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Limits of Supervised Learning
(for Robot Control)

Assumes training data perfectly represents the variety of data 
experienced at run-time.

Does not have mechanism to incorporate new data outset of 
training.

Will probably have unexpected / dangerous behavior when 
operating out of spec.



Well behaved in training regime...

What….



Well behaved in training regime

Unpredictable behavior otherwise.

http://mlg.eng.cam.ac.uk/yarin/blog_2248.html



How does RL help?

The learner is an agent, that takes actions to achieve a high 
reward / low cost.

Actions can take the agent to new states (new data), that will 
be incorporated into the agent’s behavior.

RL can be viewed as a superset of Supervised Learning.



Some Terms

Trajectory : A sequence of states and actions, time indexed, 
where the state at some time t, depends on the state and 
action taken at time t-1.

Cost function : a function that takes in a state-action pair, and 
returns a value denoting ‘good’, ‘bad’, or how well that pair 
accomplishes some goal. 



Some Terms in RL
V(s) : Value function. Represents the value of being in some state ‘x’ 
relative to the current task. 

V(xt) = R(xt) + V(xt+1)

Q(s,a) : Q-function. Represents the value of being in a state ‘x’ and 
taking an action ‘u’.

Q(xt,ut) = R(xt) + Q(xt+1,π(xt+1))

a=π(s) : Policy function. Returns an action for a given state. The 
optimal policy is the highest scoring action in the Q-function, given an 
optimal Q function.

https://cs.stanford.edu/people/karpathy/reinforcejs/



Function Approx. of Policy

u=πθ(x)  : here we say policy π is parameterized by θ.

θx u



Simple Policy Improvement

1. Sample K policies from a distribution.
2. Evaluate the 1-step score of each 

policy with cost function J(θ)
3. Rank each policy θk based on its score
4. Make a new policy; here we average 

the Ke best performing policies.
5. Can also update other parameters 

with this scoring.



CMA-ES

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/



PI2

1. Sample K policies from a distribution.
2. Rollout each policy for N timesteps, and store 

states and actions.
3. Evaluate the performance of each policy with 

cost function J(θ)
4. Weight each trajectory’s score against all 

others, and use them to make a weighted 
average of our K policies.



Limitations of PI2

K needs to be somewhat large; takes a lot of compute to do 
many rollouts.

θ may also have many parameters, contributing to compute 
issues.

Trajectory optimization is a hard problem; difficult to find a 
path from start to finish effectively.

Do we even need a policy?



MPPI

MPC : Instead of a long, perfect trajectory, we constantly 
recalculate short trajectories whilst simultaneously using the 
results. Can make up for modelling errors, run-time 
perturbations, etc.

Given that a policy & model produces a sequence of controls; 
can we just optimize a sequence of controls?
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Instead of a policy with parameters θ, we 
instead just keep a sequence of controls 
U=[u
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We rollout each U
k
 and score each 

trajectory. Score is S(ϵk), and cost function 
is q().

The weighting is the same as PI2, with a 
baseline subtraction to scale things.

The weights give us a new U instead of 
new policy.



http://www.youtube.com/watch?v=vlq23PE6_dk


Implementation Details
Task: Go to Pose. When close enough, consider task done.

Avoid for-loops. Use PyTorch’s Tensor math. Look up ‘mm’, 
‘bmm’, and others…

Chance are you will need to smooth your control outputs; you 
can smooth before you update, or smooth the values sent to 
the actuators. When adding noise to controls, you should clip 
to the values your NN model was trained at.

T=30; K=1000 at 10hz is easily achievable.



Test.

Debug each component in parts. Does your NN correctly 
‘drive’ forward? Backwards? Left and right? Sitting still?

Does each part of MPPI do the expected thing? Set T and K to 
small values, and look at all the numbers. Convince yourself 
it’s doing the correct thing.



Useful References

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/ GIFs

https://icml.cc/2012/papers/171.pdf PI2 with CMA

https://www.cc.gatech.edu/~bboots3/files/InformationTheoreticMPC.pdf

https://arxiv.org/abs/1707.04540 newest MPPI work (has some tips)

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/
https://icml.cc/2012/papers/171.pdf
https://www.cc.gatech.edu/~bboots3/files/InformationTheoreticMPC.pdf
https://arxiv.org/abs/1707.04540


http://www.youtube.com/watch?v=1AR2-OHCxsQ

