CSE-490R
Robotics

SLAM + Fast-SLAM

(Partial slides borrowed from Dieter Fox, Wolfram Burgard &
Cyril Stachniss)



What is SLAM?

Estimate current pose given map,
controls and observations

p(xt | Uq:t) Z1:t» m)
Build map given poses and observations
p(m | X1:t Zl:t)
Find
poses and map given controls and observations

p(xl:t; m | U1:t» Zl:t)



SLAM

A robot moving though an unknown, static
environment

Given:
The robot’s controls
Observations of nearby
features

Estimate:

Map of environment

Path of the robot




Map representations

1 Typical representations are:
Feature-based
Grid maps (occupancy maps)

3D representations (voxels, surfels, octrees etc)




Why is SLAM hard?

SLAM is the task of building a map while estimating
the pose of the robot relative to this map

Chicken-or-egg problem:
A map is needed to localize the robot

A pose estimate is needed to build a map



Why is SLAM hard?

SLAM: robot path and map are both unknown!

Robot path error correlates errors in the map
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Particle Filters

Represent belief by random

Sampling Importance Resampling (SIR) principle
Draw the new generation of particles
Assign an importance weight to each particle

Resampling

Applications are localization, tracking, ...



Particle Filter Algorithm

Sample the particles from the proposal distribution
5137[53] ~m(ze|...)

Compute the importance weights

: [7]
7] target(a:t )
’U)t =

proposal (ach] )

Resampling: Draw sample 9 with probability wl[fz]

and repeat ./ times

Courtesy: C. Stachniss



Particle Filters for SLAM

Localization: state space is <X, y, 0>

SLAM: state space is <X, y, 6, map>
For grid mCIPS: <C11, C12, Ay Cln/ C21, Ay Cnm>

For feature maps: </, I, ..., | >

The number of particles needed to
represent a posterior grows exponentially with the
dimension of the state space!



Dependencies

Is there a dependency between the dimensions of
the state space?

If so, can we use the dependency to solve the
problem more efficiently?

In the SLAM context
The map depends on the of the robot.

We know how to build a map the position of the
sensor is



Can We Exploit Dependencies Between
the Different Dimensions of the State
Space?

xl:t , M



If We Know the Poses of the Robot,
Mapping is Easy!

xl:t , M
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Key Idea

xﬁ:tl7nL

If we use the particle set only to model the robot’s path,
each sample is a path hypothesis. For each particle, we
can compute an individual map using it’s path.



Rao-Blackwellization

Factorization to exploit dependencies between
variables:

p(a,b) = p(b|a)p(a)

If p(b| a) can be computed efficiently, represent

only p(a) with samples and compute p(b | a) for
every sample

Courtesy: C. Stachniss



Rao-Blackwellization for SLAM

Factorization of the SLAM posterior

p(xl;t; m| Zq.¢, ul:t) —

First introduced for SLAM by Murphy in 1999

K. Murphy, Bayesian map learning in dynamic environments, In Proc. Advances
in Neural Information Processing Systems, 1999 Courtesy: C. Stachniss



Rao-Blackwellization for SLAM

Factorization of the SLAM posterior

p(xl:t'm ‘ Z1:t» ul:t) —
p(xl:t ‘Zl:t; ul:t) p(m ‘ X1:t» Zl:t)

First introduced for SLAM by Murphy in 1999

K. Murphy, Bayesian map learning in dynamic environments, In Proc. Advances
in Neural Information Processing Systems, 1999 Courtesy: C. Stachniss



Rao-Blackwellization for SLAM

Factorization of the SLAM posterior

p(xl:bm ‘ Z1:t) ul:t) —
p(xl:t ‘Zl:t' ul:t) p(m ‘ X1:t Zl:t)

First exploited in FastSLAM by Montemerlo et al., 2002

Courtesy: C. Stachniss



Rao-Blackwellization for SLAM

Factorization of the SLAM posterior

p(xl:t'm ‘ Z1:t ul:t) —

p(xl:t
p(xl:t

Z1:t» ul:t) p(m ‘ X1:t) Zl:t)
N :
Z1:t» ul:t) Hizlp(ml ‘ X1:t) Zl:t)

First exploited in FastSLAM by Montemerlo et al., 2002

Courtesy: C. Stachniss



Rao-Blackwellization for SLAM

Factorization of the SLAM posterior

p(xl:t'm ‘ Z1:t ul:t) —

p(xl:t
p(xl:t

Z1:t» ul:t) p(m ‘ X1:t) Zl:t)
N :
Z1:t» ul:t) Hizlp(ml ‘ X1:t) Zl:t)

First exploited in FastSLAM by Montemerlo et al., 2002

Courtesy: C. Stachniss



Modeling the Robot’s Path

Sample-based representation for
p(xl:t |Zl:t' ul:t)

Each sample is a path hypothesis

X1 X2 X3
starting location, pose hypothesis
typically (0,0,0) at time =2

Past poses of a sample are not revised

No need to maintain past poses in the sample set

Courtesy: C. Stachniss



FastSLAM

Proposed by Montemerlo et al. in 2002 (for
landmark based SLAM)

Each particle has a pose and a map

Particle .
1 x,Y, (9 Occupancy grid map
Particle .

2 X, Y, v, Occupancy grid map

Particle

N x,Y, 6 Occupancy grid map




FastSLAM — Particle representation




FastSLAM Algorithm

—

Algorithm FastSLAM_occupancy_grids(X;_;, u, z;):

A?t:Xt:@
fork =1 to M do

x&’f] = sample_motion_model(u;, l'gk—]l)

wl[f':] = measurement_model_map(z, x,[jk],mz[ﬁ_]l)

mgk] = updated_occupancy_grid(z, :I:Lk] , m-l[tk_]l)

X, =X, + <x,[5k],m£k],w£k]>
endfor
fork =1to M do

draw i with probability szi]
add <x£i],m,[f]> to X,

endfor
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return X;




Pure odometry




FastSLAM — Best particle




Weakness of FastSLAM 1.0

-1 Proposal Distribution

o Importance weighting

(a)

(b)
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FastSLAM 1.0 to FastSLAM 2.0

FastSLAM 1.0 uses the motion model as the
proposal distribution

%]

k
v~ plry | 2 u)

FastSLAM 2.0

Especially useful if an accurate sensor is used
(compared to the motion noise)

[Mon'remerlo et ql-l 2003] Courtesy: C. Stachniss



FastSLAM 2.0 (Informally)

FastSLAM 2.0 samples from

k k
331[5 | ~ p(llit \ 513[1;,]5_17161:75,21:157)

Results in a more peaked proposal distribution
Less particles are required
More robust and accurate

But more complex...

[Mon'remerlo et ql-l 2003] Courtesy: C. Stachniss



Generating better proposals

Use scan-matching to compute highly accurate
odometry measurements from consecutive range
scans.

Use the improved odometry in the prediction step to
get highly accurate proposal distributions.



Motion Model for Scan
Matching
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Rao-Blackwellized Mapping with Scan-
Matching

Map: Intel Research Lab Seattle



Loop Closure

Loop closure involves

Recognizing when the robot has returned to a
previously mapped region

Using this information to reduce the uncertainty in the
map estimate

Without loop closure, the uncertainty can grow
without bounds



Loop Closure in FastSLAM

Each particle has it's own map

Maps which agree to closing the loop are weighed
higher than others

These maps are more likely to be resampled

Key: Need diversity of paths/particles/maps



Loop Closure Example
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Rao-Blackwellized Mapping with Scan-
Matching

Map: Intel Research Lab Seattle



Rao-Blackwellized Mapping with Scan-
Matching

Map: Intel Research Lab Seattle



Example (Intel Lab)

T IR 15 particles

i
|

B B N TN = four times faster
—— | > than real-time
P4, 2.8GHz

= 5cm resolution

during scan

2 matching

- = 1cm resolution in
final map

Work by Grisetti et al.



Outdoor Campus Map
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Work by Grisetti et al.



FastSLAM for feature-based maps



FastSLAM in Action
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FastSLAM — Video — All Maps




Results — Victoria Park

1 4 km traverse

0 < 2.5 mRMS

position error

1 100 particles

Blue = GPS
= FastSLAM

Courtesy: M. Montemerlo



ia Park (Video)

ictor

\'

Results —

M. Montemerlo

Courtesy



Results (Sample Size)

Accuracy of FastSLAM vs. the EKF on Simulated Data
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Courtesy: M. Montemerlo



Results (Motion Uncertainty)

Comparison of FastSLAM and EKF Given Motion Ambiguity
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Courtesy: M. Montemerlo



FastSLAM Problems

1 How to determine the sample size?

11 Particle deprivation, especially when closing

(multiple) loops

Particles share common history here

FastSLAM 2.0., N

Courtesy: M. Montemerlo



DP-SLAM: High-Res Fast-SLAM
via History Sharing
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Results obtained with
DP-SLAM 2.0 (offline)

Eliazar & Parr, 04



Close up T R ¥
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End courtesy of Eliazar & Parr



FastSLAM Summary

Particle filter-based SLAM

Rao-Blackwellization: model the robot’s path by
sampling and compute the landmarks given the
poses

Allow for per-particle data association

FastSLAM 1.0 and 2.0 differ in the proposal
distribution

Complexity O(N log M)

Courtesy: C. Stachniss



Literature

FastSLAM

Thrun et al.: “Probabilistic Robotics”, Chapter 13.1-
13.3 + 13.8 (see erratal)

Montemerlo, Thrun, Kollar, Wegbreit: FastSLAM: A
Factored Solution to the Simultaneous Localization
and Mapping Problem, 2002

Montemerlo and Thrun: Simultaneous Localization and

Mapping with Unknown Data Association Using
FastSLAM, 2003

Courtesy: C. Stachniss



RGBD SLAM






Resulting Map
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Experiments: Overlay 2







