s (lines 7–8). If s has been cleared but has not yet
propagated a raise wavefront, the function raise(s) is called
(lines 9–10). If s however has a valid closest obstacle, the
function lower(s) is called to propagate the lower wavefront
(lines 11–13).

The function raise(s) processes each cell n in the 8-
connected neighborhood Adj8(s) of s that is not yet part
of a raise wavefront and refers to a closest obstacle obstn

(lines 15–16). If obstn is not occupied, n is cleared, marked
to propagate the raise wavefront, and inserted into the priority
queue (lines 17–20). Otherwise, the raise wavefront comes
to a halt at n, leaves n unchanged but still enqueues it to
initiate a lower wavefront (line 20), as shown in Fig. 2 (C).

The function lower(s) considers each cell n in the 8-
connected neighborhood Adj8(s) of s that is not marked to
be part of a raise wavefront (lines 22–23). The Euclidean
distance from n to the closest obstacle of s is compared to

the current closest obstacle distance of n (lines 24–25). If it
is smaller, the values for distance and closest obstacle of n
are updated to reflect that obsts is now the closest obstacle
of n as well. Also, n is inserted into the priority queue to
propagate the lower wavefront (lines 26–28).

To avoid superfluous raise wavefronts where they would
overlap with lower wavefronts, the condition in line 25 can
be extended to also overwrite cells with equal distance that
refer to a deleted obstacle. The line then reads “if d<distn_
(d=distn ^ ¬isOcc(obstn)) then”.

The lines 12 and 29 update the GVD on the fly during the
update of the distance map as described in Sect. IV. If only
distance maps are required, the lines can be omitted.

C. Implementation Details

The distance map algorithm described above computes
and compares real-valued Euclidean distances stored in dist .
As previously done by Scherer et al. [10] and others, we
resort to integer squared distances which saves computational
expenses for the square-root.

A central data structure in our algorithm is the sorted
priority queue used for the queues open and voroQ . We
implement these queues using the bucketing technique pre-
sented by Cuisenaire and Macq [11]. It pools cells with the
same distance in unsorted lists and keeps track of the next
non-empty container. Thereby it reduces the insertion costs
from O(log n) to constant time.

To implement priority queues with unique entries and in-
creasable priorities we actually insert the elements whenever
they are updated, and carry a Boolean flag toProcess for
each cell s. It is set to true by insert(open, s, d) and reverted
to false by pop(open). The function pop(open) iteratively
dequeues elements until it reached an s with toProcesss =

true, and thus discards duplicated entries.

IV. RECONSTRUCTION OF VORONOI DIAGRAMS

Voronoi graphs in continuous spaces consist of infinitely
thin lines and curves. When GVDs are represented on
discretized grids, artifacts in the form of erroneous con-
nections can occur. Firstly, a pair of nearby Voronoi lines
that pass through adjacent cells becomes connected and
thus creates erroneous circles and interconnections in the
graph. Secondly, a single Voronoi line that lies between two
discrete cell locations in continuous space causes double
lines in the GVD. In both cases, the Voronoi graph looses its
sparseness property, i.e., not all paths in the GVD correspond
to topologically different routes with respect to obstacles.

Truncated signed distance map

 44

We can easily modify this algorithm to tell us distance
inside an object.

Signed distance - negative inside object, positive outside

Signed distance important in motion planning!

