
CSE 490h/CSE M552
Project 4

Due: 5pm, Monday, February 28, 2011

In this assignment, you are to add high availability to your transactional, cache
coherent distributed storage system, using the Paxos algorithm. After
assignment 3, clients can proceed if any other client fails by asking the server to
revoke any exclusive access cached files, but if the server fails, all transactions
must stall until it recovers. With this assignment, your system should support
linearizable client commits, even though any single server node has failed.

Instead of a single server, Paxos spreads the server function across a static set
of nodes. During testing, for simplicity we advise you to use a separate set of
nodes for clients and for servers, although there is no logical need for a
distinction. The set of servers use Paxos to decide on the order in which to
commit transactions; Paxos tolerates individual node failures, allowing progress
even if any server in the group has failed. When the failed server restarts, your
code should re-integrate it into the group to re-establish fault tolerance to
individual server failures.

The turn in instructions are the same as in assignment 2. You should draw the
state machine you expect, run Synoptic on your implementation, and explain any
differences.

In your writeup, please also address the following design questions:

a) In your design, how is callback state maintained? Do the servers vote on
changes to the callback state using Paxos, do they elect a leader to
centralize the callback state, or do you use some other mechanism? Is it
even necessary for correctness or performance that the server callback
state be consistent with the state of the client caches?

b) In your design, how is storage state maintained? Does every server
participating in Paxos store every modification of every file, do they elect a
primary/backup, or do you use some other mechanism?

