
Control with
Reinforcement
Learning

Contents

Comparison of RL and Supervised Learning

Brief introductions of terms and background

Parameter Optimization for Policy (using PI2)

Skipping Parameter Optimization with MPC

Limits of Supervised Learning
(for Robot Control)

Assumes training data perfectly represents the variety of data
experienced at run-time.

Does not have mechanism to incorporate new data outset of
training.

Will probably have unexpected / dangerous behavior when
operating out of spec.

Well behaved in training regime...

What….

Well behaved in training regime

Unpredictable behavior otherwise.

http://mlg.eng.cam.ac.uk/yarin/blog_2248.html

How does RL help?

The learner is an agent, that takes actions to achieve a high
reward / low cost.

Actions can take the agent to new states (new data), that will
be incorporated into the agent’s behavior.

RL can be viewed as a superset of Supervised Learning.

Some Terms

Trajectory : A sequence of states and actions, time indexed,
where the state at some time t, depends on the state and
action taken at time t-1.

Cost function : a function that takes in a state-action pair, and
returns a value denoting ‘good’, ‘bad’, or how well that pair
accomplishes some goal.

Some Terms in RL
V(s) : Value function. Represents the value of being in some state ‘x’
relative to the current task.

V(xt) = R(xt) + V(xt+1)

Q(s,a) : Q-function. Represents the value of being in a state ‘x’ and
taking an action ‘u’.

Q(xt,ut) = R(xt) + Q(xt+1,π(xt+1))

a=π(s) : Policy function. Returns an action for a given state. The
optimal policy is the highest scoring action in the Q-function, given an
optimal Q function.

https://cs.stanford.edu/people/karpathy/reinforcejs/

Function Approx. of Policy

u=πθ(x) : here we say policy π is parameterized by θ.

θx u

Simple Policy Improvement

1. Sample K policies from a distribution.
2. Evaluate the 1-step score of each

policy with cost function J(θ)
3. Rank each policy θk based on its score
4. Make a new policy; here we average

the Ke best performing policies.
5. Can also update other parameters

with this scoring.

CMA-ES

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/

PI2

1. Sample K policies from a distribution.
2. Rollout each policy for N timesteps, and store

states and actions.
3. Evaluate the performance of each policy with

cost function J(θ)
4. Weight each trajectory’s score against all

others, and use them to make a weighted
average of our K policies.

Limitations of PI2

K needs to be somewhat large; takes a lot of compute to do
many rollouts.

θ may also have many parameters, contributing to compute
issues.

Trajectory optimization is a hard problem; difficult to find a
path from start to finish effectively.

Do we even need a policy?

MPPI

MPC : Instead of a long, perfect trajectory, we constantly
recalculate short trajectories whilst simultaneously using the
results. Can make up for modelling errors, run-time
perturbations, etc.

Given that a policy & model produces a sequence of controls;
can we just optimize a sequence of controls?

for t=1:T
u
t
=π(x

t
)

x
t+1

=F(x
t
,u

t
)

end

Instead of a policy with parameters θ, we
instead just keep a sequence of controls
U=[u

0
,u

1
,u

2
…]; instead of θk we have

U
k
=[u

0
+ϵk

0
, u

1
+ϵk

1
, u

2
+ϵk

2
…].

We rollout each U
k
 and score each

trajectory. Score is S(ϵk), and cost function
is q().

The weighting is the same as PI2, with a
baseline subtraction to scale things.

The weights give us a new U instead of
new policy.

http://www.youtube.com/watch?v=vlq23PE6_dk

Implementation Details
Task: Go to Pose. When close enough, consider task done.

Avoid for-loops. Use PyTorch’s Tensor math. Look up ‘mm’,
‘bmm’, and others…

Chance are you will need to smooth your control outputs; you
can smooth before you update, or smooth the values sent to
the actuators. When adding noise to controls, you should clip
to the values your NN model was trained at.

T=30; K=1000 at 10hz is easily achievable.

Test.

Debug each component in parts. Does your NN correctly
‘drive’ forward? Backwards? Left and right? Sitting still?

Does each part of MPPI do the expected thing? Set T and K to
small values, and look at all the numbers. Convince yourself
it’s doing the correct thing.

Useful References

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/ GIFs

https://icml.cc/2012/papers/171.pdf PI2 with CMA

https://www.cc.gatech.edu/~bboots3/files/InformationTheoreticMPC.pdf

https://arxiv.org/abs/1707.04540 newest MPPI work (has some tips)

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/
https://icml.cc/2012/papers/171.pdf
https://www.cc.gatech.edu/~bboots3/files/InformationTheoreticMPC.pdf
https://arxiv.org/abs/1707.04540

http://www.youtube.com/watch?v=1AR2-OHCxsQ

