Linear Algebra Background

Kevin C. Zatloukal

The following is a list of facts from linear algebra that are assumed to be familiar.

- A Hermitian matrix H (i.e., one satisfying $H^{\dagger}=H$) has real eigenvalues.
- If the eigenvector decomposition of $H=V \operatorname{diag}\left(w_{1}, \ldots, w_{n}\right) V^{\dagger}$, then we can see that $H^{\dagger}=V \operatorname{diag}\left(w_{1}, \ldots, w_{n}\right)^{\dagger} V^{\dagger}=V \operatorname{diag}\left(\overline{w_{1}}, \ldots, \overline{w_{n}}\right) V^{\dagger}$, so the equation $H^{\dagger}=H$ tells us that $\overline{w_{1}}=w_{1}, \ldots, \overline{w_{n}}=w_{n}$, which is possibly only if each w_{i} is real.
- A regular matrix with real eigenvalues is Hermitian.
- If the eigenvector decomposition of $H=V \operatorname{diag}\left(w_{1}, \ldots, w_{n}\right) V^{\dagger}$ with each w_{i} real, then $H^{\dagger}=V \operatorname{diag}\left(\overline{w_{1}}, \ldots, \overline{w_{n}}\right) V^{\dagger}=V \operatorname{diag}\left(w_{1}, \ldots, w_{n}\right) V^{\dagger}=H$.
- In summary, the following are equivalent for a regular matrix H :

1. $H^{\dagger}=H$
2. Every eigenvalue H is real.

- A unitary matrix U (i.e., one satisfying $U^{\dagger} U=I$) does not change the (2-)norm of any vector when multiplied against it.
- If \mathbf{x} is a vector, then $\|U \mathbf{x}\|^{2}=(U \mathbf{x})^{\dagger}(U \mathbf{x})=\mathbf{x}^{\dagger} U^{\dagger} U \mathbf{x}=\mathbf{x}^{\dagger} \mathbf{x}=\|\mathbf{x}\|^{2}$.
- The reverse is also true....
- If a regular matrix U does not change the norm of any vector, then each of its eigenvalues w must satisfy $|w|=1$. I.e., it is a number of the form $e^{i \theta}$ for some $\theta \in \mathbb{R}$.
- Let \mathbf{v} be an eigenvector of U with corresponding to eigenvalue w. Then $U \mathbf{v}=w \mathbf{v}$, so $(U \mathbf{v})^{\dagger}(U \mathbf{v})=\mathbf{v}^{\dagger} w^{\dagger} w \mathbf{v}=|w|^{2}\|\mathbf{v}\|^{2}$. Since multiplying \mathbf{v} by U does not change its norm, we must have $|w|=1$.
- If each of U 's eigenvalues has absolute value 1 , then U is unitary.
- If U has eigenvector decomposition $U=V \operatorname{diag}\left(w_{1}, \ldots, w_{n}\right) V^{\dagger}$, then by the previous fact, we must have $\left|w_{i}\right|=1$ for each i. But this means that $U^{\dagger} U=$

$$
\begin{aligned}
& \left(V \operatorname{diag}\left(w_{1}, \ldots, w_{n}\right) V^{\dagger}\right)^{\dagger}\left(V \operatorname{diag}\left(w_{1}, \ldots, w_{n}\right) V^{\dagger}\right) \\
& =V \operatorname{diag}\left(w_{1}, \ldots, w_{n}\right)^{\dagger} V^{\dagger} V \operatorname{diag}\left(w_{1}, \ldots, w_{n}\right) V^{\dagger} \\
& =V \operatorname{diag}\left(w_{1}, \ldots, w_{n}\right)^{\dagger} \operatorname{diag}\left(w_{1}, \ldots, w_{n}\right) V^{\dagger} \\
& =V \operatorname{diag}\left(\left|w_{1}\right|^{2}, \ldots,\left|w_{n}\right|^{2}\right) V^{\dagger} \\
& =V \operatorname{diag}(1, \ldots, 1) V^{\dagger} \\
& =V I V^{\dagger}=V V^{\dagger}=I
\end{aligned}
$$

- In summary, the following are equivalent for a regular matrix U :

1. $U^{\dagger} U=I$
2. Every eigenvalue w of U satisfies $|w|=1$.
3. $\|U \mathbf{x}\|=\|\mathbf{x}\|$ for every vector \mathbf{x}.

- The product of unitary matrices is unitary.
- If U and V are unitary, then $U^{\dagger} U=I$ and $V^{\dagger} V=I$, so we have $(U V)^{\dagger}(U V)=$ $V^{\dagger} U^{\dagger} U V=V^{\dagger} I V=V^{\dagger} V=I$.

