In 1985, Deutsch found a toy problem that quantum computers could solve more efficiently than classical computers, in terms of queries (not time!)

extended by Jozsa to a "real" problem

Problem:

Given classical function f with n input bits and 1 output bit

usable via black box or an oracle

f is either constant (same output for all inputs) or balanced (0 for half of inputs, 1 for other half).

Determine if a given f is constant or balanced.

Classically, you just have to check tons of inputs until you've tested more than half of the possible queries; worst case (if you keep getting the same output) to show it's constant.

Quantum algorithm needs only 1 query instead of $2^{n-1} + 1$

First, need unitary to call f: $U_f |x,y\rangle = |x, f(x) \oplus y\rangle$

eg. $|x,0\rangle \rightarrow |x, f(x)\rangle$
Quantum Circuit:

\[
\begin{align*}
&\begin{array}{c}
10^n, 0 \\
10^n, 1 \\
10^n - \\
10^n - \\
\end{array} \\
&\begin{array}{c}
H \\
H \\
H \\
H \\
\end{array} \\
&\begin{array}{c}
U_f \\
H \\
\end{array} \\
&\begin{array}{c}
D \\
A \\
B \\
C \\
\end{array} \\
\end{align*}
\]

Note: \(0^n\) means \(n\) 0's

A \(10^n, 0\)
B \(10^n, 1\)
C \(|+\rangle = \frac{1}{\sqrt{2^n}} \sum_{x=0^n}^{1^n} |x\rangle \otimes |0\rangle\), i.e. equal superposition of all possible states
D \(|+\rangle = \frac{1}{\sqrt{2^n}} \sum_{x=0^n}^{1^n} |x\rangle - \rangle \) where \(|x\rangle = \frac{1}{\sqrt{2^n}} (|x, 0\rangle - |x, 1\rangle)\)
E \(U_f|+\rangle\)

\[U_f |x, -\rangle = \frac{1}{\sqrt{2}} (|x, f(x)\rangle - |x, f(x)\rangle)\]
if \(f(x) = 0\): \(= |x, -\rangle\)
if \(f(x) = 1\): \(- |x, -\rangle\)
Thus, \(U_f |x, -\rangle = (-1)^{f(x)} |x, -\rangle\)

\[= (U_f |+\rangle = \frac{1}{\sqrt{2^n}} \sum_{x=0^n}^{1^n} (-1)^{f(x)} |x, -\rangle\]

F We show \(H^{\otimes n} |z\rangle = \frac{1}{\sqrt{2^n}} \sum_{x=0^n}^{1^n} (-1)^{z \cdot x} |x\rangle\)
Now:
\[
(H^{\otimes n} \otimes I) \left(\frac{1}{\sqrt{2^n}} \sum_{x=0^n}^{1^n} (-1)^{f(x)} |x, -\rangle\right)
\]
F Cont. Applying and rearranging gives:
\[\frac{1}{2^n} \sum_{x=0^n}^{1^n} (-1)^{x \cdot f(x)} \]

Measurement:

Coefficient of \(|\psi\rangle \) is \[\frac{1}{2^n} \sum_{x=0^n}^{1^n} (-1)^{x \cdot f(x)} \]

For \(z = 0 \), this is \[\frac{1}{2^n} \sum_{x=0^n}^{1^n} (-1)^{x \cdot f(x)} \]

If \(f = 0 \), the coefficient is \(\frac{2^n}{2^n} = 1 \)
If \(f = 1 \), we get \(\frac{2^n}{2^n} = 1 \)
If \(f \) is balanced, we get equal \(|1^n\rangle \cdot -1 \) which gives us 0.

Thus, if \(f \) is constant we measure \(|0\rangle \) with probability \(|+1|^2 = 1 \),
and if \(f \) is balanced we measure \(|0\rangle \) with probability \(|0|^2 = 0 \)

So if you measure \(|1\rangle \) as \(|0\rangle \), you know its constant and
vice versa for \(|1\rangle \) and balanced.

Limitations:

1. Bound on queries, not running time
2. "Toy" problem - no partial uses
3. Assumes "black box"
4. Compares to \(P \) not \(BPP \) (which allows occasional wrong answers)
10/26 Shor’s Algorithm

Shor discovered efficient quantum algorithm for factoring, a very important problem, in 1994

$\mathcal{O}(n^3)$ vs classical $\mathcal{O}(2^{\sqrt{n}})$

Shor actually solves the “order finding” problem (which gives you factoring):

Given a number $y < N$, find smallest r such that $y^r = 1 \pmod N$

Factoring by Order-Finding

1. Given N, find a divisor other than 1 or N

2. Sufficient to find some x s.t. x and N have a common factor > 1, b/c Euclid’s algorithm can find that factor

3. Sufficient to find solution to $x^2 \equiv 1 \pmod N$, which is equivalent to $x^2 - 1 = (x+1)(x-1) \equiv 0 \pmod N$, so one of $x+1$ or $x-1$ has a common prime factor with N

4. This is just order-finding

 Find some r for random y s.t. $y^r \equiv 1 \pmod N$

 If r is even, $(y^{r/2})^2 \equiv 1 \pmod N$, so $y^{r/2}$ is our x

 Since y is random, r is even w/ probability $\frac{1}{2}$.

 If we try 2 different y, we have only $\frac{1}{4}$ a chance of not getting an even number, which is good enough for BQP.

Note: order-finding can be generalized to period-finding:

Given function f, find smallest x s.t. $f(x + r) = f(r)$ for all r

Quantum algorithm works for general problem