Linear Algebra Background

Kevin C. Zatloukal

The following is a list of facts from linear algebra that are assumed to be familiar.

- A Hermitian matrix H (i.e., one satisfying $H^{\dagger} = H$) has real eigenvalues.
 - If the eigenvector decomposition of $H = V \operatorname{diag}(w_1, \ldots, w_n)V^{\dagger}$, then we can see that $H^{\dagger} = V \operatorname{diag}(w_1, \ldots, w_n)^{\dagger}V^{\dagger} = V \operatorname{diag}(\overline{w_1}, \ldots, \overline{w_n})V^{\dagger}$, so the equation $H^{\dagger} = H$ tells us that $\overline{w_1} = w_1, \ldots, \overline{w_n} = w_n$, which is possibly only if each w_i is real.
- A regular matrix with real eigenvalues is Hermitian.
 - If the eigenvector decomposition of $H = V \operatorname{diag}(w_1, \ldots, w_n) V^{\dagger}$ with each w_i real, then $H^{\dagger} = V \operatorname{diag}(\overline{w_1}, \ldots, \overline{w_n}) V^{\dagger} = V \operatorname{diag}(w_1, \ldots, w_n) V^{\dagger} = H.$
- In summary, the following are equivalent for a regular matrix H:
 - 1. $H^{\dagger} = H$
 - 2. Every eigenvalue H is real.
- A unitary matrix U (i.e., one satisfying $U^{\dagger}U = I$) does not change the (2-)norm of any vector when multiplied against it.
 - If **x** is a vector, then $||U\mathbf{x}||^2 = (U\mathbf{x})^{\dagger}(U\mathbf{x}) = \mathbf{x}^{\dagger}U^{\dagger}U\mathbf{x} = \mathbf{x}^{\dagger}\mathbf{x} = ||\mathbf{x}||^2$.
 - The reverse is also true....
- If a regular matrix U does not change the norm of any vector, then each of its eigenvalues w must satisfy |w| = 1. I.e., it is a number of the form $e^{i\theta}$ for some $\theta \in \mathbb{R}$.
 - Let **v** be an eigenvector of U with corresponding to eigenvalue w. Then $U\mathbf{v} = w\mathbf{v}$, so $(U\mathbf{v})^{\dagger}(U\mathbf{v}) = \mathbf{v}^{\dagger}w^{\dagger}w\mathbf{v} = |w|^{2} ||\mathbf{v}||^{2}$. Since multiplying **v** by U does not change its norm, we must have |w| = 1.
- If each of U's eigenvalues has absolute value 1, then U is unitary.
 - If U has eigenvector decomposition $U = V \operatorname{diag}(w_1, \ldots, w_n) V^{\dagger}$, then by the previous fact, we must have $|w_i| = 1$ for each *i*. But this means that $U^{\dagger}U =$

$$(V \operatorname{diag}(w_1, \dots, w_n)V^{\dagger})^{\dagger} (V \operatorname{diag}(w_1, \dots, w_n)V^{\dagger})$$

= $V \operatorname{diag}(w_1, \dots, w_n)^{\dagger} V^{\dagger} V \operatorname{diag}(w_1, \dots, w_n)V^{\dagger}$
= $V \operatorname{diag}(w_1, \dots, w_n)^{\dagger} \operatorname{diag}(w_1, \dots, w_n)V^{\dagger}$
= $V \operatorname{diag}(|w_1|^2, \dots, |w_n|^2)V^{\dagger}$
= $V \operatorname{diag}(1, \dots, 1)V^{\dagger}$
= $V IV^{\dagger} = VV^{\dagger} = I$

- In summary, the following are equivalent for a regular matrix U:
 - 1. $U^{\dagger}U = I$
 - 2. Every eigenvalue w of U satisfies |w| = 1.
 - 3. $||U\mathbf{x}|| = ||\mathbf{x}||$ for every vector \mathbf{x} .
- The product of unitary matrices is unitary.
 - If U and V are unitary, then $U^{\dagger}U = I$ and $V^{\dagger}V = I$, so we have $(UV)^{\dagger}(UV) = V^{\dagger}U^{\dagger}UV = V^{\dagger}IV = V^{\dagger}V = I$.