
CSE 490j
Unity Scripting Basics

Alright. Here we go with Scripting 101. This document can’t cover absolutely everything that you
can do when it comes to coding, but hopefully it will help you get started writing your own code.
If anything is confusing, ask a TA and they will do there best to explain it to you. Also if you think
something is missing, let us know as well.

Overview

Unity uses a programming language called C#, which is an object oriented programming
language (if you are familiar with java then a lot of the core principles will feel familiar). As a
general overview, we will discuss 3 main ideas: variables, functions, and classes.

Variables

public​ ​int​ number = ​1​;
public​ ​float​ decim = ​1.5​f;
public​ ​string​ ​word​ = ​"hello"​;
public​ ​char​ letter = ​'h'​;

Variables are containers for information. It’s how we store data so that we can use and
manipulate it later it later.

To create a variable in C#, first you have to “declare it”. From there you have access to what
that variable stores and the ability to change it.

int ​a​= ​0​;​ // declared a variable named "a", set it equal to zero
a ​= ​1​;​ // set "a" equal to 1

Each variable has a specific type, which determines the kind of information stored there, as well
as a set of operations that can be applied to that variable. Variables come in a couple different
flavors.

● integers represent whole numbers
● floats are decimal numbers

○ Note: you can do math with both floats and integers

 ​int​ a = ​1​ + ​1​; ​// a = 2
 ​int​ b = ​1​; ​// b = 1
 ​int​ c = a + b; ​// c = 3

● char is a single character or letter
● Strings are words wrapped in in quotation marks

○ Note: there is a thing called string concatenation, that lets you add strings
together, and even some other types.

 string a = ​"punk"​;
 string ​b ​= ​"metal"​;
 int c = ​2019​;
 string d = a + ​" "​ + ​b ​+ ​" "​ + c​; //d = "punk metal 2019"

public vs private:
Variables written outside of functions and functions themselves (more on those later) must be
marked as private or public.

- private means that no other scripts can access this value or function
- Public means that any other script can access this value or function. Note that public

variables actually end up in the inspector.
-

Unity specific component variables:
Any component or even custom script in Unity can also be stored as a variable so that we can
access and change data in it later

 ​// components
 ​public​ Rigidbody rigidbody;
 ​public​ BoxCollider boxCollider;
 ​public​ OtherScript otherScript;

Arrays

Arrays are special variables that can hold multiple values. An array can be created for any type,
but you have to give it a fixed size in order for it to work. When you initialize a array, it is usually
a good idea to define a size.

 ​// arrays
 ​public​ ​int​[] numArr = ​new​ ​int​[​5​];
 ​public​ ​float​[] floatArr = ​new​ ​float​[​1​];
 ​public​ ​string​[] wordArr = ​new​ ​string​[​1​];

Each spot in an array is referred to as an index (starting at 0), and to set a value in the array,
you have to specify a specific index;

 int​[]​ numArr = new int​[5]​;
 nymArr​[2]​ = ​1​;

Array before:

0 0 0 0 0

Array After:

0 0 1 0 0

Note that in C#, an array can only hold one type. So an int array cannot hold strings or char
variable types.

Functions

Functions are chunks of code where you perform operation. It is where “the action happens”. So
if I need add numbers, run a calculation, move objects, this is where you will do so. The
structure of a function is as such

 ​// this is a function. Functions are chunks where you can put your code
into. Functions can be called by other functions to be executed

 ​void​ ​function​Example​() {
 ​// This function prints "do something" into the console menu in
Unity

 print(​"do something"​);

 }

Any code that is between the curly braces, will be executed when the function is called.
Functions can call other functions. And when you do this, you will execute the code that is in
that function.

 ​void​ ​function​Example​() {
 print(​"do something"​);
 }

 ​void​ otherFunction() {
 ​// also will print "do something"
 ​function​Example​();
 }

Functions can “return” a variable type. This means, when it is called, the caller gets back a
value specified by the function.

 ​int​ ​functionExample​() {
 print(​"do something"​);
 ​return​ ​1​;
 }

 ​void​ ​callerFunction​() {
 ​// a = 1 and also print do something
 ​int​ a = functionExample();
 }

functions can return any data type, as long as it is specified before the function name. The
exception is void, which returns nothing.

 ​// returns an int
 ​int​ ​intFunction​() {
 ​int​ a = ​1​;
 ​int​ b = ​1​;
 ​return​ a + b; ​// returns 2
 }

 ​// returns a string
 ​string​ ​stringFunction​() {
 ​return​ ​"punk metal"​;

 }

 ​// returns a float
 ​float​ ​floatFunction​() {
 ​return​ ​1.0f​ + ​0.5f​;
 }

 ​// returns nothing
 ​void​ ​voidFunction​() {
 ​return​;
 }

Functions can also have input values. These allow you to specify the values of variables used in
the function. These are comma separated lists, in the parenthesis after the function name.

 ​int​ ​add​(​int​ a, ​int​ b) {
 ​return​ a + b;
 }

 ​void​ ​addTest​() {
 ​add​(​1​, ​1​); ​// add will return 2

 ​// you can even use variables as input
 ​int​ x = ​1​;
 ​int​ y = ​2​;
 ​int​ z = ​add​(x, y); ​// z = 3
 }

And same as before these values can be any variable type. However, if you establish input
variables, they must be filled out every time you call that function.

If-Else Statements

If statements allow you to execute a certain chunk of code based on a condition. If the condition
is not met, then that line of code is skipped out.

 if (​1​ + ​1​ == ​2​) {

 print(​"punk metal"​);
 }

If-else statements are one step further, allowing you to switch between two chunks of code
based on a condition.

 ​if​ (1 + 1 == 2) {
 ​print​(​"punk metal"​);
 } ​else​ {
 ​print​(​"if you get here math is broken"​);
 }

Finally, else-ifs allow you to specify alternate conditions. And you can chain these indefinelty

 ​if​ (1 + 1 == 2) {
 ​print​(​"punk metal"​);
 } ​else​ ​if​ (1 + 1 == 0){
 ​print​(​"if you get here math is broken"​);
 } ​else​ {
 ​print​(​"math is still broken"​);
 }

While and For loops
While loops will execute a certain block of code repeatedly until the condtion in the parenthses
is false

 ​// will print "punk punk punk punk punk metal"
 ​int​ i = ​0​;
 ​while​(i < ​5​) {
 i = ​int​ + ​1​;
 ​print​(​"punk "​);
 }

 ​print​(​"metal"​);

For loops are a special kind of loop, that allow you to give a range, and a increment value
automatically.

 ​// for(starting value, value you want to end at, value you want to
increment each time your execute code block inside)

 ​for​(​int​ i = ​0​; i < ​5​; i++) {

 ​print​(​"punk "​);
 }

 ​print​(​"metal"​);
 ​// will also print "punk punk punk punk punk metal"

Classes

Classes, in a sense, are containers for functions and variables. Generally, you use this to
organize data and instruction for a specific thing or set of tasks. For example, this is a student
class. A student is defined by their name and age. And a student can print their name.

// "Student" is class name

// Monobehaviour is a class the we inheirt from.

//Essentially we get all of Monobehaviour's functions in this as well

public​ ​class​ ​Student​ : MonoBehaviour {

 ​// parameters of the class
 ​public​ ​string​ name;
 ​public​ ​int​ age;

 ​//Constructors are how you initilize the class. You give it starting
values.

 ​public​ ​Student​(​string​ name, ​int​ age) {
 ​this​.name = name;
 ​this​.age = age;
 }

 ​public​ ​string​ ​printStudent​() {
 ​return​ ​"Hi I am "​ + name + ​" and I am "​ + age;
 }

}

You can refer to these functions and variables from others functions as such. You do this using
this notion of dot notation. Where you take “variable name”.”parameter/function name”

public​ ​void​ ​createStudent​() {
 ​//initializes the student with some values
 Student paul = ​new​ Student(​"paul"​, ​12​);

 ​// you can set and get a students variables with dot notation

 paul.age = ​13​;

 ​// you can call students functions with dot notation as well
 print(paul.printStudent());

}

Unity Specific Topics

Debugging and Print statements in Unity

One of the most common methods for debugging are using print statements to print out
information from your code/see if the code even gets to a certain point. The two main function to
do that are print() and Debug.Log() which in essence function the same.

print​(​"I print this"​);
Debug.Log(​"this prints too"​);
print​(1 + 1);

float​ ​test​ = 100;
print​(​test​);

By default the console window where this stuff prints out is in the console window next to the
project tab.

Start and Update

Unity has a ton of functions that help make the programmers life easier. Tow of the most
important ones are Start and Update.

// the start function is a Unity function that is automatically executed at the beginning of

the scene

void​ ​Start​ () {
 print(​"run at start"​);

}

// the Update function is a Unity function that is automatically called once per frame

 ​// this is where you will be doing a lot of your logic checking
void​ ​Update​ () {

}

