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The issue of how the Euclidean properties of space are represented in
the nervous system is a main focus in the study of visual perception,
but is equally relevant to motor learning. The goal of our experiments
was to investigate how the properties of space guide the remapping of
motor coordination. Subjects wore an instrumented data glove that
recorded the finger motions. Signals generated by the glove operated
a remotely controlled endpoint: a cursor on a computer monitor. The
subjects were instructed to execute movements of this endpoint with
controlled motions of the fingers. This required inverting a highly
redundant map from fingers to cursor motions. We found that 1) after
training with visual feedback of the final error (but not of the ongoing
cursor motion), subjects learned to map cursor locations into config-
urations of the fingers; 2) extended practice of movement led to more
rectilinear cursor movement, a trend facilitated by training under
continuous visual feedback of cursor motions; 3) with practice,
subjects reduced motion in the degrees of freedom that did not
contribute to the movements of the cursor; 4) with practice, subjects
reduced variability of both cursor and hand movements; and 5) the
reduction of errors and the increase in linearity generalized beyond the
set of movements used for training. These findings suggest that
subjects not only learned to produce novel coordinated movement to
control the placement of the cursor, but they also developed a
representation of the Euclidean space on which hand movements were
remapped.

I N T R O D U C T I O N

The defining property of Euclidean spaces is that the length
of a segment does not depend on the segment’s orientation or
position. This property is essential to capture the nature and
motions of rigid bodies (Goldstein 1980), which are defined by
the invariance of the distances between their points. The
measure of distance (the metric) is of vital importance in
constructing a map between the visual representation of space
and the motor commands controlling movements within that
space.

The ability of the visual system to capture the Euclidean
nature of space has been extensively studied (Hatfield 2003;
Shepard 2001), whereas fewer studies have examined the
representation of space in the motor system (Bernstein 1967;
Rossetti 1998). These studies emphasize that visual perception
and motor action are independent but highly interconnected.
The visual representation of space from retinal coordinates is

believed to be transformed into motor commands by dorsal
pathways, whereas objects within space are thought to be
represented by ventral pathways, with multiple interconnec-
tions between the two pathways (Goodale and Milner 1992;
Milner and Goodale 1993). In contrast, little is known about
how the fundamental geometrical properties of space are rep-
resented by the motor system. We easily formulate and execute
motor plans such as “move the hand 10 cm to the right,”
despite the fact that this action requires widely varying muscle
activations and segmental coordination, depending on the
hand’s initial position. This clearly demonstrates that the motor
system is able to capture the Euclidean properties of the space
in which actions take place.

The purpose of our studies was to understand how the motor
system learns to represent a new space. We asked subjects to
move between target locations on a computer screen using an
instrumented data glove that converted finger motions into
cursor motions. The screen had a well-defined Euclidean met-
ric: the distance between any two points is the length of the
straight segment that joins them. In contrast, there is no
obvious or “natural” definition of distance in finger articulation
space (i.e., between two gestures of the hand). We observed
how two features of motor behavior evolved in the course of
learning this novel task: 1) the shape of the cursor trajectories
and 2) the variability of both hand and cursor motions.

Our hypotheses centered on two questions. First, we asked
whether subjects learn the Euclidean metric of the controlled
endpoint by organizing coordination of finger motions to gen-
erate straighter motions of the cursor (i.e., movements of
minimum Euclidean length). The second question is whether
practice leads to more accurate targeting, at the expense of
more variable trajectories (Todorov and Jordan 2002) or,
alternatively, does the entire movement profile become less
variable, suggesting that the control system is attempting to
become both more accurate in reaching the target and more
consistent in producing finger and/or cursor trajectories (Flash
and Hogan 1985; Hogan 1984)? We will show that when
subjects learn to control an overabundant set of hand signals in
the presence of a novel transformation between these signals
and the controlled endpoint, they become both more accurate
in the task and more consistent in their finger and cursor
motions. This finding is not consistent with the model of motor
control proposing that the motor system increases variability in
the redundant degrees of freedom to improve accuracy of the
motor task.
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M E T H O D S

Twenty-seven adult subjects participated in this investigation after
providing written informed consent approved by Northwestern Uni-
versity’s Institutional Review Board. Each subject wore a right- or
left-handed CyberGlove (Immersion, San Jose, CA), from which 19
joint angle measurements were recorded from flexion of the phalan-
geal joints (proximal, middle, and distal), abduction of the thumb and
fingers, and wrist flexion/extension and abduction/adduction. Cyber-
Glove signals were sampled at a rate of 20/s in all procedures with the
exception of the generalization experiment, where the rate was 50/s.
The 19-dimensional (19-D) vector of glove signals encoding the
configuration of the fingers was mapped onto the two-dimensional
(2-D) (x, y) coordinates of a computer screen using a linear transfor-
mation

� x
y � � � ax,1 ax,2

. . . ax,19

ay,1 ay,2
. . . ay,19

� � �
h1

h2
. . .
h19

� � A � h (1)

where p � [x, y]T indicates the point on the monitor, h � [h1, h2, . . . ,
h19]T is the “glove signal vector,” and A is the matrix of mapping
coefficients, [A]i, j � ai, j.

The mapping was calibrated before the start of each experiment
session by asking the subject to assume four different hand configu-
rations (gestures) and then establishing a correspondence between
these configurations and the four vertices of a rectangular workspace
on the computer screen (Fig. 1). The mapping coefficients (ai,j[r])

were determined by the following procedure. Let P � [p(1), p(2), . . . ,
p(4)]T � [x(1), y(1), x(2) y(2), . . . , x(4) , y(4)]T indicate the eight-
dimensional vector of screen coordinates at the four vertices. Let h(1),
h(2), . . . , h(4) indicate the corresponding 19-D glove signal vectors at
these postures. Collect the vectors in the 8 � 38 data matrix

H � �
h 1

�1� . . . h 19
�1� 0 . . . 0

0 . . . 0 h 1
�1� . . . h 19

�1�

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
h 1

�4� . . . h 19
�4� 0 . . . 0

0 . . . 0 h 1
�4� . . . h 19

�4�

�
and the unknown coefficients of A into a 38-dimensional vector, a �
[a1,1, a1,2, . . . , a1,19, a2,1, a2,2, . . . , a2,19]T. Using this notation, the
coefficients are estimated by a � H�P, where H� is the Moore–
Penrose pseudoinverse of H. This procedure corresponds to the
selection of the minimum norm parameter vector a, consistent with
the calibration postures.

All subjects used the same calibration postures. After calibration,
any point within the rectangular workspace could be reached by
assuming a hand posture that was a linear interpolation of the four
calibration postures. These postures were chosen empirically, based
on the requirement that all points inside the workspace be reachable
and that, whereas each gesture of the hand mapped into a single point on
the screen, each screen location corresponded to multiple hand gestures.

After calibration, subjects practiced moving the cursor using finger
motions for 5 min. After this acquaintance phase, they then made

FIG. 1. Calibration and targets. Top: target lay-
out and postures used to set up the map from glove
signals to monitor coordinates. Each calibration
posture corresponds to a corner of the rectangular
region on the monitor. Subjects were aware of this
correspondence. This target layout was used in the
main experiment. Bottom: target locations for the
generalization experiment. Three sets of targets
were used: one training set (diamond pattern on
the left) and 2 test sets (triangular patterns). Tar-
gets in the triangular pattern inside the training
diamond are the interpolation set. Three targets on
the right are the extrapolation set. Subjects prac-
ticed reaching movements over the training set
and then were asked to perform movements in the
2 test sets (see text for details). Four calibration
postures (top) were used to calibrate the corners of
the larger rectangular workspace in the generali-
zation experiment.

4363REMAPPING MOVEMENT IN NOVEL GEOMETRICAL ENVIRONMENT

J Neurophysiol • VOL 94 • DECEMBER 2005 • www.jn.org

 on January 3, 2007 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


either No Vision (NV) or Vision (V) movements. NV movements
consisted of the following steps:

1) Subjects positioned the cursor inside the initial target.
2) On presentation of a new target, the cursor vanished.
3) Subjects were required to place and hold the (invisible) cursor

inside the new target using a single rapid movement of the fingers.
This reaching was to be completed within 2 s of target presentation.

4) The cursor reappeared when the hand was at rest after this
movement.

5) Errors in final position were to be corrected by moving the
cursor to the target under visual guidance.

6) Once inside the target the procedure was repeated starting from
step 2.

V movements followed the same sequence of events as NV move-
ments, except that in steps 2 and 3, cursor presentation was main-
tained throughout the movement.

Two sets of experiments were conducted to explore: 1) how
subjects learn to control cursor motion on the computer screen using
a highly redundant actuator system (the hand) and 2) whether this
learning generalizes to new target locations requiring novel combina-
tions of hand postures.

In the first set of experiments, a single trial involved a total of 30
reaching movements between six targets (five movements per target)
in pseudorandom order. Although glove and cursor data were col-
lected throughout the entire experiment, only those collected during
the rapid initial hand movement (steps 2 and 3) were analyzed and are
discussed here.

Each subject participated in one of three protocols: P1, P2, and P3.
In protocol P1, they repeated 10 NV trials in a single session that
lasted about 1 h. Subjects in protocols P2 and P3 participated in four
experimental sessions on four consecutive days. Subjects executed the
same total number of movements in conditions P2 and P3. On each
day, subjects in both protocols performed ten trials during an hour-
long session. P2 subjects engaged in only NV trials. P3 subjects
alternated V and NV trials, in the following order: NV–V–V–NV–
V–V–NV–V–V–NV. For comparison between both groups, only data
for the rapid initial movements in the NV trials common to both
protocols (trials 1, 4, 7, and 10) are analyzed and discussed here. The
V and NV movements in the remaining trials were used only to
provide different training contexts for the two protocols. Subjects in
both protocols received some amount of training under visual feed-
back. However, for those in P2, visual guidance was limited to
corrective movements, which were typically shorter and generally
slower than the initial target-reaching movements.

The second set of experiments explored how learning generalizes to
new targets requiring novel combinations of hand postures. Seven
subjects participated in two consecutive sessions, 6 h apart. Three sets
of targets were used (Fig. 1): four training targets, three “interpola-
tion” targets, and three “extrapolation” targets. The calibration was
performed as in the basic experiment, by asking subjects to execute
the four hand gestures shown in Fig. 1 (top), in correspondence with
the four corners of the large rectangular workspace. These gestures
were the same as for the first experiment. However, the training and
test workspace were different. Therefore the calibration resulted in a
different mapping from glove signals to cursor coordinates. At the
beginning of the first session, subjects performed 30 NV movements
to both the interpolation and extrapolation sets. These movements
provided a baseline for evaluating learning effects induced by prac-
ticing over the training targets. Subjects then performed 500 practice
movements over the training set. This practice period lasted about 1 h
and was conducted with continuous cursor feedback. Immediately
after this training, subjects made 30 NV movements each to the
interpolation and extrapolation targets. A second session took place
after a 6-h pause after the first session, to assess the consolidation of
learning induced by the first training period. Here again, subjects were
asked to execute 30 NV movements to the interpolation and extrap-
olation sets.

Data analysis

Signals from each of the bend sensors and the coordinates of the
cursor relative to the origin of the screen were acquired and trans-
ferred off-line for analysis. Preprocessing of the data was carried out
to extract the first, open-loop movement component. Movement onset
and termination were identified by applying a velocity threshold (0.5
cm/s) to the cursor speed profile. Only movements with a simple
speed profile, preceded and followed by a prolonged period of rest,
were accepted for further analysis. We measured and analyzed four
aspects of performance.

1) Final endpoint error: The Euclidean distance between the
cursor position at movement’s end and the target center.

2) Aspect ratio (a measure of linearity): The ratio of maximum
lateral excursion to the distance between start and end positions of the
cursor. A straight segment has a zero aspect ratio.

3) Redundant motion: The vector h of data glove signals is
uniquely decomposed into two orthogonal vectors: h � hT � hN, such
that p � A � hT and 0 � A � hN (where p � [x, y]T). The “task” vector
hT has the minimum Euclidean length among all possible vectors that
map into p. The “null” vector hN belongs to the “null space” of A.
Task and null vectors are obtained by projection operators derived
from the Moore–Penrose inverse of A: A� � AT � (A � AT)�1.
Specifically, hT � T(A) � h, with T(A) � A� � A, hN � N(A) � h, where
N(A) � [I19 � T(A)] and I19 is the 19-D identity matrix. This
decomposition is analogous to the decomposition into controlled and
uncontrolled manifolds (Scholz and Schoner 1999). Here, however,
the analysis is greatly simplified because the glove-to-screen trans-
formation is linear. Thus the task and null components are defined
over proper subspaces of the glove-signal space rather than over
curved manifolds. For each reaching movement, we used the projec-
tion operators N(A) and T(A) to derive the null-space and task-space
components of the glove signals. We then calculated the movement
length in task and null subspaces, where the latter is the component of
finger motion that does not contribute to cursor motion. Both hT and
hN are 19-D glove vectors within subspaces “embedded” in the glove
signal space. The units that we used for the components of these
vectors (G.S.U. for glove signal units) is the resolution of the numer-
ical values generated by the CyberGlove sensors, each ranging be-
tween 0 and 255.

4) Movement variability: To assess the consistency of performance
from movement to movement, it is desirable to align movements in
time in a way that does not require scaling of the motion variables
themselves. To do so, we identified the onset of movement (OM) by
first scanning each cursor speed profile forward in time to identify
when cursor speed was �10 cm/s, and then scanning backward until
reaching a speed �0.5 cm/s. After aligning (with respect to OM) all
of the movements to be analyzed, the movement records were trun-
cated to the same total duration [end of movement (EM)], defined so
that the slowest movement was represented in its entirety along with
a brief period of postmovement rest. We required sufficiently long rest
periods during data collection to ensure that, after truncation, all
records contained the whole initial movement followed by some
amount of samples at zero velocity. Finally, sampling times were
normalized for each set of movements by setting OM � 0 and EM �
1. For each pair of start and end targets and each experimental session,
the covariance matrices of the cursor movements and of the glove
signals were derived at each sample instant using MATLAB (func-
tion: cov). Three signals were considered for this analysis: 1) the total
glove signal, h(t); 2) the null-space projection, hN(t); and 3) the
task-space projection, hT(t).

Statistical testing

Learning trends were determined by considering how individual
and group measures evolved within sessions and across multiple days.
Before statistical testing, each of the performance measures described
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above required correction for nonnormality (skew) in their distribu-
tions arising from the fact that these measures are strictly nonnegative.
A Box–Cox transformation [T�(y) � (y� � 1)/(�y��1)] was used to
correct for distribution skew within the Minitab v13 computing
environment (Box and Cox 1964). One- and two-way ANOVAs were
conducted on the transformed data to evaluate training effects within
a day and across days for each subject group. Post hoc Tukey t-tests
were conducted to identify significant changes in performance (P �
0.05) within and across days when ANOVA revealed a significant
main effect.

Inclusion criteria

The vast majority of subjects were able to learn the cursor manip-
ulation tasks described above. The mere fact that this learning oc-
curred is not by itself surprising. However, to evaluate how learning
evolves, it is necessary that learning occurs in the first place. Thus
only 23 of 27 subjects (85%) who demonstrated consistent error
reduction with practice were included in the analyses.

Handedness

Of the 23 included subjects (15 males, 8 females; 20 right-hand
dominant, three left-hand dominant), 14 used their dominant hand and
nine used the nondominant hand. Although hand dominance had an
effect on final error, ANOVAs found no main effect of hand domi-
nance on the other statistics analyzed, and accounting for hand
dominance did not affect the results on learning trends that form the
primary focus of this report.

R E S U L T S

Training without vision

As subjects practiced controlling cursor movement by hand
gestures, cursor trajectories became more consistent (Fig. 2;

training and test movements without vision within a single
session), indicating that subjects learned the finger coordina-
tion patterns required of this novel task. A set of trajectories
between two targets and their speed profiles are shown in A and
C for a representative subject. Average motion and speed,
together with the SD are shown in B and D. The markedly
curved trajectories apparently reflect sequential execution of
submovements, one directed toward the target below the start-
ing position, followed by a correction toward the final target
(dark black circles). The six plots on the right of Fig. 2 show
average movements by the same subject in three sets of trials
early in training (Part 1) and in the last three set of trials (Part
2). Although the reduction of final error apparent in the top 2
plots labeled Part 1 and Part 2 does not correspond to a
straightening of cursor motion, variability is reduced from Part
1 to Part 2.

Figure 3, A and E shows the learning trend for the whole
population after 1 h of training without visual feedback on a
single day (A) and after 4 days of training (E, dotted line).
Subjects reduced the final error after training and this reduction
was highly significant both across trials in day 1 of training
[one-way ANOVA: F(9,90) � 3.66, P � 0.001] as well as
across days and trial order within days [two-way ANOVA
main effects by day: F(3,200) � 31.64; P � 0.0005; by trial
order: F(9,200) � 2.10; P � 0.031]. Trends for individual
subjects were very similar to the plots shown in Fig. 3, A and
E (data not shown). No interaction effects reached statistical
significance at the P � 0.05 level. Subjects clearly learned to
make increasingly accurate movements of the cursor using
hand motions that did not require ongoing visual feedback of
cursor movement.

FIG. 2. Trajectories from a representative subject (S4 from group P1). A and C: 4 cursor trajectories and speed profiles obtained during movements toward
the dark black circle in the first part of this single session experiment. B and D: corresponding average trajectories and speed profiles over this limited set of
movements. Gray regions around each point in B are SD ellipses. Right: 6 plots show examples of average trajectories and SDs obtained in the first half of the
experiment (Part 1, trials 1–5) and from the second half (Part 2, trials 6–10). Note the decrease in shaded area for similar movements from Part 1 to Part 2. Only
the final target was visible to the subject during each movement.
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Training with vision

The six subjects in protocol P3 performed a set of training
trials with continuous vision, alternated with test trials with no
vision that were identical to those performed by P1 and P2
subjects. The learning results after 1 day (Fig. 3C) and 4 days
(Fig. 3E) of practice were similar to those of subjects trained
without vision. There was a significant and large decrease in
final error within day 1 of training [one-way ANOVA:
F(3,20) � 4.90; P � 0.01] and after 4 days of training and by
trial order within days [two-way ANOVA main effects by day:
F(3,80) � 26.82; P � 0.0005; by trial order: F(3,80) � 9.86;
P � 0.0005]. No interaction effects reached statistical signif-
icance at the P � 0.05 level.

It is apparent that subjects in the P2 and P3 protocols showed
a remarkably similar trend in error reduction (Fig. 3E): prac-
ticing with or without continuous visual feedback led to similar
accuracy of the feed-forward movements. Subjects in the P3
protocol, however, had a slightly but significantly larger error
than subjects in the P2 protocol for day 1 (P � 0.026). This
initial lower performance may be explained by the fact that
these subjects trained with continuous visual feedback, a
condition different from the no-vision condition of the test
trials. Also, note that learning did not appear to be complete at
the end of the experiment because both P2 and P3 groups had
large residual errors on the last day.

Linearity of cursor trajectories

The finding that subjects learned to bring the cursor closer to
the target is not surprising and it is reported here merely to
show that, albeit difficult, the task was learnable. The goal of
this study is to observe changes in motor behavior that were not
explicitly instructed.

Subjects in this study were not required to move the cursor
along any specified trajectory. Earlier studies of planar, goal-
directed reaching have shown that straight trajectories of the
controlled endpoint—either the hand or a displayed cursor—
are an invariant and spontaneous kinematic property of move-
ments (Flash and Hogan 1985; Morasso 1981; Soechting and
Laquaniti 1981). This characteristic is robust, being resistant to
a broad range of physical and visuomotor perturbations (Ding-
well et al. 2002; Flanagan and Rao 1995; Shadmehr and
Mussa-Ivaldi 1994; Wolpert et al. 1995). Under the coordinate
transformation used in this study, there was no intrinsic geo-
metrical or mechanical constraint that would naturally induce
straight-line cursor movements (see also Fig. 2). Indeed, after
a single session of training without vision of the cursor (Fig.
3B), subjects did not tend toward straighter motions [ANOVA
with trials as a factor: F(9,90) � 0.21, P � 0.99]. However, the
linearity of cursor trajectories increased (and aspect ratio de-
creased) across days of training without ongoing visual feed-
back (Fig. 3F). For P2 subjects trained without visual feed-
back, two-way ANOVAs found a significant main effect by

FIG. 3. Final error and trajectory linearity. Training without and with continuous visual feedback of movement leads to a progressive reduction in target
reaching error. A: protocol P1 (No vision). Ensemble average of the final error over 10 subjects in a single (first) session of practice. B: protocol P1. Ensemble
average of the linearity measure over 10 subjects in a single session of practice. C: protocol P3 (Vision). Ensemble average of the final error over 6 subjects in
a single (first) session of practice. D: protocol P3. Ensemble average of the linearity measure over 6 subjects in a single (first) session of practice. Error (E) and
linearity (F) over 4 days of practice. Each data point in these graphs was obtained from the ensemble average across 6 subjects in each group and across a whole
session. Dotted lines: subjects in group P2 (No vision). Solid lines: subjects in group P3 (Vision). Error bars: 95% confidence intervals.
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day [F(3,200) � 9.61; P � 0.0005] but no main effect by trial
order within days [F(9,200) � 0.10; P � 0.9].

P3 subjects, on the other hand, appear to show a trend
toward more rectilinear cursor motions (Fig. 3D) after a single
day of training, suggested by slightly smaller aspect ratio
values (compare Fig. 3, B and D). This trend, however, is not
statistically significant between the beginning and end of a
1-day session. Similar to the P2 subjects, P3 subjects demon-
strated increasingly rectilinear cursor motions after 4 days of
training (Fig. 3F) with no significant effect of trial order within
days [two-way ANOVA main effects by day: F(3,80) � 3.22;
P � 0.027; by trial order: F(3,80) � 0.75; P � 0.525]. The
ensemble-averaged linearity measure follows a different trend
over the 4 days of training in the two groups (P2 and P3, Fig.
3F): the subjects trained under the vision condition generate,
on the whole, straighter movements. This is particularly evi-
dent in day 1, although the difference between the two groups
is reduced by day 4.

In summary, extended training led to the generation of
straighter and increasingly accurate motions in both groups.
Furthermore, the presence of continuous visual feedback
during movements enhanced the tendency toward straighter
cursor motions. In contrast, continuous visual feedback of
cursor motion did not appear to have an effect on learning to
translate the desired cursor positions into postures of the
hand.

Control of redundancy

Subjects learned to generate finger configurations that
positioned the cursor at distinct target locations within the
2-D task space. In so doing, they became experts at solving
the ill-posed problem (Hadamard 1902) of mapping a de-
sired 2-D vector into a higher-dimensional signal vector: but
did they also learn to partition the space of hand and finger

degrees of freedom into the combinations that are relevant
to the task and those not relevant? We addressed this
question by projecting the 19-D vector of glove signals into
a 2-D task-relevant subspace (the “task” subspace) and its
orthogonal (17-D) null space (see METHODS). We asked
whether subjects learned with practice to reduce the amount
of null- and task-space motions (Fig. 4). In the course of
four sessions all P2 and P3 subjects reduced the amount of
motion both in the null subspace and in the task subspace.
For both subspaces, the amount of motion was smaller in P3
subjects who trained under continuous visual feedback. For
null-space motion, two-way ANOVA found significant main
effects comparing protocols [F(1,92) � 6.08; P � 0.015] and
by comparing day 1 and day 4 within each protocol [F(1,92) �
17.89; P � 0.0005]. For task-space motion, use of two-way
ANOVAs again found significant main effects by protocol
[F(3,80) � 18.30; P � 0.0005] and by day [F(3,80) � 11.95;
P � 0.001]. No interaction effects reached statistical signifi-
cance at the P � 0.05 level for either analysis. The ratio of
null-to-task motion was smaller for the P2 group. Two-way
ANOVAs found significant main effects comparing protocols
[F(1,92) � 8.32; P � 0.005] as well as days [F(1,92) � 6.44;
P � 0.013]. The larger Null/Task ratio in subjects of the P3
group may reflect the stronger tendency of these subjects to
produce straight movements of the cursor. On day 4, subjects
trained with no vision made movements that were on average
26.5% longer in task subspace than movements by subjects
trained with vision. In contrast, null-space motions by subjects
training without vision on day 4 were only 12.7% longer than
the null-space motion for P3 subjects. We conclude that con-
tinuous vision of cursor motion led to a smaller amount of
unnecessary null-space motion and facilitated the tendency to
make more rectilinear cursor trajectories, with a stronger in-
fluence on the latter effect.

FIG. 4. Control of redundancy: length of
movements. Trends over 4 days of practice. Each
data point in these graphs was obtained from the
ensemble average across 6 subjects in each group
and across a whole session. Dotted lines: P2 sub-
jects. Solid lines: P3 subjects. Top left: length of
movements in the null subspace. Bottom left:
length of movements in the task subspace. Right:
ratio of null space length to task-space length.
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Variability

Scholz, Schoner, and others (Latash et al. 2001; Scholz and
Schoner 1999; Todorov and Jordan 2002) argued that, to obtain
a more stable performance within a controlled manifold, the
nervous system may transfer as much variance as possible to
degrees of freedom orthogonal to that manifold (i.e., the
uncontrolled manifold). In our case, the controlled and uncon-
trolled manifolds correspond to the task and null subspaces,
respectively. Todorov and Jordan (2002) further formalized
this concept and proposed that an optimal control law takes
advantage of redundancy by increasing variability in task-
irrelevant dimensions to decrease variability in the task-rele-
vant dimensions. Optimal feedback control, as proposed by
these authors, is consistent with a “minimum intervention
principle,” according to which the “deviations from the aver-
age trajectory are corrected only when they interfere with task
performance” (Todorov and Jordan 2002). In our case, task
performance is, by construction, measured by final accuracy.
Although one cannot rule out that a subject might be following
some implicit, self-imposed task, the explicit instructions and
“knowledge of results” feedback were strictly confined to the
accuracy of reaching. A minimum intervention principle pre-
dicts that movement variability is maximal at some point
between the initial and final targets so that accuracy of the final
position may be achieved. Our data are only partially consis-
tent, if at all, with such hypotheses.

The plots in Figure 5A show the average cursor trajectories
between two targets executed by one subject—S11 of the P2
group—in four subsequent days. The shadowed areas around
the mean trajectories are generated by the SD ellipsoids. The
two plots in Fig. 5C show, for the same movements, the norm
of the average SD (i.e., the largest eigenvalue of the 2 � 2 SD
matrix) and the average velocity profile, versus normalized

time (see METHODS). Because subjects were required to main-
tain the cursor in a small area around the starting target before
a new target was presented, the variability is minimal at the
beginning of the movement. It is apparent that the SD de-
creases across subsequent days of training. Perhaps consistent
with the minimum intervention hypothesis, the variability on
days 2 and 4 peaks midway between onset and termination of
movement. Figure 5, B and D shows the ensemble-averaged
trajectories and variability profiles, for the same movement,
across the entire group of P2 subjects. The group data display
the same trend of decreased variability on subsequent days.
Similar observations were obtained when all movements were
considered for both P2 and P3 groups. Multivariate and sub-
sequent one-way ANOVAs found significant effect across days
on the cursor variability [F(3,20) � 6.33; P � 0.003] but not
cursor speed [F(3,20) � 0.50; P � 0.689] for P2 subjects. P3
subjects demonstrated a similar effect of training across days
on cursor variability [F(3,20) � 4.96; P � 0.01], with no
significant change in cursor speed across days [F(3,20) � 0.10;
P � 0.961].

We also derived the temporal profiles of SD about the
average glove signal trajectory through glove, task, and null
spaces for all movements and all P2 and P3 subjects (Fig. 6).
The trend toward reduction of variability from day 1 to day 4
is particularly evident for null-space motion, which is not
consistent with the hypothesis that subjects learn to shift the
movement variance to degrees of freedom that do not contrib-
ute to task performance. On the contrary, all the results of our
experiment suggest that subjects learn to generate less-variable
trajectories, with a decreased amount of variance as training
proceeds. Note that, although the task-space projections of the
glove signals (which correspond to the cursor motions) have
very little variance at the start of movement, the glove signals

FIG. 5. Analysis of variability: cursor. A1, A2, A3, A4: average trajectories between 2 targets from one subject (S11) in 4 consecutive days. Different colors
are different days. Shaded areas are SD ellipses about each point. B1, B2, B3, B4: average trajectories between 2 targets from all subjects in the P2 group in 4
consecutive days. C, top: norm of the SD for the 4 movements in the A plots vs. normalized movement time (see METHODS). Bottom: speed profiles for the same
4 movements vs. normalized time. D, top: ensemble averages over P2 subjects of the norm of the SD for the 4 movements in the B plots vs. normalized movement
time. Bottom: Ensemble averages over P2 subjects of the speed profiles for the same 4 movements vs. normalized time. Error bars are 95% confidence intervals.
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and their null-space projections have a significant amount of
initial variance. Initial task-space variance is only 5 to 10% of
initial null-space variance compared across days. This initial
variance is regularly and almost uniformly decreasing from day
1 to day 4. Multivariate ANOVA found significant effect of
both protocol and days of training for both final null- and
task-space variability. Subsequent two-way analyses found
significant effect of both protocol [F(1,40) � 17.96; P �
0.0005] and days of training [F(3,40) � 8.43; P � 0.0005] for
final null-space variance, with variability considerably higher
when subjects were provided with continuous visual feedback
during training, and variability decreasing across days of train-
ing. Two-way ANOVA also found a similar, significant effect
of days of training [F(3,40) � 3.05; P � 0.039] for final
task-space variance, but no effect of protocol was observed
[F(1,40) � 0.61; P � 0.440]. Because the initial variance is
associated with hand configuration at the starting target, its
reduction indicates the tendency to form a consistent inverse
map from screen positions to hand configurations, thus effec-
tively reducing the degree of redundancy associated with the
reaching task.

One finding that appears consistent with the minimum-
intervention principle is that the null-space variability is pro-
nounced about midway through motions made by P2 subjects.
These movements are “open-loop” in the sense that subjects do
not receive feedback of cursor motion during movement. Any
variation in the path and timing of movements may be respon-
sible for the increased variability in the middle of movement.
In contrast, subjects who trained with continuous visual feed-

back generated a more uniform variance along the movement,
although a maximum of variability also appears in the null-
space motion of P3 subjects on day 4.

In summary, subjects showed a tendency to distribute vari-
ance of motion in a nonuniform way along the movement. In
particular, we found evidence that variance in some instances
reached a peak midway between start and end position, con-
sistent with the minimum intervention principle of Todorov
and Jordan (2002). However, at the same time subjects learned
through practice to reduce the amount of variability both in the
task and in the null subspaces with extended training. Taken
together, our data reveal the mutual presence of two trends,
which need not to be in reciprocal contrast: on one hand,
subjects learned to produce more regular and rectilinear trajec-
tories, consistent with the development of a representation of
the space in which the cursor moved. This is demonstrated by
the general reduction of variability across days. On the other
hand, subjects—particularly those who trained without visual
feedback—also had a tendency to allow a somewhat greater
variability of movement between initial position and end target.

Generalization

We explored how learning of a novel geometrical environ-
ment generalizes beyond the trained task-space targets in a
fourth set of experiments. Subjects practiced movements over
a set of four targets and were tested over two different sets of
three targets (Fig. 1). One set of test trajectories, the “interpo-
lation” set, was included within the region of the training

FIG. 6. Analysis of variability: glove signals. Cumulative
analysis for all movements. Colors represent different days.
Each trace was obtained from the average across all data from
all subjects in a group and all movements in each day. Top: total
glove signals. Middle: null-subspace projections. Bottom: task
subspace projections. Left: P2 subjects. Right: P3 subjects.
Error bars are 95% confidence intervals.
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trajectories; the other set, the “extrapolation” set, was external
to the training region. Subjects performed a set of baseline (B)
trials at the beginning of the experiment. Immediately after
training (AT), the average final errors were significantly re-
duced for both the interpolation and the extrapolation targets
(Fig. 7) and the learning persisted across a 5- to 6-h pause
(AP). Multivariate ANOVA found significant effect of training
period (B, AT, AP) on both final error and aspect ratio with no
significant difference in performance between interpolation
and extrapolation. Subsequent ANOVA and Tukey t-test found
significant reduction in endpoint error with practice when
tested over novel targets [F(2,39) � 9.33; P � 0.0005] with no
significant difference between performance immediately after
training and after a 6-h pause. A similar reduction in aspect
ratio was observed: ANOVA and Tukey t-test found significant
reduction in aspect ratio over novel targets [F(2,39) � 3.61;
P � 0.037] with no significant difference between performance
immediately after training and after a 6-h pause. Thus the
pattern of learning observed in this study is not limited to the
set of targets over which subjects were trained, but extends
over a wider region of space.

D I S C U S S I O N

We have developed a novel experimental paradigm in which
subjects must reorganize finger coordination to control the
positioning of a cursor on a computer screen. Subjects success-
fully learned this task by mapping target screen locations into

finger postures. This learning generalized within the trained
region of the task space, as well as to targets outside the trained
region. Because of the high degree of kinematic redundancy in
our task, this is an example of a solution to an ill-posed
problem (Hadamard 1902; Tikhonov and Arsenin 1977). Re-
markably, subjects developed more rectilinear cursor trajecto-
ries with extended practice. This tendency was clearly en-
hanced by training with continuous visual feedback of cursor
motion. Furthermore, the temporal trend of the final error was
considerably different from the temporal trend of linearity: the
substantial and significant reduction of final error that was
observed in the first session was not matched by a correspond-
ing straightening of the trajectories, which took place only
across multiple sessions. Thus the adaptive modification of
cursor trajectory was not guided by the pattern of final errors
and of subsequent corrections.

Studies of reaching arm movements have revealed a consis-
tent tendency of subjects to generate straight trajectories of the
hand (Flash and Hogan 1985; Morasso 1981; Soechting and
Laquaniti 1981; Viviani and Terzuolo 1980). Other studies
(Flanagan and Rao 1995; Wolpert et al. 1995) have demon-
strated, as shown here, a tendency to produce rectilinear
movements of a controlled endpoint, in the presence of a map
that alters the relation between movement of the hand and
movement of the controlled cursor. In particular, Flanagan and
Rao (1995) considered a map in which subjects were presented
with a Cartesian display of the shoulder and elbow angle. With
practice, subjects learned to enforce rectilinear motions in joint

FIG. 7. Generalization experiment. Left and middle: examples of cursor trajectories from one subject, G10. In each pane, trajectories with the same colors have
the same start and end targets. Interpolation (left) and extrapolation (right) trajectories are plotted in the baseline (B) phase, immediately after training (AT) over
the training targets, and after a 6-h pause (AP). Right: error (top) and aspect ratio (bottom) averaged across subjects and movements in each phase. Red lines
refer to the interpolation targets and blue lines to the extrapolation targets. Error bars are 95% confidence intervals.
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space at the expense of curvilinear movements of the hand.
Rectilinear endpoint movements may reflect a strategy of
trajectory planning by the CNS, which has been modeled
mathematically through the optimization of smoothness (Flash
and Hogan 1985; Hogan 1984). Alternative accounts have also
been proposed, based on optimization of dynamical criteria
(Uno et al. 1989) and of final error in the presence of signal-
dependent noise (Harris and Wolpert 1998). But what is the
functional value of straightness of the hand path or, more
generally, of endpoint motions? To address this question, we
observe that the physical space in which endpoint movements
take place has a fundamental property, summarized by the
concept of Euclidean symmetry (Goldstein 1980; Weyl 1966).
This reflects the fact that space is effectively a container of
rigid bodies whose size is invariant by translations and rota-
tion. The essential primitive of Euclidean symmetry is the
straight segment (the path with minimum Euclidean length
between any two points). The tendency to generate straight
reaching movements makes sense from a functional perspec-
tive, because living organisms must ultimately be proficient at
operating inside the Euclidean geometry of ordinary space.

The novel and arbitrary linear mapping used to transform
glove signals into cursor locations allowed us to examine how
the CNS learns to represent and control the redundant trans-
formation from hand to cursor space, without the confounding
effects of previously experienced movements. Other studies
have proposed to resolve redundancy by decomposing move-
ment variables into null-space and controlled variables, typi-
cally through some form of the generalized inverse. For exam-
ple, the concept of controlled and uncontrolled manifolds used
by Scholz and Schöner (1999) is, in fact, an application of the
generalized inverse. Generalized inverses have been familiar
for a long time to robotic researchers investigating the control
of kinematically redundant manipulators (Baillieul 1985;
Baker and Wampler 1988; Burdick 1989; Klein and Huang
1983). They allow one to regularize the inversion of ill-
conditioned linear maps by minimizing a quadratic form (Ben-
Israel and Greville 1980). In particular, for an underconstrained
linear transformation, the Moore–Penrose pseudoinverse finds
a unique inverse map that satisfies the additional requirement
of minimizing the (Euclidean) norm of the solution vector
among infinite alternatives. It has been well established that
this type of operation fails to produce repeatable (or, more
technically, integrable) motions when applied in differential
form to nonlinear kinematic transformations, as for example, in
attempting to invert the transformation from joint angles to
endpoint coordinates of a redundant arm (Klein and Huang
1983; Mussa-Ivaldi and Hogan 1991; Shamir and Yomdin
1988). This is a rather important issue that has often been
overlooked in studies of biological motor control. However,
this issue does not affect our investigation because we use a
linear transformation from glove to screen coordinates. In our
case, the pseudoinverse generates a family of regular inverse
solutions. The map we use has the property of affine transfor-
mations in that it maps straight lines into straight lines. Be-
cause hand configurations and glove signals are related by a
nonlinear isomorphism, rectilinear motions of the cursor on the
monitor are not compatible with rectilinear motions in the
space of finger-joint coordinates. However, the generation of
well-behaved inverse maps from desired screen coordinates to
finger configurations circumvents the challenge to derive a

repeatable inverse map that would be associated with a non-
linear map from glove signals to screen coordinates. The
investigation of how more complex maps may be learned is
deserving of a separate study.

The null space generated by our glove-cursor map had
effectively 17 dimensions (19 � 2). We observed a marked
tendency of subjects to reduce the amount of motion in this null
space (Fig. 4). The selective reduction of null-space motion is
particularly important because it may reveal how the Euclidean
metric of the task space (the monitor) is effectively “imported”
into the coordination of hand. The tendency to generate finger
motions with smaller null-space components suggests that the
movements tend to remain confined to subspaces that are
minimum-norm images of the cursor space. This observation
provides us with further evidence that the motor system is
effectively capturing the metric structure of the controlled
space and that it uses this metric as a basis to form coordinated
motions of the fingers.

It is possible that the tendency to produce straighter trajec-
tories arises as a result of the presence of implicit intermediate
points, which subjects place between targets when training
with continuous feedback. These intermediate positions (akin
to a “desired trajectory”) might be preserved when movements
are executed without continuous visual feedback. This is un-
likely, however, because a generic inverse map from cursor
positions to hand gestures is not sufficient to induce rectilinear
motions: nearby cursor positions can map into radically differ-
ent finger configurations. Instead, we have observed a general
tendency of subjects to reduce the amount of finger motion
(Fig. 4), again suggesting that they are learning trajectories, not
just final positions or by points.

Our data also show a strong and progressive decrease of
movement variability from day to day along the entire motion.
This is in sharp contrast with the hypothesis that, through
practice, subjects learn to export increasing amounts of vari-
ability into the null space to achieve a less-variable task
execution. Because this hypothesis has supporting evidence in
a variety of natural tasks (Balasubramaniam et al. 2000; Cole
and Abbs 1986; Latash et al. 2001), it is possible our finding
stems from the unusual nature of the task at hand. Under such
novel conditions, the control system may be mostly concerned
with formation of an internal model of the metric properties of
task space—consistent with increasingly repeatable perfor-
mance and trajectories.

Another factor that could contribute to our findings stems
from the well-documented presence of synergies and of bio-
mechanical couplings among fingers (Lang and Schieber 2004;
Schieber 1991; Zatsiorsky et al. 2000). For example, Zatsior-
sky et al. (2000) described the tendency of fingers to generate
forces as a consequence of activation in other fingers, a
phenomenon that was described as “enslaving.” In other stud-
ies, Soechting and coworkers (Jerde et al. 2003; Santello et al.
1998) demonstrated that a small number of principal compo-
nents can account for much of the variance in postures and
movements of the hand during fingerspelling and other tasks.
To the extent that the patterns of synergy and coupling that are
present in natural tasks are preserved in a new mapping, one
may expect to see that a reduction of variability in task
coordinates would be mirrored by a similar reduction in null-
space coordinates.
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Our results parallel, in part, patterns of motor learning
observed in primates whose motor cortical activities controlled
a cursor on a computer screen by a brain–machine interface
(BMI) (Serruya et al. 2002; Taylor et al. 2002). In both cases,
the nervous system must learn to select the degrees of freedom
that are most relevant to the desired movement. By controlling
the amount of dimensionality reduction, our paradigm allows
us to explore by simple and noninvasive means the mecha-
nisms by which feed-forward control of a highly redundant
system is reorganized when presented with a novel coordinate
transformation. An important difference between our experi-
mental conditions and the operation of a BMI is the presence
of proprioception of hand configuration for subjects engaged in
our task. There is no such sensory input for the neural activities
in a population of the cerebral cortex. Although proprioceptive
information certainly facilitates the task of creating a new map,
it may not be necessary for map formation because in both
cases the neural controller must reorganize the natural pattern
of commands and activities to cope with a novel geometrical
environment.

An unavoidable limit of this study stems from the use of
only one particular type of hand-to-screen mapping. Under-
standing in more general terms the impact of this mapping on
motor learning and performance is an important goal for future
studies. This is a difficult problem because, even in the simple
case presented here, the space of possible linear maps is
spanned by 38 parameters. However, the same hand postures
were used at different screen coordinates in the learning and
generalization experiments and thus the resulting maps dif-
fered. Nevertheless we observed similar learning trends in the
two experiments; thus the learning of rectilinear movements is
not contingent on one particular hand-to-screen mapping.
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