Notes for Phase Estimation and Factoring

Ansh Nagda

Quantum Fourier Transform

For this section, we will think of the classical states as integers between 0 and $2^n - 1$. \mathcal{F} (which is called the Quantum Fourier Transform) is the unitary operation taking a classical state $|j\rangle$ to

$$\mathcal{F}|j\rangle = \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n-1} e^{2\pi i j/k} |k\rangle$$

So given a state $|x\rangle = \sum_{k=0}^{2^n-1} a_k |k\rangle$, the coefficient of $|j\rangle$ in $\mathcal{F}|x\rangle$ is $\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n-1} e^{2\pi i j/k} a_k$, which is reminiscent of the j^{th} value of the Discrete Fourier Transform of the sequence $\{a_k\}$. We will assume that \mathcal{F} (and \mathcal{F}^\dagger) can be implemented efficiently as a quantum circuit.

Phase Estimation

Problem Statement:

Given a unitary operation V on n qubits and an eigenvector $|\psi\rangle$ that has eigenvalue $e^{2\pi i \phi/2^n}$ for some integer ϕ, find ϕ.

Algorithm:

1. Prepare an initial state of $2n$ qubits where the first n qubits are in an equal superposition of all possible 2^n classical states, and the last n qubits are initialized as $|\psi\rangle$.
2. For i from 0 to $n - 1$, perform a controlled V^{2^i} operation on the last n qubits with the $i + 1^{th}$ qubit as the control qubit.
3. Perform \mathcal{F}^\dagger (Inverse QFT) on the first n bits.
4. Measure the first n bits to obtain an integer between 0 and $2^n - 1$. Return that integer.

Explanation of Algorithm:

The main idea of this algorithm is that it entangles the last n qubits with the first n qubits with a phase value that differs based on the binary value of the first n bits. Here is the way that I found most helpful to think about what the algorithm is doing: say that the initial state of the first n qubits was a classical state equal to $|x\rangle$ for some bit string x. The for loop in step 2 applies V^{2^i} to the last n qubits
exactly when the i^{th} bit of x is 1, so the final state of the last n qubits would be $V^x |v\rangle = e^{2\pi i x/2^n} |v\rangle$. Notice that the sum in the exponent is exactly equal to the value of x as a binary integer, so the final state of the last n qubits is $V^x |v\rangle = e^{2\pi i x/2^n} |v\rangle$.

But the initial state we prepare in the algorithm is not a classical state, it is instead a superposition of all classical states. So the state of the $n + 1$ qubits after step 2 will be a superposition of all these states. In particular, it equals

$$\frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} e^{2\pi i x/2^n} |x, v\rangle = \left(\frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} e^{2\pi i x/2^n} |x\rangle \right) \otimes |v\rangle$$

The first part of this tensor product looks like the QFT of the state $|\phi\rangle$, so performing an inverse QFT on the first n qubits will result in the classical state of $|\phi\rangle$.

One detail to note is that the eigenvector must not be exactly $e^{2\pi i x/2^n}$ for some integer x: the algorithm will return an integer x that we can assume gives the closest approximation to the eigenvector.

Reduction from Order Finding to Phase Estimation

During the last lecture, we reduced factoring to the Order Finding problem. It remains to show how to solve Order Finding using this algorithm. As a reminder, **Order Finding** is a problem with inputs $y < N$, and the goal is to find the smallest r such that $y^r = 1 \mod N$. Choose n to be larger than $\log N$. Let V be the unitary operation that sends $|x\rangle$ to $|x y^{-1} \mod N\rangle$ if x is an integer less than N that is coprime to N, and sends $|x\rangle$ to itself otherwise. Since V is a permutation matrix, this is a unitary operation. V has eigenvectors of the following form for s from 0 to $k - 1$:

$$|v_s\rangle = \frac{1}{\sqrt{k}} \sum_{k=0}^{r-1} e^{2\pi i k s/r} |y^k \mod N\rangle$$

Multiplying V by $|v_s\rangle$ essentially has the effect of shifting the coefficients of the states $|y^k \mod N\rangle$ cyclically, which corresponds to multiplying each state by $e^{2\pi i s/r}$, which is the eigenvalue corresponding to $|v_s\rangle$. The issue is that we cannot prepare any of the states $|v_s\rangle$ for use in the phase estimation algorithm without knowing the value of r. But it turns out that we can easily prepare their superposition:

$$\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} |v_s\rangle = \frac{1}{r} \sum_{k=0}^{r-1} \left(\sum_{s=0}^{r-1} e^{2\pi i k s/r} \right) |y^k \mod N\rangle = \frac{1}{r} \sum_{k=0}^{r-1} \frac{e^{2\pi i k} - 1}{e^{2\pi i k/r} - 1} |y^k \mod N\rangle$$

Where the last equality follows by the formula for geometric sum. For all values k not equal to 0, the numerator is 0 and the denominator is nonzero, so they all evaluate to 0. For $k = 0$, the geometric sum equals exactly r since all terms in the sum are 0. Therefore this superposition equals $\frac{1}{r} \cdot r |y^0\rangle = |1\rangle$, which can be prepared. So if we run the phase estimation algorithm using V and this
superposition of eigenvectors, the result of the algorithm will be the phase of an eigenvalue of one of the v_s picked uniformly at random. That is, the result is $2^n s/\pi$ with s uniformly picked at random that is unknown to us. The next step was not completely explained during lecture, but it turns out that this is enough to find the true π using some classical techniques.