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Learning Goals

1. Understanding the premise of fermionic Hamiltonian simulation
a) Problem mapping
b) Fermionic operators

2. Understanding Trotterization
a) Jordan-Wigner transform and relevant circuits
b) Error scaling and asymptotic bounds with the Lie-Trotter-Suzuki Formula

3. Understanding the simulation pipeline
a) Full problem I/O
b) State preparation



I: Problem & Relevance
Introducing the context of Hamiltonian simulation, it’s modern-relevance, and why 
quantum computers are necessary



Problem setup / relevance / classical algs

Questions
1. What is the problem of fermionic 

Hamiltonian simulation / its relevance?
2. What is the structure of a fermionic 

Hamiltonian?
3. Why do traditional algorithms fail?



Our focus: Fermionic Simulation

Hamiltonian Simulation
Portfolio 

optimization

Other physical 
model 

simulation

Embedded 
problems, like 

Grover's

Fermionic Simulation

What is the structure of 
molecules?

Are these molecules 
reactive?

What is the stability of 
these molecules?



What is the problem?



Key Chemistry Problem

• Inputs
• Fermionic Hamiltonian (composition of annihilation/creation operators)
• Initial state constraints, can parametrize this state as 

• Output
• Energy level of the state, which we can use to identify…
• Eigenvectors which represent ground electron configurations

• Simplified: Where did the electrons come from, where did they go? 
(Where did they come from configuration-eyed Joe)?
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Case study: Vaccine Development

• Context
 We are interested in rapid vaccine development
 We have a few candidate molecules, but are 

unsure of which would be the best
 We need to narrow down the candidates for clinical 

testing

• Potential solution
 Simulating sample drugs would be cheaper, but 

would it be faster?

(Bottom right: rendering of the influenza virus)



Math of problem

• Given fermionic Hamiltonian and parametrized state , what 
minimizes in:

• Note that energy from a quantum-mechanical perspective is a bit 
weird; we set energy as the eigenvalue of a specific eigenstate . 



Energy

• In a perfect pendulum, the 
system should have the 
same energy no matter 
where it’s at

• Two quantities affect 
energy: position ( ) and
momentum ( )

• Our Hamiltonian expresses 
dynamics – so, the 
eigenvalue accounts both

Energy operator, more info



What is the structure of the 
Hamiltonian?



Fermionic Operators + Mapping

• Two goals: create an electron or destroy an electron
• “Creation” vs “Annihilation” operators

• Create: ற , destroy: 
ற

• Consider as an unoccupied orbital and occupied. Then,
ற

• (Confirm this for yourself)



Fermionic Hamiltonian

• Hamiltonian takes the following form:

௣௤ ௣
ற

௤

௣௤

௣௤௥௦ ௣
ற

௤
ற

௥ ௦

௣௤௥௦

• “One-body terms”, “Two-body terms”
• One-body terms are just one electron making a jump; two-body terms are 

two electrons switching, jumping, etc.

• ௣௤ ௣௤௥௦ are real-valued coefficients that assign likelihoods of 
specific jumps (for our purposes)



Test Your Knowledge

• Given:

଴
ற

ଵ ଵ
ற

଴ ଴ ଵ

• Question: What is ଴ ? ଵ ? Which is the stable state?
• Answer:

• ଴ , unstable
• ଵ ଵ , the stable state, energy of 1



Why do traditional algorithms fail?



Why do classical algorithms fail?

• grows quickly
• Increases the complexity of the Hamiltonian, as there are now more both 

one-body, two-body terms

• grows quickly
• Each additional orbital doubles the number of potential configurations

• Fun fact: One ab initio (“from the beginning”) simulation is Full 
Configuration Interaction (FCI), which scales exponentially!



Review:

Check your knowledge
1. What is the problem of 

fermionic Hamiltonian 
simulation / its relevance?

2. What is the structure of a 
fermionic Hamiltonian?

3. Why do traditional algorithms 
fail?

Going further

• What is ற ? ? Does this 
answer make sense?

• Suppose that we know there are 
orbitals and electrons. How 

many potential electron 
configurations are there?



II: Introduction to Trotterization
Leveraging the Jordan-Wigner transformation, discussing the role of QPE in energy 
estimation, deriving some elementary bounds



Overview

• Physicists want to know the minimal energy associated with a 
Hamiltonian 

• They ask CS majors to simulate the associated energy of a given 
via Trotterized QPE

• We can then generalize the technique to search for the best 



Overview

The energy is extractable and can be used for ground eigenstate identification

[Claim] The above technique works for all potential 
configurations QPE, ground eigenstate identification

The unitaries are physically implementable

[Claim] Error Scaling and Gate Scaling is Polynomial Lie-Trotter-Suzuki Formulas / Trotterization

Fermionic simulation can be mapped to unitaries

[Claim] We can manipulate the Hamiltonian so it is 
implementable with Unitaries Jordan-Wigner Transformation



Fermionic simulation can 
be mapped to unitaries



Mapping

• Recall ற – they were not unitary!
• How do we implement these nonunitaries? Hamiltonian may not be:

௣௤ ௣
ற

௤

௣௤

௣௤௥௦ ௣
ற

௤
ற

௥ ௦

௣௤௥௦

• Observation: Hermitian ( ற by premise that 
symmetric) 



Mapping pt2

• ற not unitary, but we constrain Hermitian by symmetry of 
. Note-

• Fact: For some Hermitian matrix , ି௜ unitary.
• Thus,

ି୧୅୲

• Unitary, plus it implements the time evolution of the state!



The unitaries are 
physically implementable



Jordan-Wigner Transformation

• Question: How do we get from ି௜ு௧ to a gate form?
• Answer: Jordan + Wigner use a clever physics transformation:

ற

• are our fundamental gates!! (Termed “Pauli” gates)



JW-Part 2

• What is the Hamiltonian after JW?

௣௤ ௣
ற

௤

௣௤

௣௤௥௦ ௣
ற

௤
ற

௥ ௦

௣௤௥௦

௣௤ ௣
ற

௤

௣௤

௣௤ ௣ ௤ ௣ ௤ ௣ ௤ ௣ ௤

௣௤

• Try it yourself: can you identify the two-body term?

௣௤௥௦ ௣
ற

௤
ற

௥ ௦

௣௤௥௦



JW Part 3

• So, we can roughly do this:

௣௤ ௣ ௤

ఙ೛,ఙ೜∈{௑,±௜௒}௣௤

௣௤௥௦ ௣ ௤ ௥ ௭

ఙ೛,ఙ೜,ఙೝ,ఙೞ∈{௑,±௜௒}௣௤௥௦

• Where ௣௤ ௣௤௥௦ , coefficients of the Pauli/ strings chosen 
appropriately

• Key question: Uh, now where do we go? ି௜ு௧ still not directly 
implementable on quantum chips! 



Implementation?

• We don’t have a ି௜ுబ௧ gate!
• Fact: We have gates that can implement ି௜௑௧ ି௜௒ ି௜௓௧

• First idea: Can we split the Hamiltonian? So,
ି௜௧(௔భ

಩௔మା௔మ
಩௔భ) ି௜ (௔భ

಩௔మ) ି௜௧(௔మ
಩௔భ)

And then implement a series of ି௜௑ ି௜௒௧ ି௜௓௧?

• Smart 🍪: “These are matrices! We are not guaranteed:”
௑ା௒ ௑ ௒

• What are we going to do?



Trotterization

• Fact: Lie-Trotter-Suzuki Product formulas

ି௜ ∑ ுೕ௧೘
ೕ ି௜ுೕ௧

௠

௝

ଶ ଶ

• If , error is minimal. Otherwise, we need to “Trotterize”

ି௜ ∑ ுೕ௧೘
ೕ ି௜ுೕ௧

௠

௝

௥
ଶ ଶ

• Select ଶ ଶ so that error is minimal ( is Trotter step size). 
“Simulating Hamiltonian Dynamics,” Microsoft Q# documentation



Implementation!

• So, if we can implement ି௜ఙ೛ఙ೜௧ and ି௜ఙ೛ఙ೜ఙೝఙ೥௧ for , 
we can implement the Hamiltonian

• These may not seem implementable, but they actually are!
• And you will implement them in a future homework assignment, with help 

from a paper by Whitfield, et al. 😁
• Each of these gates is implementable in linear gate complexity, so our 

time complexity scales with respect to the size of 



The energy is extractable 
and can be used for ground 

eigenstate identification



Energy Level Derivations

• Claim: Given a fermionic Hamiltonian and ground eigenstate ௚
with ௚ ଴ ௚ :

ି௜ு௧
௚

ି௜ாబ௧
௚

• Proof: Recall the definition of a matrix exponential:

ି௜ு௧
௚

௞

௚
଴

௞ஶ

௞ୀ଴

௚
ି௜ாబ௧

௚

ஶ

௞ୀ଴

• Implication: QPE can be used to extract the energy level!



Full Pathway

I. Identify the Hamiltonian

II. Prepare a parametrized state with randomly 
chosen and appropriate 

III. Use Trotterized Quantum Phase Estimation to 
estimate the associated energy. 

IV. Leverage classical optimization schemes to tune to 
minimize the energy from QPE (and repeat from II)



Ground eigenstate identification

• Claim: QPE can be used for ground eigenvectors and will have 
noticeable effects when non-ground eigenvectors are used.

• Proof: Suppose we are given a non-ground eigenvector ଴

௚ ௚ ௜ ௜௜ where ௚ is the ground eigenvector, ௜ are 
eigenvectors, and ௚ ௜ .

• Then, by Trotterization, we will yield
ି௜ு௧

଴ ௚
ି௜ா೒௧

௚ ௜
ି௜ா೔௧

௜

௜

• QPE will thus extract ௚ ௜ with some probability. By minimality, 
௚ ௜. Thus, check that we don’t have high ௜.



Review

• Question: You are given a Hamiltonian and initial state . 
Describe, high level and step by step, the process of simulation

• Answer:
1. Convert the Hamiltonian to a sum of Pauli-strings (X, Y, Z)
2. Separate the strings and implement their exponentiated form
3. Apply QPE to estimate the energy



III. The Simulation Pipeline
Summarizing our work, selecting hyperparameters, state preparation, 
implementing 



Disclaimer

• This section is more for curiosity, you don’t need to fully understand 
concepts discussed



Overview

• What do we do when large?
• What do we do as grows?

Algorithm 
Optimization

• What strategies exist for state preparation?
• What is the asymptotic cost?

State Preparation 
Techniques

• What is the pipeline / alternatives?
• What are the caveats of this approach?

Simulation in 
Practice



Algorithm 
Optimization



Overcoming challenges

• Challenge: If large, ௠మ௧మ

௥
grows quickly

• Challenge: If large, ௠మ௧మ

௥
grows quickly

• Solutions:
• Select sufficiently large (with ଶ ଶ at cost of gates)
• Employ higher-order Trotter Suzuki Formulas (at cost of gates)
• Reduce Hamiltonian complexity (reduces at cost of accuracy)



State Preparation 
Techniques



Ansatz Preparation

• Our is called the “Ansatz” (German for ~initial guess)
• Challenge: How do we select so that physically relevant?
• Solution: Employ theoretical chemists!

• Hardware-Informed Techniques: Essentially, what’s easy for my quantum 
computer to implement? 

• Unitary Coupled Cluster (UCC): Physically-Inspired; what is realistic for an 
electron configuration? Takes the following forms:

௜

௞

௜ୀଵ

ଵ ௣௤ ௣
ற

௤

௣௤

ଶ ௣௤௥௦ ௣
ற

௤
ற

௥ ௦

௣௤௥௦

்

• ௞ generalize to higher orders
• Fun names like UCCS (singles), UCCSD (doubles), UCCSDT (triples) ….



Simulation in 
Practice



Caveats / Alternatives

• Fundamental Caveats to Simulation
• Born-Oppenheimer Approximation – we assume electronic configuration can 

emerge independent of motion in the nucleus. This may affect 
structure/reactivity estimates

• Space complexity and connectivity – we assume full connectivity of qubits in 
implementation and the number of qubits required, while linear with respect 
to number of orbitals, still is large

• Alternatives
• Variational Quantum Eigensolvers (VQEs) – happy to talk 1:1 about these, 

outside the scope of our lecture
• Adiabatic Simulation – set a physical Hamiltonian within the qubits and 

observe the final state they evolve into



Vocabulary

• Annihilation operator: operator deleting an electron from an orbital
• Creation operator: operator creating an electron in an orbital
• Fermion: general class of subatomic particle that includes electrons
• Fermionic Hamiltonian: matrix describing the dynamics of the 

electronic configuration
• Trotterization: An approach which segments an exponentiated matrix 

into a series of smaller exponentiated matrices with minimal error



The Hamiltonian is a ~Derivative for a DifEq

• Aside: True simulation problem says:
ି௜ு௧

• We are saying that is a discretization and



Review Questions

Explicit knowledge
• What are the two basic fermionic operators and their matrices? 
•

Deeper knowledge
• Why do the fermionic operator matrices make sense?
• What is ற or ? Why does the answer make sense?


