Restricted Operations

- We need to come up with an instruction set for quantum computers
 - This gives us a way to convert an algorithm we want to run into steps that can be executed by a quantum computer.
- Can use a quantum "compiler" to translate logic to quantum instructions just like how a classical compiler translates code to machine instructions

Classical Universal Sets

- Any classical circuit can be implemented using a small set of universal logic gates
 - For example, \{ AND, OR, NOT \} form a universal set for classical logic gates
- Universal sets are not unique

Quantum Universal Sets

- One universal set for quantum computers: \{ Any 1-qubit operation, CNOT \}

Ion Traps

- Can do 1-qubit operations and CNOT, but can't be scaled up very well
- Other types of quantum computers often restrict the instruction set to a smaller set

Practical Quantum Instruction Sets

- May be implemented with just \{ H, T \} (operations that will be introduced later)
- Errors accumulate rather than multiply
 - Error correction is handled by the compiler rather than developer

Theoretical Quantum Instruction Sets

- Instructions generally written like $\{U\}_{4,7}$, which means "apply U to qubits 4 and 7"
- Compiler is responsible for figuring out how to actually apply the operation

Mixed States

- Remember:
 - If interacting with a state and it's behaving like a distribution, it must be entangled. If it does not behave like a distribution, then it is not entangled with anything else.
- Need a way to distinguish between mixed states and pure states

Useful Quantum Operations

- Hadamard Gate
 - Arguably the most important basic quantum operation
- $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
- Turns $|0\rangle$ and $|1\rangle$ into an equal superposition and an equal superposition into a $|0\rangle$.