
Introduction to Q#
Q# (Q-sharp) is a domain-specific and open-sourced programming language, part of Microsoft's
Quantum Development Kit (QDK), used for expressing quantum algorithms. It is to be used for
writing subroutines that execute on an adjunct quantum processing unit (QPU), under the control of
a classical host program and computer.

Q# can be installed on Windows 10, OSX and Linux. The instructions to install Q# can be found in
the online documentation here.

If you prefer not to install Q# on your local computer, you can use one of the machines in CSE’s
Virtual Lab found here. The Windows 10 machines already have .Net Core SDK, Visual Studio and
VS Code installed to get your started, you should still install the Q# extension to get syntax-
highlighting, code complete, etc.

To get help with Q# and the QDK, feel free to ask questions on our messages board, come to office
hours as posted on the calendar, or ask in stackoverflow. The Q# team is constantly monitoring any
questions posted there with the "q#" tag.

Writing Q# programs.

Operations and functions are the basic unit of execution in Q#. They are roughly equivalent to a
function in C or C++ or Python, or a static method in C# or Java.

A Q# operation is a quantum subroutine. That is, it is a callable routine that contains quantum
operations.

A Q# function is a classical subroutine used within a quantum algorithm. It may contain classical
code but no quantum operations. Specifically, functions may not allocate or borrow qubits, nor may
they call operations. It is possible, however, to pass them operations or qubits for processing.
Functions are thus entirely deterministic in the sense that calling them with the same arguments will
always produce the same result.

Together, operations and functions are called callables.

When you create a new Q# project (see online documentation); a new Program.qs file is created

with this content:
namespace hw5 {

 open Microsoft.Quantum.Canon;

 open Microsoft.Quantum.Intrinsic;

 @EntryPoint()
 operation SayHello() : Unit {

 Message("Hello quantum world!");
 }

}

To build and run this code, from the command line in the your project's folder do:

https://github.com/microsoft/qsharp-compiler
https://docs.microsoft.com/en-us/quantum/
https://docs.microsoft.com/en-us/quantum/
https://docs.microsoft.com/en-us/quantum/quickstarts/install-command-line
https://vdi.cs.washington.edu/
https://us.edstem.org/courses/2578/discussion/
https://stackoverflow.com/questions/tagged/q%23
https://docs.microsoft.com/en-us/quantum/quickstarts/install-command-line

dotnet run

For example:
~/cs490q$ dotnet run

Hello quantum world!

As you can see, Q# is structurally very similar to familiar languages such as C# and Java in its use
of semicolons to end statements, curly brackets to group statements, function calls and doubleslash
to introduce comments. It is a strongly typed language so all variables, arguments and return values
must have an associated type. Q# supports a familar set of classical types like:

• Int
• BigInt
• Bool
• Double

but also some quantum-specific:

• Qubit
• Result
• Pauli

The complete set of primitive types can be found in Q# type model documentation.

In Q#, |0⟩ and |1⟩ are represented by Result.Zero and Result.One accordingly and qubits can

only be allocated inside an operation with the using statement. When it gets allocated a qubit is

always in the |0⟩ state. To measure a qubit and read its value you use the M intrinsic operation.

As such, the next HelloQuantum operation always return Result.Zero:
 // Always return |0>

 operation HelloQuantum() : Result {
 using(q = Qubit()) {

 return M(q);
 }

 }

To invoke this operation at runtime, modify the @EntryPoint:
namespace hw5 {
 open Microsoft.Quantum.Canon;
 open Microsoft.Quantum.Intrinsic;

 // Always return |0>
 operation HelloQuantum() : Result {
 using(q = Qubit()) {
 return M(q);
 }
 }

 @EntryPoint()
 operation SayHello() : Unit {
 let result = HelloQuantum();
 Message($"Result: {result}");
 }
}

https://docs.microsoft.com/en-us/quantum/language/type-model?view=qsharp-preview#primitive-types
https://docs.microsoft.com/en-us/qsharp/api/qsharp/microsoft.quantum.primitive.m

Variables in Q# are defined using let. variables are immutable and can be used in inter-polated
strings (i.e. strings that start with a dollar sign) to be printed out into the console.

And from the command line:
$ dotnet run

Hello quantum world!
Result: Zero

A more interesting example for a Q# operation is a quantum random bits generator. The following
RandomBits operation returns a different value each time it is invoked:
 operation RandomBits(n: Int) : Result[] {
 mutable r = new Result[n];

 using (qs = Qubit[n]) {
 ApplyToEach(H, qs);

 for(i in IndexRange(qs)) {
 // other languages: set r[i] <- M(qs[i]);
 set r w/= i <- M(qs[i]);
 }

 ResetAll(qs);
 }

 return r;
 }

RandomBits demonstrates other Q# features:

• mutable is used to initialize variables that can be modified later in the code using set.

• new Result[n] is used to initialize a new Result array of size n.

• [] is used to access the element of an array.

• New arrays can be created from existing ones via copy-and-update expressions. A copy-
and-update expression is an expression of the form arr w/ idx <- value that constructs

a new array with all elements set to the corresponding element in arr, except for the

element(s) at idx, which are set to the one(s) in value. The resulting array can be assigned

to the same variable by using the w/= operator.

• Q# has a rich set of built-in libraries, for example:
▪ ApplyToEach: is an Operation that receives another operation as paramter and an

array, and applies the given operation to each element of the array. In this particular
case

▪ IndexRange: is a function that given an array, creates a range to iterate over the

indices of the elements in the array.
▪ ResetAll: similar to Reset, it makes sure all elements of a qubit array are

in Result.Zero state so they can be safely de-allocated.

• All callables belong to a namespace. In Jupyter, you can use all the operations in
the Microsoft.Quantum.Intrinsic and the Microsoft.Quantum.Canon namespaces
automatically. To use operations in other namespaces,
like IndexRange from Microsoft.Quantum.Array, you have to use the fully qualified

https://docs.microsoft.com/en-us/quantum/language/expressions?view=qsharp-preview#copy-and-update-expressions
https://docs.microsoft.com/en-us/qsharp/api/qsharp/microsoft.quantum.canon.applytoeach
https://docs.microsoft.com/en-us/qsharp/api/qsharp/microsoft.quantum.arrays.indexrange
https://docs.microsoft.com/en-us/qsharp/api/qsharp/microsoft.quantum.intrinsic.resetall
https://docs.microsoft.com/en-us/qsharp/api/qsharp/microsoft.quantum.intrinsic?view=qsharp-preview
https://docs.microsoft.com/en-us/qsharp/api/qsharp/microsoft.quantum.canon?view=qsharp-preview

name of the operation (i.e. Microsoft.Quantum.Array.IndexRange) or include

an open statement at the top.

Let's call RandomBits from a new @EntryPoint (the old @EntryPoint must to be deleted as a Q#

program can only have one):
 @EntryPoint()

 operation CreateRandom(n: Int) : Unit {
 for(i in 1..10) {

 Message($"{i}: {RandomBits(n)}");

 }

 }

This new entry point receives a parameter: n; to provide a values to entry points include them in the
dotnet run command after --, for example:
$ dotnet run -- -n 4

1: [One,One,Zero,Zero]

2: [One,One,One,One]

3: [Zero,Zero,One,One]
4: [Zero,Zero,One,Zero]

5: [Zero,One,One,One]
6: [Zero,Zero,One,Zero]

7: [Zero,One,One,Zero]
8: [Zero,One,Zero,One]

9: [Zero,One,Zero,One]
10: [Zero,One,One,Zero]

Q# can automatically calculate the adjoint and the controlled version of an operation. In the
declaration you simply include is Adj + Ctrl. You can then invoke the operation's adjoint by

using the Adjoint keyword. Similarly, you can invoke the quantum-controlled version of the

operation using the Controlled keyword and passing an array of control qubits:

 namespace hw5 {
 open Microsoft.Quantum.Canon;
 open Microsoft.Quantum.Intrinsic;
 open Microsoft.Quantum.Arrays;
 open Microsoft.Quantum.Diagnostics;

 /// # Summary

 /// Given a qubit in |0⟩, prepares the qubit's state to |+⟩
 operation PreparePlus(q: Qubit) : Unit
 is Adj + Ctl {

 H(q);
 }

 /// # Summary

 /// Given a qubit in |0⟩, prepares the qubit's state to |-⟩
 operation PrepareMinus(q: Qubit) : Unit

 is Adj + Ctl {
 X(q);

 H(q);
 }

 @EntryPoint()

 operation AlwaysZero() : Unit

 {
 using((ctrls, q) = (Qubit[1], Qubit())) {

 Message("before:");

 DumpMachine();

 // The operation we just defined:
 PreparePlus(q);

 Message("after");

 DumpMachine();

 // Passing control qubits
 Controlled PrepareMinus(ctrls, q);

 // Undo everything we just did.

 Adjoint Controlled PrepareMinus(ctrls, q);
 Adjoint PreparePlus(q);

 }
 }

}

Invoking AlwaysZero yields the following output.
$ dotnet run
before:

wave function for qubits with ids (least to most significant): 0;1

∣0❭: 1.000000 + 0.000000 i == ******************** [1.000000] --- [0.00000 rad]

∣1❭: 0.000000 + 0.000000 i == [0.000000]

∣2❭: 0.000000 + 0.000000 i == [0.000000]

∣3❭: 0.000000 + 0.000000 i == [0.000000]
after

wave function for qubits with ids (least to most significant): 0;1

∣0❭: 0.707107 + 0.000000 i == *********** [0.500000] --- [0.00000 rad]

∣1❭: 0.000000 + 0.000000 i == [0.000000]

∣2❭: 0.707107 + 0.000000 i == *********** [0.500000] --- [0.00000 rad]

∣3❭: 0.000000 + 0.000000 i == [0.000000]

Notice the output generated by DumpMachine(). It prints the state (wave function) of the entire
system it's a great tool to debug your quantum programs.

To learn more...

The online documentation is a great resource to learn more about Q#. and includes further
information about:

• Q# file structure
• Operations and functions
• Variables
• Work with qubits
• Control flow
• Test and debug

The Q# team is constantly monitoring any questions posted there with the "q#" tag at
stackoverflow.com. You can try there too.

https://docs.microsoft.com/en-us/quantum/user-guide/using-qsharp/file-structure
https://docs.microsoft.com/en-us/quantum/user-guide/using-qsharp/file-structure?view=qsharp-preview
https://docs.microsoft.com/en-us/quantum/user-guide/using-qsharp/operations-functions?view=qsharp-preview
https://docs.microsoft.com/en-us/quantum/user-guide/using-qsharp/variables?view=qsharp-preview
https://docs.microsoft.com/en-us/quantum/user-guide/using-qsharp/working-with-qubits?view=qsharp-preview
https://docs.microsoft.com/en-us/quantum/user-guide/using-qsharp/control-flow?view=qsharp-preview
https://docs.microsoft.com/en-us/quantum/user-guide/using-qsharp/testing-debugging?view=qsharp-preview
https://stackoverflow.com/questions/tagged/q%23

	Writing Q# programs.
	To learn more...

