
CSE-490R
Robotics

SLAM + Fast-SLAM

(Partial slides borrowed from Dieter Fox, Wolfram Burgard &
Cyril Stachniss)

What is SLAM?

¨ Localization: Estimate current pose given map,
controls and observations

¨ Mapping: Build map given poses and observations

¨ Simultaneous Localization And Mapping (SLAM): Find
poses and map given controls and observations

!(#$	|	'(:$, +(:$, m)

!(.	|	#(:$, +(:$)

!(#(:$, .	|	'(:$, +(:$)

SLAM

¨ A robot moving though an unknown, static
environment

¨ Given:
¤ The robot’s controls
¤ Observations of nearby

features

¨ Estimate:
¤ Map of environment
¤ Path of the robot

Map representations

¨ Typical representations are:
¤ Feature-based
¤ Grid maps (occupancy maps)
¤ 3D representations (voxels, surfels, octrees etc)

4

 Typical models are:
!  Feature maps
!  Grid maps (occupancy or reflection probability

maps)

Map Representations

today

4

 Typical models are:
!  Feature maps
!  Grid maps (occupancy or reflection probability

maps)

Map Representations

today

Why is SLAM hard?

¨ SLAM is the task of building a map while estimating
the pose of the robot relative to this map

¨ Chicken-or-egg problem:
¤ A map is needed to localize the robot
¤ A pose estimate is needed to build a map

Why is SLAM hard?

5

Why is SLAM a Hard Problem?

SLAM: robot path and map are both unknown!

Robot path error correlates errors in the map

6

Why is SLAM a Hard Problem?

!  In the real world, the mapping between
observations and landmarks is unknown

!  Picking wrong data associations can have
catastrophic consequences

!  Pose error correlates data associations

Robot pose
uncertainty

Particle Filters

¨ Represent belief by random samples

¨ Sampling Importance Resampling (SIR) principle
¤ Draw the new generation of particles
¤ Assign an importance weight to each particle
¤ Resampling

¨ Applications are localization, tracking, …

Particle Filter Algorithm

1. Sample the particles from the proposal distribution

2. Compute the importance weights

1. Resampling: Draw sample with probability
and repeat times

Courtesy: C. Stachniss

Particle Filters for SLAM

¨ Localization: state space is

¨ SLAM: state space is
¤ For grid maps:
¤ For feature maps:

¨ Problem: The number of particles needed to
represent a posterior grows exponentially with the
dimension of the state space!

9

!  A particle filter can be used to solve both problems

!  Localization: state space < x, y, θ>"

!  SLAM: state space < x, y, θ, map>
!  for landmark maps = < l1, l2, …, lm>
!  for grid maps = < c11, c12, …, c1n, c21, …, cnm>"

!  Problem: The number of particles needed to
represent a posterior grows exponentially with
the dimension of the state space!

Localization vs. SLAM

9

!  A particle filter can be used to solve both problems

!  Localization: state space < x, y, θ>"

!  SLAM: state space < x, y, θ, map>
!  for landmark maps = < l1, l2, …, lm>
!  for grid maps = < c11, c12, …, c1n, c21, …, cnm>"

!  Problem: The number of particles needed to
represent a posterior grows exponentially with
the dimension of the state space!

Localization vs. SLAM

9

!  A particle filter can be used to solve both problems

!  Localization: state space < x, y, θ>"

!  SLAM: state space < x, y, θ, map>
!  for landmark maps = < l1, l2, …, lm>
!  for grid maps = < c11, c12, …, c1n, c21, …, cnm>"

!  Problem: The number of particles needed to
represent a posterior grows exponentially with
the dimension of the state space!

Localization vs. SLAM

9

!  A particle filter can be used to solve both problems

!  Localization: state space < x, y, θ>"

!  SLAM: state space < x, y, θ, map>
!  for landmark maps = < l1, l2, …, lm>
!  for grid maps = < c11, c12, …, c1n, c21, …, cnm>"

!  Problem: The number of particles needed to
represent a posterior grows exponentially with
the dimension of the state space!

Localization vs. SLAM

Dependencies

¨ Is there a dependency between the dimensions of
the state space?

¨ If so, can we use the dependency to solve the
problem more efficiently?

¨ In the SLAM context
¤ The map depends on the poses of the robot.
¤ We know how to build a map given the position of the

sensor is known.

Can We Exploit Dependencies Between
the Different Dimensions of the State

Space?

!":$, '

If We Know the Poses of the Robot,
Mapping is Easy!

!":$, '

Key Idea

If we use the particle set only to model the robot’s path,
each sample is a path hypothesis. For each particle, we
can compute an individual map using it’s path.

!":$, '

Rao-Blackwellization

¨ Factorization to exploit dependencies between
variables:

¨ If can be computed efficiently, represent
only with samples and compute for
every sample

Courtesy: C. Stachniss

Rao-Blackwellization for SLAM

¨ Factorization of the SLAM posterior

First introduced for SLAM by Murphy in 1999

Courtesy: C. Stachniss
K. Murphy, Bayesian map learning in dynamic environments, In Proc. Advances
in Neural Information Processing Systems, 1999

poses map observations & controls

!(#$:&, (|	+$:&, ,$:&) =

Rao-Blackwellization for SLAM

¨ Factorization of the SLAM posterior

Courtesy: C. Stachniss

First introduced for SLAM by Murphy in 1999
K. Murphy, Bayesian map learning in dynamic environments, In Proc. Advances
in Neural Information Processing Systems, 1999

path posterior map posterior

poses map observations & controls

!(#$:&, (|	+$:&, ,$:&) =
					!(#$:&	 +$:&, ,$:& 	! (#$:&, +$:&)

Rao-Blackwellization for SLAM

¨ Factorization of the SLAM posterior

Grid cells are conditionally
independent given the poses

First exploited in FastSLAM by Montemerlo et al., 2002
Courtesy: C. Stachniss

!(#$:&, (|	+$:&, ,$:&) =
					!(#$:&	 +$:&, ,$:& 	! (#$:&, +$:&)

Rao-Blackwellization for SLAM

¨ Factorization of the SLAM posterior

Grid cells are conditionally
independent given the poses

First exploited in FastSLAM by Montemerlo et al., 2002
Courtesy: C. Stachniss

!(#$:&, (|	+$:&, ,$:&) =
					!(#$:&	 +$:&, ,$:& 	! (#$:&, +$:&)
				!(#$:&	 +$:&, ,$:& 	∏01$

2 ! (0	 	#$:&, +$:&)

Rao-Blackwellization for SLAM

¨ Factorization of the SLAM posterior

First exploited in FastSLAM by Montemerlo et al., 2002
Courtesy: C. Stachniss

!(#$:&, (|	+$:&, ,$:&) =
					!(#$:&	 +$:&, ,$:& 	! (#$:&, +$:&)
				!(#$:&	 +$:&, ,$:& 	∏01$

2 ! (0	 	#$:&, +$:&)

particle filter for localization occupancy grid mapping

Modeling the Robot’s Path

¨ Sample-based representation for

¨ Each sample is a path hypothesis

¨ Past poses of a sample are not revised
¨ No need to maintain past poses in the sample set

starting location,
typically (0,0,0)

pose hypothesis
at time t=2

Courtesy: C. Stachniss

!(#$:&	 ($:&, *$:&

#$ #+ #,

FastSLAM
¨ Proposed by Montemerlo et al. in 2002 (for

landmark based SLAM)
¨ Each particle has a pose and a map

Occupancy grid map
Particle
1

Particle
2

Particle
N

…

Occupancy grid map

Occupancy grid map

FastSLAM – Particle representation
476 13 The FastSLAM Algorithm

Figure 13.17 Application of the grid-based variant of the FastSLAM algorithm. Each
particle carries its own map and the importance weights of the particles are computed
based on the likelihood of the measurements given the particle’s own map.

Figure 13.18 Occupancy grid map generated from laser range data and based on
pure odometry. All images courtesy of Dirk Hähnel, University of Freiburg.

FastSLAM Algorithm478 13 The FastSLAM Algorithm

1: Algorithm FastSLAM_occupancy_grids(Xt−1, ut, zt):

2: X̄t = Xt = ∅
3: for k = 1 to M do

4: x[k]
t = sample_motion_model(ut, x

[k]
t−1)

5: w[k]
t = measurement_model_map(zt, x

[k]
t ,m[k]

t−1)

5: m[k]
t = updated_occupancy_grid(zt, x

[k]
t ,m[k]

t−1)

6: X̄t = X̄t + ⟨x[k]
t ,m[k]

t , w[k]
t ⟩

7: endfor

8: for k = 1 to M do

9: draw i with probability ∝ w[i]
t

10: add ⟨x[i]
t ,m[i]

t ⟩ to Xt

11: endfor

12: return Xt

Table 13.4 The FastSLAM algorithm for learning occupancy grid maps.

lution of the map is 10cm. To learn this map, as few as 500 particles were
used. During the overall process the robot encountered two loops. A map
calculated from pure odometry data is shown in Figure 13.18, illustrating the
amount of error in the robot’s odometry.

The importance of using multiple particles becomes evident in Fig-
ure 13.20, which visualizes the trajectories of the samples shortly before and
after closing a loop. As the left image illustrates, the robot is quite uncertain
about its position relative to the starting position, hence the wide spread of
particles at the time of loop closure. However, a few resampling steps after
the robot re-enters known terrain suffice to reduce the uncertainty drastically
(right image).

Pure odometry

476 13 The FastSLAM Algorithm

Figure 13.17 Application of the grid-based variant of the FastSLAM algorithm. Each
particle carries its own map and the importance weights of the particles are computed
based on the likelihood of the measurements given the particle’s own map.

Figure 13.18 Occupancy grid map generated from laser range data and based on
pure odometry. All images courtesy of Dirk Hähnel, University of Freiburg.

FastSLAM – Best particle
13.10 Grid-based FastSLAM 477

Figure 13.19 Occupancy grid map corresponding to the particle with the highest
accumulated importance weight obtained by the algorithm listed in Table 13.4 from
the data depicted in Figure 13.18. The number of particles to create this experiment
was 500. Also depicted in this image is the path represented by the particle with the
maximum accumulated importance weight.

(a) (b)

Figure 13.20 Trajectories of all samples shortly before (left) and after (right) closing
the outer loop of the environment depicted in Figure 13.19. Images courtesy of Dirk
Hähnel, University of Freiburg.

Weakness of FastSLAM 1.0

¨ Proposal Distribution ¨ Importance weighting

FastSLAM 1.0 to FastSLAM 2.0

¨ FastSLAM 1.0 uses the motion model as the
proposal distribution

¨ FastSLAM 2.0 considers also the measurements
during sampling

¨ Especially useful if an accurate sensor is used
(compared to the motion noise)

[Montemerlo et al., 2003] Courtesy: C. Stachniss

FastSLAM 2.0 (Informally)

¨ FastSLAM 2.0 samples from

)

¨ Results in a more peaked proposal distribution
¨ Less particles are required
¨ More robust and accurate
¨ But more complex…

[Montemerlo et al., 2003] Courtesy: C. Stachniss

Generating better proposals

¨ Use scan-matching to compute highly accurate
odometry measurements from consecutive range
scans.

¨ Use the improved odometry in the prediction step to
get highly accurate proposal distributions.

Motion Model for Scan
Matching

a'

b'

d'

final pose
a

d

measured pose
b

initial pose

path

Raw Odometry
Scan Matching

Rao-Blackwellized Mapping with Scan-
Matching

M
ap

:
In

te
l R

es
ea

rc
h

La
b

S
ea

tt
le

Loop Closure

¨ Loop closure involves
¤ Recognizing when the robot has returned to a

previously mapped region
¤ Using this information to reduce the uncertainty in the

map estimate

¨ Without loop closure, the uncertainty can grow
without bounds

Loop Closure in FastSLAM

¨ Each particle has it’s own map

¨ Maps which agree to closing the loop are weighed
higher than others

¨ These maps are more likely to be resampled

¨ Key: Need diversity of paths/particles/maps

Loop Closure Example

map of particle 1 map of particle 3

map of particle 2

3 particles

Rao-Blackwellized Mapping with Scan-
Matching

M
ap

:
In

te
l R

es
ea

rc
h

La
b

S
ea

tt
le

Rao-Blackwellized Mapping with Scan-
Matching

M
ap

:
In

te
l R

es
ea

rc
h

La
b

S
ea

tt
le

Example (Intel Lab)
§ 15 particles
§ four times faster

than real-time
P4, 2.8GHz

§ 5cm resolution
during scan
matching

§ 1cm resolution in
final map

Work by Grisetti et al.

Outdoor Campus Map
§ 30 particles
§ 250x250m2

§ 1.75 km
(odometry)

§ 20cm resolution
during scan
matching

§ 30cm resolution
in final map

Work by Grisetti et al.

§ 30 particles
§ 250x250m2

§ 1.088 miles
(odometry)

§ 20cm resolution
during scan
matching

§ 30cm resolution
in final map

FastSLAM for feature-based maps

FastSLAM in Action

Courtesy: M. Montemerlo

FastSLAM – Video – All Maps

Results – Victoria Park

¨ 4 km traverse
¨ < 2.5 m RMS

position error
¨ 100 particles

Blue = GPS
Yellow = FastSLAM

Courtesy: M. Montemerlo

Results – Victoria Park (Video)

Courtesy: M. Montemerlo

Results (Sample Size)

Courtesy: M. Montemerlo

Results (Motion Uncertainty)

Courtesy: M. Montemerlo

FastSLAM Problems

¨ How to determine the sample size?
¨ Particle deprivation, especially when closing

(multiple) loops

FastSLAM 1.0 FastSLAM 2.0

C
ou

rt
es

y:
 M

. M
on

te
m

er
lo

DP-SLAM: High-Res Fast-SLAM
via History Sharing

Run at real-time speed on 2.4GHz Pentium 4 at 10cm/s

scale: 3cm

Consistency

Results obtained with
DP-SLAM 2.0 (offline)

Eliazar & Parr, 04

Close up

End courtesy of Eliazar & Parr

FastSLAM Summary

¨ Particle filter-based SLAM
¨ Rao-Blackwellization: model the robot’s path by

sampling and compute the landmarks given the
poses

¨ Allow for per-particle data association
¨ FastSLAM 1.0 and 2.0 differ in the proposal

distribution
¨ Complexity

Courtesy: C. Stachniss

Literature

FastSLAM

¨ Thrun et al.: “Probabilistic Robotics”, Chapter 13.1-
13.3 + 13.8 (see errata!)

¨ Montemerlo, Thrun, Kollar, Wegbreit: FastSLAM: A
Factored Solution to the Simultaneous Localization
and Mapping Problem, 2002

¨ Montemerlo and Thrun: Simultaneous Localization and
Mapping with Unknown Data Association Using
FastSLAM, 2003

Courtesy: C. Stachniss

RGBD SLAM

Resulting Map

Experiments: Overlay 1
6
8

Experiments: Overlay 2
6
9

7
1

