The Hidden Subgroup Problem

CSE 490Q: Quantum Computation
Shor’s Algorithm

• Shor’s (1994) breakthrough result was an efficient q. algorithm for factoring
 • strongly believed to be classically hard
 • 200+ years of failed attempts to solve it
 • hardness is assumed by cryptosystems like RSA
 • not a toy problem, not a black box

• Fastest classical algorithm runs in $O(2^{n/3})$ time
• Shor’s algorithm is $O(n^3)$
Post-Shor Algorithms

• Much later work focused on *generalizing* it
 • we will look at some of the generalizations (more than one!)
 • Shor’s paper still has insights that may not be fully understood still

• First generalization was the phase estimation algorithm

• Second generalization is...
Problem: Given a function $f : G \rightarrow \{0,1\}^k$ (via an oracle) that is constant on cosets of some subgroup H, find the subgroup H.

• What does all that mean?
Definition: A group G is a set with...

- a special element $e \in G$
- an operation taking any $x, y \in G$ to some $xy \in G$
- an operation taking any $x \in G$ to some $x^{-1} \in G$

satisfying certain rules...

- $ex = x = xe$ for all $x \in G$ ("identity")
- $xx^{-1} = e = x^{-1}x = e$ for all $x \in G$ ("inverses")
- $(xy)z = x(yz)$ for all $x, y, z \in G$ ("associativity")

Definition: A group G is abelian if $xy = yx$ for all $x, y \in G$.

- (In this case, we often write $x+y$ instead of xy.)
A **subgroup** is a subset of a group that is itself a group (with the same operations).

In particular, $S \subseteq G$ is a subgroup iff

- $e \in S$
- if $x \in S$, then $x^{-1} \in S$
- if $x \in S$ and $y \in S$, then $xy \in S$

So you can perform group operations on elements of S and you will never see an element outside of S (i.e., from $G - S$)
Cosets

• If $S \subseteq G$ is a subgroup, then a **coset** of S is a set of the form

$$gS = \{ gs : s \in S \}$$

for some $g \in G$.

• This is not a subgroup (e.g., we do not have $e \in gS$). It is just a subset of G.

• The cosets of S **partition**, so we can write

$$G = g_1S \cup g_1S \cup \ldots \cup g_kS$$

for some choice of $g_1, \ldots, g_k \in G$.
Problem: Given a function $f : G \rightarrow \{0, 1\}^k$ (via an oracle) that is constant on cosets of some subgroup H, find the subgroup H.

- I.e., we are promised that $f(gh_1) = f(gh_2)$ for all $h_1, h_2 \in H$ and $g \in G$.
- Equivalently, $f(g) = f(gh)$ for all $h \in H$ and $g \in G$.
- Outputs need not have any meaning.
- Requires exponential time classically.
Shor’s paper solved another problem called “discrete logarithm”

Definition: Given $b, d \in \mathbb{Z}_p$, find an $r \in \mathbb{Z}_{p-1}$ such that $b^r \equiv d \pmod{p}$

- If these were real numbers, we would have $r = \log_b(d)$, but this is \mathbb{Z}_p

- Strongly believed to be hard classically
 - e.g., the Diffie-Hellman key exchange protocol uses this assumption
Definition: Given \(b, c \in \mathbb{Z}_p \), find an \(r \in \mathbb{Z}_{p-1} \) such that \(b^r \equiv d \pmod{p} \)

- Solve the HSP over \(\mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1} \) with the following hiding function
 \[
 f(x, y) = b^x (d^{-1})^y \pmod{p}
 \]

- (We can find \(d^{-1} \) efficiently by Euclid’s algorithm.)

- Can see that \(f(r, 1) = b^r (d^{-1})^1 = b^r d^{-1} \equiv 1 \pmod{p} \)

- More generally, \(f(kr, k) = b^{kr} (d^{-1})^k = (b^r d^{-1})^k \equiv 1^k = 1 \pmod{p} \)
Definition: Given $b, c \in \mathbb{Z}_p$, find an $r \in \mathbb{Z}_{p-1}$ such that $b^r \equiv d \pmod{p}$

- Solve the HSP over $\mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}$ with the following hiding function

 $$f(x, y) = b^x (d^{-1})^y \pmod{p}$$

- We can see that $f(kr, k) = b^{kr} (d^{-1})^k = (b^r d^{-1})^k \equiv 1^k = 1 \pmod{p}$

- f is constant (1) on the subset $H = \{(kr, k) : k \mathbb{Z}_{p-1}\}$
 - can check that H is a group
 - can check that f is constant on all cosets of H
Definition: Given $b, c \in \mathbb{Z}_p$, find an $r \in \mathbb{Z}_{p-1}$ such that $b^r \equiv d \pmod{p}$

- Solve the HSP over $\mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}$ with the following hiding function

$$f(x, y) = b^x (d^{-1})^y \pmod{p}$$

- Solving the HSP will give us a generator $(a, k) \in H = \{(kr, k) : k \mathbb{Z}_{p-1}\}$

- The answer is $k^{-1}a = k^{-1}kr \equiv r$
• Kitaev solved this problem (essentially) for all abelian groups.

• We will see the modern solution shortly.

• First, we need a bit more background on groups...
• Working with $G = \mathbb{Z}_N^r$, consider these functions:

$$\chi_j(k) = e^{2\pi i j k/N}$$

for $j \in \mathbb{Z}_N$

• They have the properties that

$$\chi_j(x+y) = e^{2\pi i j (x+y)/N} = e^{2\pi i j x/N} e^{2\pi i j y/N} = e^{2\pi i j x/N} \chi_j(x) \chi_j(y)$$

and

$$\chi_j(0) = e^0 = 1$$
Exponentials

• Working with $G = \mathbb{Z}_N$, consider these functions:

$$\chi_j(k) = e^{2\pi i j k/N} \quad \text{for } j \in \mathbb{Z}_N$$

• They have the properties that
 • $\chi_j(x+y) = \chi_j(x) \chi_j(y)$
 • $\chi_j(0) = 1$
A function \(\chi : G \rightarrow \mathbb{C} \) is called a “character of \(G \)” if it satisfies

- \(\chi(xy) = \chi(x) \chi(y) \)
- \(\chi(e) = 1 \)

The “irreducible” characters of \(\mathbb{Z}_N \) are \(\chi_0, \chi_1, ..., \chi_{N-1} \)
A function $\chi : G \to \mathbb{C}$ is called a "character of G" if it satisfies

- $\chi(xy) = \chi(x) \chi(y)$
- $\chi(e) = 1$

The "irreducible" characters of \mathbb{Z}_N are $\chi_0, \chi_1, \ldots, \chi_{N-1}$

The set of irreducible characters is often denoted \hat{G} (or G^\wedge)

- we have $|\hat{G}| = |G|$
- nearly all the information about the group is also in its characters
It can be shown that, for any two distinct irreducible characters \(\chi \) and \(\gamma \), we have

\[
\frac{1}{|G|} \sum_{g \in G} \overline{\chi(g)} \gamma(g) = \begin{cases}
1 & \text{if } \chi = \gamma \\
0 & \text{otherwise}
\end{cases}
\]

and for any distinct elements \(g, h \in G \), we have

\[
\frac{1}{|G|} \sum_{\chi \in \hat{G}} \overline{\chi(g)} \chi(h) = \begin{cases}
1 & \text{if } g = h \\
0 & \text{otherwise}
\end{cases}
\]

• For \(\mathbb{Z}_N \), these are calculations involving exponentials that we did already...
For \(\mathbb{Z}_N \), these are calculations involving exponentials that we did already:

\[
\sum_{x=0}^{N-1} \chi_j(x) \chi_k(x) = \sum_{x=0}^{N-1} e^{2\pi i j x / N} e^{2\pi i k x / N}
\]

\[
= \sum_{x=0}^{N-1} e^{2\pi i (k-j) x / N} = \sum_{x=0}^{N-1} \left(e^{2\pi i (k-j) / N} \right)^x
\]

\[
= \omega^0 + \omega^1 + \omega^2 + \ldots + \omega^{N-1} \quad \text{where} \quad \omega = e^{2\pi i (k-j) / N}
\]

\[
= \begin{cases}
N & \text{if } \omega = 1 \\
0 & \text{otherwise}
\end{cases} \quad (k = j)
\]

\[
= \begin{cases}
0 & \text{otherwise} \quad (k \neq j)
\end{cases}
\]
Properties of Characters

- Since we want

\[\sum_{g \in \gamma} \overline{\chi(g)} \gamma(g) = \begin{cases} 1 & \text{if } \chi = \gamma \\ 0 & \text{otherwise} \end{cases} \]

we need to rescale by \(N^{-1/2} \) so that we have

\[\chi_j(k) = \frac{1}{\sqrt{N}} e^{2\pi i j k / N} \]
Quantum Fourier Transform
• We will work in a basis labeled by group elements: \{ |g> : g \in G \}
 • need \log_2(G) qubits
 • choose any convenient mapping between bits and group elements

• Can also have a basis labeled by characters: \{ |\chi> : \chi \in G^\wedge \}
 • exactly the same size
 • choose any convenient mapping of bits to character names
The QFT F is a change of basis from group elements to characters:

$$F |g\rangle = \frac{1}{|G|} \sum_{x \in G} x(g) |x\rangle$$

- Takes a group element to a vector of its character values
- This is a matrix whose columns are the characters
- Hence, this is unitary by column orthogonality
QFT Example 1

• When $G = \mathbb{Z}_N$, the characters are the functions

$$\chi_j(k) = e^{2\pi i j k/N} \quad \text{for } j \in \mathbb{Z}_N$$

• So the QFT is

$$\mathcal{F}(\chi_j) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i j k/N} |k\rangle$$

which is exactly our definition from before of “the QFT” with $N = 2^n$.
QFT Example 2

• When $G = \mathbb{Z}_N$, the characters are the functions

$$\chi_j(k) = e^{2\pi i j k / N} \quad \text{for } j \in \mathbb{Z}_N$$

• If $N = 2$, then the two characters are...

$$\chi_0(k) = e^0 = 1$$
$$\chi_1(k) = e^{2\pi i k / 2} = e^{\pi i k} = (e^{\pi i})^k = (-1)^k$$
QFT Example 2

• When $G = \mathbb{Z}_N$, the characters are the functions

$$\chi_j(k) = e^{2\pi i jk / N} \quad \text{for } j \in \mathbb{Z}_N$$

• If $N = 2$, then the two characters are
 • $\chi_0(k) = 1$
 • $\chi_1(k) = (-1)^k$

• So the Fourier transform is...

 i.e., the Hadamard gate!
QFT Example 2

- When $G = \mathbb{Z}_2$, the characters are $\chi_0(k) = 1$ and $\chi_1(k) = (-1)^k$.

- For a product group $G_1 \times G_2$, the characters are products of the form $\chi(g_1, g_2) = \chi(g_1) \chi(g_2)$ for some j, k.

- For $\mathbb{Z}_2 \times \mathbb{Z}_2$, there are four elements and four characters.
• More generally, the QFT for $G = (\mathbb{Z}_2)^n = \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$ is $\mathbb{H} \otimes^n$

• So all of our algorithms using $\mathbb{H} \otimes^n$ are using QFTs.

• In particular, Deutsch-Josza used the QFT over $(\mathbb{Z}_2)^n$
• Then, Shor used the QFT over $\mathbb{Z}_N \otimes \mathbb{Z}_2^r$
• Now, we realize that these are just QFTs over different abelian groups
HSP for Abelian Groups
• For all abelian groups (and some non-abelian ones), we can solve the HSP using the following procedure...

1. Prepare the state

\[
\left(\frac{1}{\sqrt{|\Omega|}} \sum_{g \in \Omega} |g\rangle \otimes |0\rangle \right)
\]

\[= F^* |x_0\rangle \otimes |0\rangle \]
1. Prepare the state

\[\frac{1}{\sqrt{141}} \sum_{g \in \mathbb{C}} |g\rangle \otimes 1_{0}^{N} \]

2. Apply U_f to the second register giving us

\[\frac{1}{\sqrt{141}} \sum_{g \in \mathbb{C}} |g\rangle \otimes |f(g)\rangle \]

3. Measure (and discard) the second part of the state...
3. Measure (and discard) the second part of the state...

• Recall that G can be partitioned by cosets into

$$G = g_1H \cup g_1H \cup ... \cup g_kH$$

for some choice of $g_1, ..., g_k \in G$.

• Recall that $f(gh) = f(g)$ for all $h \in H$ since f is constant on cosets.
3. Measure (and discard) the second part of the state...

Since $G = g_1H \cup g_1H \cup ... \cup g_kH$, the state above is

$$\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle \otimes |f(g)\rangle$$

$$f(g, h) = f(s)$$

$$H = H_1 \cup ... \cup H_2$$

$$h = h_1 \cdots h_2$$

$$\frac{1}{\sqrt{|C_f|}} (\sum g_1 h_1 \langle g_1 h_1 | f(g_1 h_1) \rangle + \cdots + g_1 h_2 \langle g_1 h_2 | f(g_1 h_2) \rangle + \cdots + g_k h_2 \langle g_k h_2 | f(g_k h_2) \rangle)$$

$$g \in H$$
3. Measure (and discard) the second part of the state...

\[
\frac{1}{\sqrt{|\mathcal{G}|}} \sum_{g \in \mathcal{G}} |g\rangle \otimes |f(g)\rangle
\]

Since \(G = g_1 H \cup g_1 H \cup \ldots \cup g_k H \) and \(f(gh) = f(g) \) for all \(h \in H \), the state above is

\[
\frac{1}{\sqrt{|\mathcal{G}|}} \left(|g_1 h_1\rangle \otimes |f(g_1)\rangle + \ldots + |g_1 h_{\alpha}\rangle \otimes |f(g_1)\rangle + \ldots + |g_k h_1\rangle \otimes |f(g_k)\rangle + \ldots + |g_k h_{\beta}\rangle \otimes |f(g_k)\rangle \right)
\]
The “Standard” Solution

\[\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle \otimes |f(g)\rangle \]

3. Measure (and discard) the second part of the state...

Since \(G = g_1 H \cup g_1 H \cup \ldots \cup g_k H \) and \(f(gh) = f(g) \) for all \(h \in H \), the state above is

\[\frac{1}{\sqrt{|G|}} \left((|g_1 h_1\rangle + \ldots + |g_r h_r\rangle) \otimes |f(g_1)\rangle + \ldots + (|g_k h_1\rangle + \ldots + |g_k h_k\rangle) \otimes |f(g_k)\rangle \right) \]
The “Standard” Solution

\[\frac{1}{\sqrt{|C|}} \sum_{g \in C} |g\rangle \otimes |f(g)\rangle \]

3. Measure (and discard) the second part of the state...

\[\frac{1}{\sqrt{|C|}} \left(\sum_{g \in C} |g_i, h_i\rangle \right \rangle \otimes |f(g_1)\rangle + \cdots + \frac{1}{\sqrt{|C|}} \left(\sum_{g \in C} |g_k, h_k\rangle \right \rangle \otimes |f(g_k)\rangle \right) \]

We will get one of \(|f(g_1)\rangle + \cdots + |f(g_k)\rangle\), uniformly at random
3. Measure (and discard) the second part of the state...

\[\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle \otimes |f(g)\rangle \]

for a uniformly random \(i = 1, \ldots, k \)

- The function value has no meaning, so we discard it.
3. Measure (and discard) the second part of the state...

\[
\frac{1}{\sqrt{|H|}} \left(|g_1 h_1 \rangle + \ldots + |g_i h_x \rangle \right)
\sum_r |s_i h_r \rangle
\]

for a uniformly random \(i = 1, \ldots, k \).

4. Apply the QFT for \(G \) to get

\[
\overline{F} \left(\frac{1}{\sqrt{|H|}} \sum_{h \in H} |g h \rangle \right) = \frac{1}{\sqrt{|H|}} \sum_{h \in H} \frac{1}{\sqrt{|G|}} \sum_{x \in G} \chi(g h) |x \rangle
\]

\[
= \frac{1}{\sqrt{|G||H|}} \sum_{x \in \mathcal{C}} \chi(q) \left(\sum_{h \in H} \chi(h) \right) |x \rangle
\]
4. Apply the QFT for G to get

\[F \left(\frac{1}{\sqrt{|H|}} \sum_{h \in H} |gh\rangle \right) = \frac{1}{\sqrt{|H|}} \sum_{h \in H} \frac{1}{\sqrt{|G|}} \sum_{x \in \mathbb{F}_q} \chi(gh) |x\rangle \]

\[= \frac{1}{\sqrt{|G|}} \sum_{x \in \mathbb{F}_q} \sum_{h \in H} \chi(xg) \chi(h) |x\rangle \]

\[= \frac{1}{\sqrt{|G|}} \sum_{x \in \mathbb{F}_q} \chi(xg) \left(\sum_{h \in H} \chi(h) \right) |x\rangle \]

5. Measure this to get some \(\chi \).
The “Standard” Solution

\[\frac{1}{\sqrt{\left| G \right| \left| H \right|}} \sum_{\chi \in \mathcal{C}} \chi(g) \left(\sum_{h \in \mathcal{H}} \chi(h) \right) |x> \]

4. Measure this to get some \(\chi \).

• The probability of measuring \(\chi \) is given by

\[\frac{|\chi(g)|^2}{\left| G \right| \left| H \right|} \left(\sum_{h \in \mathcal{H}} \left| \chi(h) \right|^2 \right) \]
The “Standard” Solution

• The probability of measuring χ is given by

$$\frac{|\chi(g)|^2}{|G|} |\sum_{h \in H} \chi(h)|^2$$

• It is always the case that $\overline{\chi(g)} = \chi(g^{-1})$

• So we have $|\chi(g)|^2 = \chi(g^{-1}) \chi(g) = \chi(g^{-1}g) = \chi(e) = 1$

• Hence, we can simplify this to...
The "Standard" Solution

- The probability of measuring χ is given by

$$\frac{1}{|G| |H|} \left| \sum_{h \in H} \chi(h) \right|^2$$

- Note that χ is also a character of H (since it satisfies $\chi(h_1 h_2) = \chi(h_1) \chi(h_2)$), so
The "Standard" Solution

• The probability of measuring χ is given by

$$\frac{1}{|G| |H|} \left| \sum_{h \in H} \chi(h) \right|^2$$

• Unless $\chi \equiv 1$ on H, this is probability is 0.
• When $\chi \equiv 1$ on H, the probability is

$$\frac{1}{|G| |H|} \left| \sum_{h \in H} 1 \right|^2 = \frac{|H|^2}{|G| |H|} = \frac{|H|}{|G|}$$
The “Standard” Solution

• The result of this calculation is an element of the set of irreducible characters of G that are trivial on H.

• In other words, we have $H \subseteq \text{Ker}(\chi) = \{ g \in G : \chi(g) = 1 \}$

• To solve the problem, we do this multiple times and get χ_1, \ldots, χ_t.

• H must be contained in all of their kernels, so we have $H \subseteq \text{Ker}(\chi_1) \cap \ldots \cap \text{Ker}(\chi_t)$.
The “Standard” Solution

• Perform this calculation multiple times and get χ_1, \ldots, χ_t.

• H must be contained in all of their kernels, so we have $H \subseteq \text{Ker}(\chi_1) \cap \ldots \cap \text{Ker}(\chi_t)$.

• It can be shown (with more character theory), that each new character that we measure shrinks the size of $\text{Ker}(\chi_1) \cap \ldots \cap \text{Ker}(\chi_t)$ by at least a factor of 2.
 • easy to check for the exponentials:
 • we only have $\chi_j(x) = 1$ if xj is a multiple of N
 • this is most likely if N is even and $x = N/2$, in which it holds for half of j’s

• Hence, the intersection converges to H after a small number of samples.
• Perform this calculation multiple times and get χ_1, \ldots, χ_t.

• H must be contained in all of their kernels, so we have $H \subseteq \ker(\chi_1) \cap \ldots \cap \ker(\chi_t)$.

• The intersection converges to H after a small number of samples.

• It remains to show how to perform this set intersection.
 • In general, this depends on the details of the group.
 • However, for abelian groups, which are just $\mathbb{Z}_{N_1} \times \ldots \times \mathbb{Z}_{N_k}$, this turns out to be a straightforward, classical calculation.
 • (Similar to Gaussian elimination)
• Solution to the HSP for all abelian groups
 • solves factoring and discrete logarithm as special cases
 • more general and cleaner than prior solutions

• Next time: non-abelian groups
 • will be higher level (and shorter)