A View of Graphics History

Dave Kasik Senior Technical Fellow Emeritus The Boeing Company dave.kasik@gmail.com

A Bit About Me

- Involved in computer graphics since 1969
- Retired Boeing Senior Technical Fellow
- ACM Fellow
- General curmudgeon about over-promising and under-delivering
- Stand-in on starship bridges

Now

Main Topics

- Set context
- Tracking graphics history
- What's next?
- Next week: a view from Boeing
- Caveat: This is not an exhaustive history. Intended as an introduction.
 - I've either seen or had hands on with most hardware and software
- Interested in class participation.

Context

Types of Source Data

Non-geometric

Moscow Napoleon's 1812 Russian Campaign 0.000 6.000 | 35.000 75.000 422.00 145,000 24.000 4,000 9,000 14,000 12,000 100 miles TEMPERATURE Invasion Retreat -20 -30 -30° -24° -20° 6 Dec 1 Dec 23 Nov -21º 14 Nov -9° 9 Nov rain 24 Oct -26° 7 Dec 0° 18 Oct

Geometric/realistic

Graphics independent of source data type

Types of Databases

Relational/Structured

Unstructured

Relational Model

Activity Code	Activity Name	l
23	Patching]\
24	Overlay]\
25	Crack Sealing] \ Key = 24
		Activity

Activity Code	Date	Route No.
24	01/12/01	1-95
24	02/08/01	1-66

Date	Activity Code	Route No.
01/12/01	24	I-95
01/15/01	23	I-495
02/08/01	24	I-66

Relational/structured

Unstructured

Graphics independent of DB type

Photos vs. Virtual

Stonehenge photo

Stonehenge virtual

Graphics depends on primitives (point, 2D, 3D)

Evolution of Images

Continuous fill and lines, pre-historic

Graphic Displays

Random Scan

- Essentially continuous stroke
- Raster Scan
 - Essentially pointilism and half-toning/dithering

Graphics devices:

- Interactive
- Passive
 - Hardcopy
 - Film

빈 University of Utah Computer Science

Random scan

2D Random Scan (Calligraphic)

- Addressable unit is a vector
- Screen is memory
- Based on cathode ray tubes dating from late 1890's
- Vector refresh, 1970's
- Oscilloscope, 1930's
- Direct view storage tube, 1960's
- Indirect storage tube, 1970's

Problems

- Slow to erase DVST
- Limited capacity vector refresh
- COLOR

Princeton

10

2D Raster Scan

- Addressable unit is a point
- Frame buffer memory
 - Based on cathode ray tubes, LEDs, etc.
- Television, 1920's
- Raster Computer Monitor, 1970's
- Plasma panel (Plato terminal), 1970's
- Problems
 - Need frame buffer to store image in full color
 - Ubiquitous starting in 1970's (Ikonas, Raster Tech, Ramtek, Lexidata, etc.
 - Early TV's required interlace to cope with communication performance
 - Aliasing

1940's TV

IBM 5080

11

Plotters/Printers/Projectors

Random scan

Pen random movement

- Calcomp, 1960's
- Bresenham algorithm, 1962

Raster scan

- Electrostatic, 1960's
- Laser, 1969
- Ink jet, 1967
- Projector, 1980's
- Virtual retina, 1986 & 1991

Problems

- All the problems of paper
- Special paper

Calcomp plotter

HP laser

Virtual Retina Display

HP plotter

Epson inkjet

Image Recorders

- Fast-decay cathode ray tube
- Film camera, 1816 in France, Kodak box 1888
- Digital Camera, concept in 1961 at JPL, patented by Kodak in mid-1970's
- Microfilm recorder, 1960's
- Video, 1970's
- Problems
 - Recording time

Minolta Digital, 1995

otype, 1839 Brownie

Sony Video recorder, 1995

SC4020, 1969 • Dicomed, etc.

Understanding 3D

- Showing 3D on 2D media part of art since drawing started
- Giotto tried in 1200's with algebraic method
- In 1400's Italians Brunelleschi and Alberti used a geometrical method based on similar triangles for apparent

height

Peruggino Sistine Chapel fresco

References:

- Manfredo Massironi, The Psychology of Graphic Images, 2001
- JJ Gibson, The Perception of the Visual World, 1950
- Edward Tufte, The Visual Display of Quantitative Information, 2001
- Peter Stevens, *Patterns in Nature*, 1974

Creating the Illusion of 3D

- Interactive manipulation
- Synthetic stereo
- Rendering style

Interactive Manipulation

- Accelerators increase interactive performance
 - Target: Exceed human flicker-fusion threshold: 16 to 24 Hz
 - Target for games : 60 Hz

Integrated into 1970's random-scan systems

- Evans & Sutherland, VG, Adage, etc.
- Integrated into 1980's raster-scan terminals
 - IBM 5080, Silicon Graphics, E&S, etc.
- Add-on PC board 1990's (nVidia, ATI)

Problems

Too many polygons or vectors in scene

Copyright © 2019. DJKasik. All rights reserved.

3D Devices

Come in a wide variety of shapes and sizes.

Examples, starting in 1968:

- Flat screens in glasses (Oculus Rift)
- Holographic flat screens (Holografika)
- Multi-channel holograms (Zebra Imaging)
- Parallel flat screens (Zspace, Lightspace, CAVE, CUBEe)
- Single curved cylindrical segment screen (IMAX)
- Single curved truncated cylinder (Panoscope360)
- Single curved truncated cylinder + floor (RPI)
- Spherical segment (Elumens)
- Spherical projection into air (Actuality)
- Intersecting lasers into air (Burton-Japan)
- Intersecting lasers into special plastic (3D Technology Labs)

No real commercial success except stereo

Panoscope360

A Bit More on AR/VR/Stereo

- Sword of Damocles, Ivan Sutherland, Harvard, 1968
- CAVE, Carolina Cruz-Neira, UIUC, 1992
 - Part of Jaron Lanier VR reboot in late 1980's
- Oculus Rift, Palmer Luckey, 2011
- Problems
 - Vergence-Accommodation (stereo sickness)
 - Interactive input (like pointing and typing)
 - Goggles inhibit mobility & field of view
 - Performance, performance, performance

Vergence Accommodation

StarVR Goggles

Rendering Styles

So many to choose from!

- Photorealism
- Material characteristics
- Hidden line/hidden surface
- Shadows
- Stylized

• All result from rendering approach

- Rasterization
- Ray-tracing

Wineframe

Wireframe, hidden line, hidden surface

Utah teapot with reflection

Hidden Sunface Removal

Do Shadows Help?

Rasterization

- Scan line, Utah, late 1960's
- Z-Buffer, W. Strasser, Germany, 1974
- Problems:
 - Requires two passes for transparency and translucency
 - Uses a hidden buffer (a-buffer) to help with photorealism
 - Material characteristics are approximations
 - Multiple light source modeling approximations

Polygon Rasterization

Ray-Tracing

- Used for scientific analysis (1900's)
- Appel visualization in 1968 (AFIPS)
- Production at MAGI in early 1970's
- Popularized by Whitted in 1979
- Radiosity (1950, basics, visualization, Cornell, 1984) improved photorealism
- Problems:
 - Parallel compute power
 - Performance

Whitted

MAGI Trees & Tank

Radiosity Effect

Exercise

- Work in pairs
- Both rendering and rasterization can benefit from parallel processing. Discuss how you would address ray-tracing and rasterization using parallel processing.
- Be prepared to provide a 30-second summary

For rasterization inspiration, consider this <u>demo</u>

Input Sources

- Interactive Devices
- Scanning Devices
- Applications
- Sensors

Interactive Devices

- Single Value
- Locator (multiple values simultaneously)
- Alphanumeric

Single Value

All have been around since the 1950's and 1960's

- Buttons
- Knobs
- Dials
- On-screen controls

Problems

Numeric precision (non-binary)

IBM 5080 with buttons and knobs

Locator

Devices enter x,y or x,y,z:

- Lightpen, 1955, MIT
- Mouse, 1965, Xerox PARC
- Joystick, early 1900's, France
- Trackball, 1940's, UK
- Thumbwheel, 1960's, Tektronix
- Tablet, 1957, RAND
- Touch, 1967, CERN
- Eyes, 1920's, Chicago

Problems

- Limited to screen accuracy
- Fingers even less accurate
- Eye tracking tends to be slow
- No standard gesture vocabulary

Wacom Tablet

CERN Touchscreen₂₆

Alphanumeric

QWERTY keyboard, 1874

- Keypunch, 1890's
- Teletype, 1930's
- On-screen, 1970's
- Voice, 1960's
- <u>Brain</u>, 1960's
- Problems
 - Speed/accuracy
 - Voice often ambiguous
 - Ambient noise
 - Extra equipment, esp. for mobile

ASR 33

Paras Kaul, BrainWave Chick

Scanning/Monitoring Devices

Digitizers

- 2D and 3D Scanners
- 2D and 3D Coordinate Measurement Machines

Cameras

- Gestures
- Images/videos
- Internet of Things

Problems

Coordinate Measurement Machine Global Connected Devices

- Speed/accuracy
- Gestural vocabulary
- Error correction
- Data volume

Fetus Ultrasound

Applications

- CAD/Computational Geometry
- Animation
- Scientific Visualization
- Games

CAD/Computational Geometry

- Derived from engineering drawings
- First computer-based, Sutherland's Sketchpad, 1962
- Picked up by GM as DAC-1

Exploded view

CSG Solid

B-Rep Solid

Animation

- Movement started as early 1830's with stroboscope and zoetrope
- Hand-drawn animation started in 1908 with Cohl's Fantasmagorie
- Disney did first color animation in 1932
- Computer animation started in 1960's with advent of microfilm recorder

Human Model on Plotter

Human Mo-Cap

Engineering Analysis

- Analysis-generated values lead to scientific visualization
- Applications include
 - Weather
 - Structures
 - Aerodynamics/Fluids
 - Heat transfer
 - Reactions
 - Human model
 - And many more

Human Model

Started with plotters in early 1960's

Moved to microfilm recorders to improve animation

One of first applications dating from early 1950's

- Kates' Bertie the Brain early game-playing computer
- Tic-tac-toe played on EDSAC

Played on operator's consoles and teletypes

SpaceWar!

Super Mario

What's Next? The Third Wave, A Systems View

Accommodate users, ranging from novice \Rightarrow expert, who collaborate

What Will Drive the Third Wave?

Could pixels disappear?

- Vector displays magically re-appear
- Dynamic holograms became commonplace and cost effective

Could high order objects become graphics primitives?

Objects have inherent semantics

What graphics systems will arise?

- CAD/CAM
- Visual analytics
- Can such systems result in publications?

Can a non-WIMP interface appear?

- Voice for text entry
- Semantic mouse over
- Accurate, precise gestures for pointing & selecting

Technical Challenges

- While cost is coming down, it can always get lower
- Volume of data just keeps getting larger
- Input techniques across different screen sizes are asymmetric
 - For small- and mid-sized screens, multi-touch and WIMP have different vocabulary
 - Affects both software and users
 - Causes problems with both thick and thin client
 - For large screens (immersive or not)
 - Wear cumbersome hardware (e.g., wands, gloves, HMDs)
 - Graphically select an object or a command
 - Enter text or numbers
 - Workaround is for a dedicated operator

Stereo for long sessions

Stereo sensitivity can be an issue

Top Challenge

Summary

Lots of history in computer graphics

- Much started before 1985
- Even with history, substantial research questions still exist
- Pick topics that make a delta improvement

References

- Banks, M., Read, J., Allison, R., and Watt, S. "Stereoscopy and the Human Visual System". SMTPE Motion Imaging Journal, May/June 2012
- Carlson, W. Computer Graphics and Computer Animation: A Retrospective Overview. 2017. Available on <u>https://ohiostate.pressbooks.pub/graphicshistory/</u>
- Gibson, J. The Perception of the Visual World, 1950
- Mandelbrot, B. *The Fractal Geometry of Nature*, W.H. Freeman & Co Ltd, 1982.
- Massironi, M. The Psychology of Graphic Images: Seeing, Drawing, Communicating. Psychology Press, ISBN-13: 978-0805829334
- Peddie, J. The History of Visual Magic in Computers: How Beautiful Images are Made in CAD, 3D, VR and AR. 2013. Springer, ISBN-13: 978-1447149316
- Stevens, P. Patterns in Nature, 1974
- Sutherland, I. A Head-mounted Three-dimensional Display. In Proc. Fall Joint Computer Conf. (Washington, DC, 1968), Thompson Books, pp. 757–764.
- Sutherland, I. Sketchpad: A Man-Machine Graphical Communication System. 1963 and 2003. <u>https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf</u>
- Tufte, E. The Visual Display of Quantitative Information, 2001
- Weisberg, D. The Engineering Design Revolution. 2008. <u>http://www.cadhistory.net/</u>