CSE-490R Robotics

SLAM + Fast-SLAM

(Partial slides borrowed from Dieter Fox, Wolfram Burgard & Cyril Stachniss)

What is SLAM?

Localization: Estimate current pose given map, controls and observations

 $p(x_t | u_{1:t}, z_{1:t}, m)$

Mapping: Build map given poses and observations $p(m \mid x_{1:t}, z_{1:t})$

Simultaneous Localization And Mapping (SLAM): Find poses and map given controls and observations

 $p(x_{1:t}, m \mid u_{1:t}, z_{1:t})$

SLAM

- A robot moving though an unknown, static environment
- Given:
 - The robot's controls
 - Observations of nearby features

Estimate:

- Map of environment
- Path of the robot

Map representations

Typical representations are:

- Feature-based
- Grid maps (occupancy maps)
- 3D representations (voxels, surfels, octrees etc)

Why is SLAM hard?

SLAM is the task of building a map while estimating the pose of the robot relative to this map

- Chicken-or-egg problem:
 - A map is needed to localize the robot
 - A pose estimate is needed to build a map

Why is SLAM hard?

SLAM: robot path and map are both unknown!

Particle Filters

Represent belief by random samples

- Sampling Importance Resampling (SIR) principle
 Draw the new generation of particles
 - Assign an importance weight to each particle
 - Resampling

□ Applications are localization, tracking, ...

Particle Filter Algorithm

1. Sample the particles from the proposal distribution

$$x_t^{[j]} \sim \pi(x_t \mid \ldots)$$

2. Compute the importance weights

$$w_t^{[j]} = \frac{target(x_t^{[j]})}{proposal(x_t^{[j]})}$$

1. Resampling: Draw sample i with probability $w_t^{[i]}$ and repeat J times

Particle Filters for SLAM

 \Box Localization: state space is < X, Y, θ >

- SLAM: state space is < X, Y, θ, map>
 For grid maps: < C₁₁, C₁₂, ..., C_{1n}, C₂₁, ..., C_{nm}>
 For feature maps: < l₁, l₂, ..., l_m>
- Problem: The number of particles needed to represent a posterior grows exponentially with the dimension of the state space!

Dependencies

- Is there a dependency between the dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?

- □ In the SLAM context
 - The map depends on the poses of the robot.
 - We know how to build a map given the position of the sensor is known.

Can We Exploit Dependencies Between the Different Dimensions of the State Space?

 $x_{1:t}$, m

If We Know the Poses of the Robot, Mapping is Easy!

If we use the particle set only to model the robot's path, each sample is a path hypothesis. For each particle, we can compute an individual map using it's path.

Rao-Blackwellization

Factorization to exploit dependencies between variables:

$$p(a,b) = p(b \mid a) p(a)$$

□ If $p(b \mid a)$ can be computed efficiently, represent only p(a) with samples and compute $p(b \mid a)$ for every sample

Factorization of the SLAM posterior

poses map observations & controls

 $p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) =$

First introduced for SLAM by Murphy in 1999

K. Murphy, Bayesian map learning in dynamic environments, In Proc. Advances in Neural Information Processing Systems, 1999

Factorization of the SLAM posterior map observations & controls poses $p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) =$ $p(x_{1:t} | z_{1:t}, u_{1:t}) p(m | x_{1:t}, z_{1:t})$ path posterior map posterior

First introduced for SLAM by Murphy in 1999

K. Murphy, Bayesian map learning in dynamic environments, In Proc. Advances in Neural Information Processing Systems, 1999

Factorization of the SLAM posterior

$$p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) = p(x_{1:t} \mid z_{1:t}, u_{1:t}) p(m \mid x_{1:t}, z_{1:t})$$

Grid cells are conditionally independent given the poses

First exploited in FastSLAM by Montemerlo et al., 2002

Factorization of the SLAM posterior

$$p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) = p(x_{1:t} \mid z_{1:t}, u_{1:t}) p(m \mid x_{1:t}, z_{1:t}) p(x_{1:t} \mid z_{1:t}, u_{1:t}) \prod_{i=1}^{N} p(m^{i} \mid x_{1:t}, z_{1:t})$$

First exploited in FastSLAM by Montemerlo et al., 2002

Factorization of the SLAM posterior

$$p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) = \\p(x_{1:t} \mid z_{1:t}, u_{1:t}) p(m \mid x_{1:t}, z_{1:t}) \\p(x_{1:t} \mid z_{1:t}, u_{1:t}) \prod_{i=1}^{N} p(m^{i} \mid x_{1:t}, z_{1:t}) \\ \hline \end{pmatrix}$$
particle filter for localization occupancy grid mapping

First exploited in FastSLAM by Montemerlo et al., 2002

Modeling the Robot's Path

Sample-based representation for

 $p(x_{1:t} | z_{1:t}, u_{1:t})$

 x_1

Each sample is a path hypothesis

starting location,pose hypothesistypically (0,0,0)at time t=2

Past poses of a sample are not revised

 x_2

No need to maintain past poses in the sample set

 χ_3

FastSLAM

- Proposed by Montemerlo et al. in 2002 (for landmark based SLAM)
- Each particle has a pose and a map

FastSLAM – Particle representation

FastSLAM Algorithm

Algorithm FastSLAM_occupancy_grids($\mathcal{X}_{t-1}, u_t, z_t$): 1: $\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$ 2: for k = 1 to M do 3: $x_t^{[k]} =$ sample_motion_model $(u_t, x_{t-1}^{[k]})$ 4: $w_t^{[k]} =$ measurement_model_map $(z_t, x_t^{[k]}, m_{t-1}^{[k]})$ 5: $m_t^{[k]} =$ **updated_occupancy_grid** $(z_t, x_t^{[k]}, m_{t-1}^{[k]})$ 5: $\bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[k]}, m_t^{[k]}, w_t^{[k]} \rangle$ 6: 7: endfor for k = 1 to M do 8: draw *i* with probability $\propto w_t^{[i]}$ 9: add $\langle x_t^{[i]}, m_t^{[i]} \rangle$ to \mathcal{X}_t 10: endfor 11: return X_t 12:

Pure odometry

FastSLAM – Best particle

Weakness of FastSLAM 1.0

Proposal Distribution
Importance weighting

FastSLAM 1.0 to FastSLAM 2.0

FastSLAM 1.0 uses the motion model as the proposal distribution

$$x_t^{[k]} \sim p(x_t \mid x_{t-1}^{[k]}, u_t)$$

- FastSLAM 2.0 considers also the measurements during sampling
- Especially useful if an accurate sensor is used (compared to the motion noise)

[Montemerlo et al., 2003]

FastSLAM 2.0 (Informally)

FastSLAM 2.0 samples from

$$x_t^{[k]} \sim p(x_t \mid x_{1:t-1}^{[k]}, u_{1:t}, z_{1:t})$$

Results in a more peaked proposal distribution

- Less particles are required
- More robust and accurate
- □ But more complex...

[Montemerlo et al., 2003]

Generating better proposals

- Use scan-matching to compute highly accurate odometry measurements from consecutive range scans.
- Use the improved odometry in the prediction step to get highly accurate proposal distributions.

Motion Model for Scan Matching

Rao-Blackwellized Mapping with Scan-Matching

Loop Closure

- Loop closure involves
 - Recognizing when the robot has returned to a previously mapped region
 - Using this information to reduce the uncertainty in the map estimate

Without loop closure, the uncertainty can grow without bounds

Loop Closure in FastSLAM

Each particle has it's own map

Maps which agree to closing the loop are weighed higher than others

These maps are more likely to be resampled

Key: Need diversity of paths/particles/maps

Loop Closure Example

Rao-Blackwellized Mapping with Scan-Matching

Rao-Blackwellized Mapping with Scan-Matching

Example (Intel Lab)

15 particles

- four times faster than real-time P4, 2.8GHz
- 5cm resolution during scan matching
- 1cm resolution in final map

Work by Grisetti et al.

Outdoor Campus Map

- 30 particles
- 250x250m²
- 1.088 miles (odometry)
- 20cm resolution during scan matching
- 30cm resolution in final map

Work by Grisetti et al.

FastSLAM for feature-based maps

FastSLAM in Action

Courtesy: M. Montemerlo

FastSLAM – Video – All Maps

Results – Victoria Park

- 4 km traverse
- Constant
 Con
- 100 particles

Blue = GPS

Results – Victoria Park (Video)

Results (Sample Size)

Courtesy: M. Montemerlo

Results (Motion Uncertainty)

Courtesy: M. Montemerlo

FastSLAM Problems

- □ How to determine the sample size?
- Particle deprivation, especially when closing (multiple) loops

DP-SLAM: High-Res Fast-SLAM via History Sharing

Run at real-time speed on 2.4GHz Pentium 4 at 10cm/s

Results obtained with DP-SLAM 2.0 (offline)

Eliazar & Parr, 04

End courtesy of Eliazar & Parr

FastSLAM Summary

- Particle filter-based SLAM
- Rao-Blackwellization: model the robot's path by sampling and compute the landmarks given the poses
- □ Allow for per-particle data association
- FastSLAM 1.0 and 2.0 differ in the proposal distribution
- \Box Complexity $\mathcal{O}(N \log M)$

Literature

FastSLAM

- Thrun et al.: "Probabilistic Robotics", Chapter 13.1-13.3 + 13.8 (see errata!)
- Montemerlo, Thrun, Kollar, Wegbreit: FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem, 2002
- Montemerlo and Thrun: Simultaneous Localization and Mapping with Unknown Data Association Using FastSLAM, 2003

RGBD SLAM

move camera Grief 20 Nov Coal 20 Nove Ribmahe

Resulting Map

Experiments: Overlay 1

Experiments: Overlay 2

