
Homework 6
CSE 490q

Due: Mon, Nov 16th by 11pm PST

Instructions:

For this homework clone this GitHub repository on your machine:
https://github.com/anpaz/uw-490q-au20.git
Optionally, you can also download a zip file with the contents using this link:
https://github.com/anpaz/uw-490q-au20/archive/main.zip
In this repository you will find an hw6 folder, and in it a folder for each one of the problems,
named p1, p2 and p3 accordingly.
For each problem there are two Q# files:

- Program.qs: with the Q# EntryPoint calling the operation that you need to implement
- Answers-n.qs: the file that with the operations you need to implement

For your answers, you only need to modify the later. When submitting your answers to
greadescope, please include only this file plus an screenshot that shows your program running.

Please post any questions on the course’s message board.

Problem 1

For this problem, please write all your code in:
/hw6/p1/Answer-1.qs

To run your program you can use:
cd /hw6/p1
dotnet run -x 3 -y 2

An in-place adder is a quantum operation that given two qubit registers in state |𝑎⟩ and |𝑏⟩, sets
the qubits to state |𝑎⟩|𝑏 ⊕ 𝑎⟩ with an optional carry qubit that indicates overflow.

a. Implement a reversible in-place adder with carry. The adder you implement must be
capable of adding 4 qubit registers.

a. The description of a circuit implementing this operation can be found in section 2
of the “Addition on a Quantum Computer” paper by Drapper (arXiv:quant-
ph/0008033)

b. A great resource to learn how to implement this step-by-step are the first two
sections of the RippleCarryAdder Kata from the QuantumKatas repository. If you
plan to use this, make sure you read the instructions on how to run the Katas
locally from the repos’s README file.

b. Implement an in-place subtractor. An in-place subtractor is a quantum operation that

given two qubit registers in state |𝑎⟩ and |𝑏⟩, sets the qubits to state |𝑎⟩|𝑏 ⊝ 	𝑎⟩ with a
carry qubit that indicates overflow.

Problem 2

For this problem, please write all your code in:
/hw6/p2/Answer-2.qs

To run your program you can use:
cd /hw6/p2
dotnet run -x 6

An oracle is a quantum operation that transforms a state |𝑥⟩|𝑦⟩	into state |𝑥⟩|𝑦 ⊕ 𝑓(𝑥)⟩.
Implement the following oracles:

a. The Oracle_And: where 𝑓(𝑥) = 𝑥!⋀	𝑥"⋀…⋀𝑥#

Inputs:
1. n qubits in an arbitrary state |𝑥⟩ (input/query register).
2. A qubit in an arbitrary state |𝑦⟩ (target qubit).

Goal:
Transform state |𝑥,𝑦⟩ into state |𝑥,𝑦⊕𝑓(𝑥)⟩ (⊕ is addition modulo 2), i.e., flip the target state if
all qubits of the query register are in the |1⟩ state, and leave it unchanged otherwise.

Leave the query register in the same state it started in.

Signature:
operation Oracle_And (queryRegister : Qubit[], target : Qubit) : Unit
is Adj

Hint:
The unitary corresponding to this oracle is:

𝑈$#% 	|𝑥⟩|𝑦⟩  =   2 |𝑥⟩|𝑦⟩ 𝑖𝑓	𝑥	 ≠ 	1. . .1
|𝑥⟩X|𝑦⟩ 𝑖𝑓	𝑥	 = 	1. . .1

b. The Oracle_6: where 𝑓(𝑥) = 1	𝑖𝑓𝑓	𝑥	 == 	6

Inputs:
3. n qubits in an arbitrary state |𝑥⟩ (input/query register).
4. A qubit in an arbitrary state |𝑦⟩ (target qubit).

Goal:
Transform state |𝑥,𝑦⟩ into state |𝑥,𝑦⊕𝑓(𝑥)⟩ (⊕ is addition modulo 2), i.e., flip the target state if
the qubits in the query register are in the |6⟩ state, and leave it unchanged otherwise.

Leave the query register in the same state it started in.

Signature:
operation Oracle_6 (queryRegister : Qubit[], target : Qubit) : Unit
is Adj

Hint:

The unitary corresponding to this oracle is:

𝑈$#% 	|𝑥⟩|𝑦⟩  =   2 |𝑥⟩|𝑦⟩ 𝑖𝑓	𝑥	 ≠ 	0110
|𝑥⟩X|𝑦⟩ 𝑖𝑓	𝑥	 = 	0110

c. The Oracle_Or: where 𝑓(𝑥) = 𝑥! ⋁𝑥" ⋁ …⋁𝑥#

Inputs:
1. n qubits in an arbitrary state |𝑥⟩ (input/query register).
2. A qubit in an arbitrary state |𝑦⟩ (target qubit).

Goal:
Transform state |𝑥,𝑦⟩ into state |𝑥,𝑦⊕𝑓(𝑥)⟩ (⊕ is addition modulo 2), i.e., flip the target state if at
least one qubit of the query register is in the |1⟩	state, and leave it unchanged otherwise.

Leave the query register in the same state it started in.

Signature:
operation Oracle_Or (queryRegister : Qubit[], target : Qubit) : Unit
is Adj

Hint:

The unitary corresponding to this oracle is:

𝑈𝑎𝑛𝑑	|𝑥⟩|𝑦⟩  =   ' |𝑥⟩|𝑦⟩ 𝑖𝑓	𝑥	 ≠ 	0. . .0
|𝑥⟩X|𝑦⟩ 𝑖𝑓	𝑥	 = 	0. . .0

d. The Oracle_SATClause: where 𝑓(𝑥) = 𝑆𝐴𝑇	𝑐𝑙𝑎𝑢𝑠𝑒

Inputs:
1. N qubits in an arbitrary state |𝑥⟩|x⟩ (input/query register).
2. A qubit in an arbitrary state |𝑦⟩|y⟩ (target qubit).
3. A 1-dimensional array of tuples clause which describes one clause of a SAT problem

instance clause(x).

clause is an array of one or more tuples, each of them describing one component of a SAT
clause.

Each tuple is an (Int, Bool) pair:

a. the first element is the index 𝑗 of the variable 𝑥𝑗,
b. the second element is true if the variable is included as itself (𝑥𝑗) and false if it is included

as a negation (¬𝑥𝑗).

Example:

• The clause 𝑥0	∨	¬𝑥1 can be represented as [(0, true), (1, false)].

Goal:
Transform state |𝑥,𝑦⟩ into state |𝑥,𝑦⊕𝑓(𝑥)⟩ (⊕ is addition modulo 2) if any of the state of the
qubits match the state represented by the SAT clause.

Leave the query register in the same state it started in.

Signature:
operation Oracle_SATClause (queryRegister : Qubit[], target : Qubit, clause : (Int,
Bool)[]) : Unit is Adj

e. The Oracle_SAT where 𝑓(𝑥) = 𝑆𝐴𝑇	𝑝𝑟𝑜𝑏𝑙𝑒𝑚

Inputs:
1. N qubits in an arbitrary state |𝑥⟩ (input/query register).
2. A qubit in an arbitrary state |𝑦⟩ (target qubit).
3. A 2-dimensional array of tuples problem which describes the k-SAT problem

instance 𝑓(𝑥).
𝑖-th element of problem describes the 𝑖-th clause of 𝑓(𝑥); it is an array of one or more
tuples, each of them describing one component of the clause as described in the previous
question.

Example:
A more general case of the OR oracle for 3 variables 𝑓(𝑥)=(𝑥0 ∨	𝑥1 ∨	𝑥2) can be represented
as [[(0, true), (1, true), (2, true)]].

Goal:
Transform state |𝑥,𝑦⟩ into state |𝑥,𝑦⊕𝑓(𝑥)⟩ (⊕ is addition modulo 2).

Leave the query register in the same state it started in.

Signature:
operation Oracle_SAT (queryRegister : Qubit[], target : Qubit, problem : (Int, Bool)[][])
: Unit is Adj

Problem 3

For this problem, please write all your code in:
/hw6/p3/Answer-3.qs

To run your program you can use:
cd /hw6/p3
dotnet run -x 6

Grover's algorithm is a quantum algorithm that finds with high probability the unique input to an
oracle function that produces a particular output value, using just O(√𝑁) evaluations of the
function, where 𝑁 is the size of the function's domain.

a. Implement the Grover Iteration part of the algorithm:

Namely:

a. Apply the Oracle

b. Apply the Hadamard transform
c. Perform a conditional phase shift
d. Apply the Hadamard transform again

Signature:
operation GroverIteration (register : Qubit[], oracle : (Qubit[] => Unit is Adj)) : Unit
is Adj { }

This iteration will be called as part of the GroverSearch operation using the oracles implemented
in Problem 2. Take a look in Program.cs to understand how GroverSearch works and was
implemented in Q# calling GroverIteration.

