
MapReduce

(Slides from Google)

Functional Programming Review

 Functional operations do not modify data
structures: They always create new ones

 Original data still exists in unmodified form
 Data flows are implicit in program design
 Order of operations does not matter

Functions Can Be Used As
Arguments
fun DoDouble(f, x) = f (f x)
It does not matter what f does to its
argument; DoDouble() will do it twice.

What is the type of this function?

Map

map f lst: (’a->’b) -> (’a list) -> (’b list)
 Creates a new list by applying f to each element

of the input list; returns output in order.

Fold

fold f x0 lst: ('a*'b->'b)->'b->('a list)->'b
 Moves across a list, applying f to each element

plus an accumulator. f returns the next
accumulator value, which is combined with the
next element of the list

Implicit Parallelism In map

  In a purely functional setting, elements of a list
being computed by map cannot see the effects
of the computations on other elements

  If order of application of f to elements in list is
commutative, we can reorder or parallelize
execution

  This is the “secret” that MapReduce exploits

MapReduce Motivation: Large
Scale Data Processing
 Want to process lots of data (> 1 TB)
 Want to parallelize across hundreds/

thousands of CPUs
 … Want to make this easy

MapReduce

 Automatic parallelization & distribution
 Fault-tolerant
 Provides status and monitoring tools
 Clean abstraction for programmers

Programming Model

 Borrows from functional programming
 Users implement interface of two

functions:

  map (in_key, in_value) ->
 (out_key, intermediate_value) list

  reduce (out_key, intermediate_value list) ->
 out_value list

map

 Records from the data source (lines out of
files, rows of a database, etc) are fed into
the map function as key*value pairs: e.g.,
(filename, line).

 map() produces one or more intermediate
values along with an output key from the
input.

map (in_key, in_value) ->
 (out_key, intermediate_value) list

map

reduce

 After the map phase is over, all the
intermediate values for a given output key
are combined together into a list

  reduce() combines those intermediate
values into one or more final values for
that same output key

  (in practice, usually only one final value
per key)

Reduce
reduce (out_key, intermediate_value list) ->
 out_value list

Parallelism

 map() functions run in parallel, creating
different intermediate values from different
input data sets

  reduce() functions also run in parallel,
each working on a different output key

 All values are processed independently
 Bottleneck: reduce phase can’t start until

map phase is completely finished.

Example: Count word occurrences
map(String input_key, String input_value):

 // input_key: document name

 // input_value: document contents

 for each word w in input_value:

 EmitIntermediate(w, 1);

reduce(String output_key, Iterator<int>
intermediate_values):

 // output_key: a word

 // output_values: a list of counts

 int result = 0;

 for each v in intermediate_values:

 result += v;

 Emit(result);

Example vs. Actual Source Code

 Example is written in pseudo-code
 Actual implementation is in C++, using a

MapReduce library
 Bindings for Python and Java exist via

interfaces
 True code is somewhat more involved

(defines how the input key/values are
divided up and accessed, etc.)

MapReduce: High Level

Locality

 Master program divvies up tasks based on
location of data: tries to have map() tasks
on same machine as physical file data, or
at least same rack

 map() task inputs are divided into 64 MB
blocks: same size as Google File System
chunks

Fault Tolerance

 Master detects worker failures
 Re-executes completed & in-progress map()

tasks
 Re-executes in-progress reduce() tasks

 Master notices particular input key/values
cause crashes in map(), and skips those
values on re-execution.
 Effect: Can work around bugs in third-party

libraries!

Optimizations

 No reduce can start until map is complete:
 A single slow disk controller can rate-limit the

whole process
 Master redundantly executes “slow-

moving” map tasks; uses results of first
copy to finish

Why is it safe to redundantly execute map tasks? Wouldn’t this mess up
the total computation?

Combining Phase

 Run on mapper nodes after map phase
  “Mini-reduce,” only on local map output
 Used to save bandwidth before sending

data to full reducer
 Reducer can be combiner if commutative

& associative

Combiner, graphically

MapReduce Conclusions

  MapReduce has proven to be a useful
abstraction

  Greatly simplifies large-scale computations at
Google

  Functional programming paradigm can be
applied to large-scale applications

  Fun to use: focus on problem, let library deal w/
messy details

