
CSE 490R P1 - Localization using Particle Filters
Due date: Sun, Jan 28 - 11:59 PM

1 Introduction

In this assignment you will implement a particle filter to localize your car within a known map. This
will provide a global pose (x =< x, y, θ >) for your car where (x, y) is the 2D position of the
car within the map and θ is the heading direction w.r.t the map’s frame of reference. You will be
implementing different parts of the particle filter, namely the motion model, sensor model, and the
overall filtering framework. You will also be tuning various parameters that govern the particle filter
to gain intuition on the filter’s behaviour.

Provided is skeleton code (in Python) to begin this assignment, multiple bag files of recorded data
with results from the TAs’ implementation of the particle filter, and maps of Sieg 322, the 3rd floor of
Sieg and the 4th floor of the Paul Allen Center. All provided reference bags are from runs in the 4th
floor of the Paul Allen Center - you can replay them to test the implementations of different parts
of your particle filter and compare the results to the provided baseline results (your results need not
match exactly).

Submission items for this homework includes all written code, all generated plots, and a PDF or txt
file answering the questions listed in the following sections. Additionally, there will be a final demo
where we will meet with each team to test their particle filter on actual runs through the 3rd floor of
the Sieg building – we will also be talking to each team separately to evaulate their understanding of
different parts of the assignment (and to ascertain the contributions of each team member).

Next, we discuss each part of the assignment in further detail.

2 Motion Model

In the first part of this assignment, you will implement and evaluate two different motion models:
a simple motion model based on wheel odometry information and the kinematic car model. As
discussed in class, a motion model specifies the probability distribution p(xt|xt−1, ut), i.e. the
probability of reaching a pose xt given that we apply a control ut from pose xt−1. Unlike a
traditional Bayes filter which requires us to explicitly represent the posterior over possible future
poses (i.e. explicitly compute p(xt|xt−1, ut)), we only need to be able to draw samples from this
distribution for the particle filter:

x′t ∼ p(xt|xt−1, ut) (1)

where x′t is a possible next pose (xt, yt, θt) sampled from the motion model. We do this by having
our motion models output a change in state ∆x,∆y,∆θ.

A motion model is critical to successful state estimation: the more accurate we are at predicting
the effect of actions, the more likely we are to localize accurately. We will explore two motion
models in this assignment: the odometry motion model that uses encoder information to make
future pose predictions and the kinematic car model which models the kinematics of the racecar.
You will implement a sampling algorithm for each motion model and investigate and compare the
characteristics of both models, their predictions and their corresponding noise distributions.

2.1 Odometry Motion Model

Our first motion model is based on sensor odometry information – odometry in this case refers
to the explicit pose information provided by the car in the “/vesc/odom” topic. Strictly speaking,

https://gitlab.cs.washington.edu/cse490r_18wi/lab1

odometry provides us observations x̂ of the robot’s pose x (these observations are located in an
arbitrary reference frame based on the robot’s initial position, not the map), but we choose to treat it
as a motion model rather than a sensor model. Thus our controls for the odometry motion model are
a pair of poses measured through odometry: ut =< x̂t, x̂t−1 > where x̂t−1 refers to the previous
odometry pose and x̂t is the current. Given this pair of poses, we can measure the observed change
in pose ∆x,∆y,∆θ through co-ordinate transformations. The odometry motion model applies this
observed change in pose to the previous robot’s pose xt−1 to get predictions of the next pose xt:

∆x :=< ∆x,∆y,∆θ >= f(ut) (2)
xt = g(xt−1,∆x) (3)

where the function f measures the change in pose from odometry and g applies it to the previously
estimated robot pose.

You will be implementing this motion model in the file called MotionModel.py which has some
skeleton code to get you started.

2.2 Kinematic Model

Instead of relying on the odometry information, we can explicitly derive a motion model based on the
kinematic structure of the car. As we discussed in class, our controls for the racecar are the speed of
the car v and its steering angle δ, i.e. ut =< vt, δt >. The kinematic car model explicitly models the
effect of this action ut on the previously estimated robot pose xt−1, predicting a velocity for the 2D
position ∆x,∆y and orientation ∆θ of the robot which we integrate forward in time to get the future
pose xt. Further details on the derivation of this model are provided below (and in the class notes):

∆x =v cos θ

∆y =v sin θ

∆θ =
v

L
sin 2β

tanβ = tan δ/2

tan δr =
L

W +H

tan δl =
L

H

tan δ =
L

H +W/2

tanβ =
L/2

H +W/2

Figure 1: Simplified Kinematic Model of the robot car. State consists of position and heading angle (x, y, θ).
Controls consist of velocity and wheel angle (v, δ).

You will also be implementing this motion model in the file called MotionModel.py which has some
skeleton code to get you started.

2

2.3 Noise

Both the models described above make deterministic predictions, i.e. given an initial pose xt−1 and
control ut there is a single predicted future pose xt. This would be acceptable if our model is perfect,
but as you have seen we have made many simplistic assumptions to derive this model. In general,
it is very hard to model any physical process perfectly. In practice, we would like our model to be
robust to potential errors in modeling. We do this by allowing our model to be probabilistic - given
any pose xt−1 and control ut, our model can predict a distribution over future states xt, some being
more likely than others (we can measure this through p(xt|xt−1, ut). We achieve this by adding
noise directly to the model’s predictions (odometry motion model) or by adding noise to the controls
(kinematic car model) input to the model:

• Odometry motion model noise: For the odometry motion model you will add noise to the
observed change in pose ∆x. A simple noise model is to perturb each dimension of the
change in pose < ∆x,∆y,∆θ > by independent zero-mean Gaussian noise ε ∼ N (0, σ2)
where σ is the standard deviation of the noise (tuned by you). The resulting perturbed
change in pose: (∆x+ εx,∆y+ εy,∆θ+ εθ) can now be applied to the previous pose xt−1
to get a “noisy” estimate of the predicted next pose xt.

• Kinematic car model noise: For the kinematic motion model, the noise will be added
directly to your controls (rather than the predicted change in pose). Once again, our
noise can be sampled from an independent zero-mean Gaussian (different per-dimension)
ε ∼ N (0, σ2) with a tunable standard deviation σ. The resulting perturbed controls:
(vt + εv, δt + εδ) can be used to compute the next pose xt based on the equations described
in the previous section.

You will implement these noise models in MotionModel.py.

2.4 Questions

We will now compare the two different motion models and their corresponding noise models to get a
better idea of their behavior:

1. Visualizing the posterior: Given a particular pose xt−1 and control ut, our “noisy” mo-
tion model can predict multiple future states xt due to the added Gaussian random noise.
Visualize this distribution over future states by sampling multiple times (say 1000 times)
from our motion model (for a fixed xt−1, ut) and plotting the x and y values of the samples.
Answer the following questions: Do the distributions from the two motion models differ? If
so, how? How does the distribution vary when you increase the noise in position (or speed)
significantly compared to the orientation (or steering angle) and vice-versa? Show plots for
each and include the noise parameters, previous pose xt−1 and control ut in the caption.

2. Open loop rollout: The particle filter (or the general Bayes filter) uses the prediction-
correction cycle to recursively estimate state. Assume that you do not have access to any
observations – the correction step cannot be applied. What do you expect to see if we run
only the prediction step recursively as we drive the robot? Is the resulting state estimate
good? Let us try to visualize this – using the two bag files provided (loop.bag and circle.bag),
estimate the state using only the motion model and compare to the “ground truth” state
estimates provided in the bags. For this test, you can turn off the noise addition - your
motion model predictions are deterministic (so you only need a single particle). You can
also assume that the initial pose of the robot is provided to you. Plot the resulting state
trajectory from this run against the “ground truth” data on the map. What do you see? Is the
motion model able to correctly predict the pose of the robot? Justify.

3. Noise propagation: In the previous question we looked at the predictions of the motion
model without any noise added. Here, we visualize how the motion model propagates
noise over time as the robot moves – Given a starting pose for the robot and a sequence of
controls (of fixed length, say 20 steps), visualize the distribution over future states (similar
to visualizing the posterior) for each of these steps. Note: You will have an initial sample set
of 500 particles which you will predict forward in time based on the current control to get
future predictions and repeat this in a loop for 20 future steps without resampling. Again,
you have one initialization followed by multiple predictions without resampling. Choose

3

a sequence of 20 timesteps from the two bag files provided (loop.bag and circle.bag) and
generate plots of the future particle distributions using both the motion models. How does
the noise propagate? Do you see any explicit difference between the two motion models?
Explain.

HINT: The parameters (σ) for the Gaussian noise terms need to be chosen to best capture the
variability of the model acting in the real world. You can also make these noise parameters dependent
on the control parameters (for example, it might be physically realistic to say that there is more
uncertainty in your predictions if you move faster).

HINT: Figures 5.3, 5.10, and 8.10, and their respective sections from the textbook Probabilistic
Robotics, may be useful to understanding the effects of motion models and noise.

2.5 Submission

Submit MotionModel.py, your plots for the noise/motion model analyses along with explanations
for the different behaviors observed in the plots. In addition, answer the following questions:

1. In your opinion, which motion model works better with the Particle filter? What is the
benefit of the odometry model versus kinematic model?

2. What do you think are the weaknesses of these models, and what improvements would you
suggest? If you were to build your own model, how would you do it?

3. Include your answers to the questions asked in section 2.4.

3 Sensor Model

The sensor model captures the probability p(zt|xt) that a certain observation zt can be obtained from
a given robot pose xt (assuming that the map of the environment is known). In this assignment, zt is
the LIDAR data from the laser sensor mounted near the front of the robot. Your task in this section is
to implement and analyze the LIDAR sensor model discussed in class.

3.1 Model

The LIDAR sensor shoots out rays into the environment at fixed angular intervals and returns the
measured distance along these rays (or nan for an unsuccesful measurement). Therefore, a single

4

LIDAR scan z has a vector of distances along these different rays z =
[
z1, z2,, zN

]
. Given the

map of the environment (m), these rays are conditionally independent of each other, so we can rewrite
the sensor model likelihood as follows:

p(zt|xt,m) = p(z1, z2,, zN |xt,m) = p(z1|xt,m) ∗ p(z2|xt,m) ∗ ... ∗ p(zN |xm,) (4)
where the map m is fixed (we will not use m explicitly in any further equations, it is assumed to be
provided). As we can see, to evaluate the likelihood it is sufficient if we have a model for measuring
the probability of a single range/bearing measurement (each ray has a bearing and range) given a
pose p(zi|xt).

We will compute this in the following manner: First, we will generate a simulated observation ẑt
given that the robot is at a certain pose xt in the map. We do this by casting rays into the map from
the robot’s pose and measuring the distance to any obstacle/wall the ray encounters. This is very
much akin to how laser light is emitted from the LIDAR itself. We then quantify how close each
ray in this simulated observation ẑit is close to the real observed data zit providing us an estimate of
p(zi|xt). Overall, this requires two things: 1) A way to compute the simulated observation given a
pose and 2) A model that measures closeness between the simulated and real data. For the purpose of
this assignment, you are provided with a fast, optimized method (implemented in C++/CUDA) to
compute the simulated observation - you have access to a ray casting library called rangelibc. The
second part is what you will be implementing - a model that measures how likely you are to see a
real observation zit given that you are expected to see a simulated observation ẑit. This LIDAR sensor
model we use is a combination of the following four curves, with certain mixing parameters and
hyper-parmeters (tuned by you) that weigh each of the four components against the other. More
details on this model can be found in Section 6.3.1 of Probabilistic Robotics as well as in the lecture
notes.

Given that the LIDAR range values are discrete (continuous values are converted to discrete pixel
distances on the 2D map), we do not have to generate the model on-line and can instead pre-calculate
them. This will be represented as a table of values, where each row is the actual measured value
and the column is the expected value for a given LIDAR range. Pre-computing this table allows for
faster processing during runtime. During run-time, we use the aforementioned ray casting library
to generate simulated range measurements. This is then used in your calculated look-up table, and
compared to the LIDAR output.

5

For this part of the assignment, you will implement the sensor model in the file SensorModel.py.
In particular, the function precompute_sensor_model() should return a numpy array containing a
tabular representation of the sensor model. The code provided will use your array as a look-up table
to quickly compare new sensor values to expected sensor values, returning the final sensor model
likelihood: p(zt|xt).

3.2 Particle Likelihood

For a given LIDAR scan, there are potentially many locations in a map where that data could come
from. In this part of the assignment, you are going to measure the probability that a given LIDAR
scan came from any position on the map. You will plot the likelihood map of the provided LIDAR
scans (in the bags/laser_scans directory of the skeleton code) within the map of the 3rd floor of
Sieg Hall. You can do this by discretizing the map (this discretization can be as simple as iterating
through all possible x, y values for each point in the map, and then iterating through all θ values
the car could be in at that point) and evaluating the implemented sensor model at each robot pose
xt to compute p(zt|xt). Finally you can assign per 2D positon (x, y) a value that corresponds to
the orientation with the maximum probability at that point (for that x, y find the maximum over all
possible orientations). The resulting plot (normalized) should be a heatmap of likelihood values;
regions of higher likelihood should be a lighter color than regions of low likelihood. For each of the
three given scans, provide this heatmap.

Of course, too fine-grain of a discretization can take a lot of time to process. Therefore, you will also
plot a line comparing the resolution of your discretization against computation time. The amount of
discretization is akin to number of particles, but with known, fixed spaces between the x, y, θ values.

Figure 6.7 from Probabilistic Robotics is a good reference.

3.3 Submission

Turn in SensorModel.py, the likelihood and processing time plots along with explanations for the
behaviors observed in the plots. Also, answer the following questions:

1. How would you incorporate additional sensors into a sensor model? Describe how you
would use the IMU in this way.

2. For localizing a robotic car, what additional sensors would be useful? For a robotic hand,
what additional sensors would be useful for estimation?

4 Particle Filter

The bayes filter consists of a motion model that predicts the movement of the robot, and compares the
expected sensor values after this movement to the sensor values collected from the real robot. In the
particle filter, your belief over the robot pose Bel(xt) is represented as a list of M particles (these
are nothing but samples from the belief distribution). Each particle i has a pose xit which represents
a hypothetical robot at that particular pose; using many particles allows for us to more accurately
represent the belief distribution.

4.1 Implementation

In this part of the assignment, you will be implementing a particle filter to track our belief over the
robot’s pose over time with a fixed number of particles. The code from the prior sections will be
referenced to in the file ParticleFilter.py.

From a high level, this is how the particle filter works. Initially, we have a prior belief over where the
robot is: Bel(x0). You are provided with a clicking interface that enables you to specify the initial
pose of the robot - this will specify Bel(x0). We will represent this belief using a fixed number of
M particles - initially all these particles will be at the clicked pose. In order to specify a pose, look
for a button labeled ’2D Pose Estimate’ along the top bar of the RVIZ interface. After clicking this
button, you can specify a position and orientation by clicking and dragging on the map. Next, each
particle will be propagated forward in time using the motion model (provided the controls). Using
ray-casting on the car’s GPU, we will generate a simulated LIDAR observation for each particle

6

which we will compare to the real LIDAR data from the laser sensor. This now assigns a “weight”
for each particle - particles with higher weights are more likely given the motion and sensor model
updates. Finally, we will re-sample from this distribution to update our belief over the robot’s pose
Bel(xt) - this resampling step gets rid of particles with low belief and concentrates our distribution
over particles with higher belief. We repeat these steps recursively.

In prior sections, you have already implemented algorithms for sampling from two motion models
(with noise) and a sensor model. The key step remaining is to implement the re-sampling step
(discussed in the next section) and to connect all the parts together in a tight loop that should run in
real-time. The particle filter does involve multiple hyper-parameter settings that you will have to tune
for good performance, such as the number of particles to use, the amount to sub-sample the LIDAR
data, when to resample, etc. More details can be found in the provided skeleton code.

4.2 Re-sampling

You will implement two re-sampling procedures for your particle filter in ReSample.py. First is the
naive re-sampler: we draw a random number per particle and choose a specific particle based on the
value of this random number (and the particle’s weight). (Hint: np.random.choice is a good place
to start.)

The second re-sampler is a low-variance re-sampler, which only draws a single random number. This
is detailed in table 4.4 from Probabilistic Robotics and implemented as follows:

4.3 Coding and Debugging

Provided in the bags directory of the skeleton code are bag files of collected data – LIDAR values,
and reference car locations based on the TA implemented particle filter. We strongly advise you
to test on this data to get your implementation started - while it is not necessary (and probably not
possible due to randomization) to match the TA results you should see similar tracking performance
(without losing track) when running the particle filter. A key point to note is that your code will
ultimately be run on the robot for the demo so you should make the code as efficient as possible so
that it can run in real-time.

7

4.4 Extra Credit 1

Implement global localization at the start of the particle filter. So far, you’ve assumed access to a
clicking interface which lets you manually initialize the robot’s pose. By implementing an algorithm
for global localization, you can automate this process. There are multiple ways to do this: a naive
way would be to increase the number of particles significantly until you are able to localize well
globally right at the start. A better way would be to first initialize a large number of particles, weight
these particles by the sensor model and sample a fixed number of M particles from this weighted
distribution. Can you come up with better ways to solve this problem? For this extra credit question,
you will have to implement an algorithm that reliably localizes the robot at the start of the particle
filter run without having to explicitly providing an initialization via clicking. Note that it does not
have to lock on to the exact location right at the start as long as it is able to refine it’s belief estimate
and converge to the correct distribution as the robot moves. The TA’s will test this by having you
re-initialize your particle filter in a new location without human input.

4.5 Extra credit 2

Solve the kidnapped robot problem. A harder version of the global localization problem is called the
kidnapped robot problem - say that your robot has been tracking the pose quite well, but suddenly a
malicious agent picks the robot up while covering the LIDAR and moves it to a different location
within the same map. Can your particle filter recover and correctly re-estimate this new position that
the robot is in? Unlike the initial global localization problem, you now have an additional problem to
solve - you have to figure out if you have been kidnapped and need to re-initialize your filter. Propose
and implement an algorithm for solving this problem - the TAs will test this by moving your robot to
a new location in the middle of tracking while covering the LIDAR.

4.6 Submission

Submit your ParticleFilter.py code, generated plots and the answers to the following questions:

1. What is the variance of the two different re-sampling methods? You can compare this by
measuring the variance of the particle draws - for a fixed distribution of particle weights by
how much do the identities of the final sampled particles vary? You will generate a plot of
this variance measure as the number of particles increases in fixed steps, say for five distinct
values of M (100, 200, 500, 1000, 4000).

2. When calculating a single x, y, θ estimate of the car from the belief distribution of the
particle filter, you can take the mean or the maximum particle; describe the situations in
which the mean or the max particle would calculate a bad estimate. Is there another estimate
that is more robust?

3. What are the effects of the number of particles on the performance of the system? Show a
plot of the difference between your estimate and the provided data; the x axis is time, the y
axis is the root mean squared error of the difference. Also plot the computation time per
iteration of the filter as the number of particles increases. Do this for 200, 800, 1600, 4000,
8000 particles. What number achieves the best trade-off between speed and accuracy?

5 Demo

In your team’s demo to the TA’s, you will need to:

1. Show your particle filter working on the bag file provided for debugging.
2. Show the particle filter working on the robot car. The TAs will then drive your car around

(possibly at 2x the default speed), and your particle filter should track the real world location
of the car.

Additionally, the TAs will quantify each member’s contribution to the final result with a quick QA
right after your demo.

8

	Introduction
	 Motion Model
	Odometry Motion Model
	Kinematic Model
	Noise
	Questions
	Submission

	Sensor Model
	Model
	Particle Likelihood
	Submission

	Particle Filter
	Implementation
	Re-sampling
	Coding and Debugging
	Extra Credit 1
	Extra credit 2
	Submission

	Demo

