
MapReduce

(Slides from Google)

Functional Programming Review

 Functional operations do not modify data
structures: They always create new ones

 Original data still exists in unmodified form
 Data flows are implicit in program design
 Order of operations does not matter

Functions Can Be Used As
Arguments
fun DoDouble(f, x) = f (f x)
It does not matter what f does to its
argument; DoDouble() will do it twice.

What is the type of this function?

Map

map f lst: (’a->’b) -> (’a list) -> (’b list)
 Creates a new list by applying f to each element

of the input list; returns output in order.

Fold

fold f x0 lst: ('a*'b->'b)->'b->('a list)->'b
 Moves across a list, applying f to each element

plus an accumulator. f returns the next
accumulator value, which is combined with the
next element of the list

Implicit Parallelism In map

  In a purely functional setting, elements of a list
being computed by map cannot see the effects
of the computations on other elements

  If order of application of f to elements in list is
commutative, we can reorder or parallelize
execution

  This is the “secret” that MapReduce exploits

MapReduce Motivation: Large
Scale Data Processing
 Want to process lots of data (> 1 TB)
 Want to parallelize across hundreds/

thousands of CPUs
 … Want to make this easy

MapReduce

 Automatic parallelization & distribution
 Fault-tolerant
 Provides status and monitoring tools
 Clean abstraction for programmers

Programming Model

 Borrows from functional programming
 Users implement interface of two

functions:

  map (in_key, in_value) ->
 (out_key, intermediate_value) list

  reduce (out_key, intermediate_value list) ->
 out_value list

map

 Records from the data source (lines out of
files, rows of a database, etc) are fed into
the map function as key*value pairs: e.g.,
(filename, line).

 map() produces one or more intermediate
values along with an output key from the
input.

map (in_key, in_value) ->
 (out_key, intermediate_value) list

map

reduce

 After the map phase is over, all the
intermediate values for a given output key
are combined together into a list

  reduce() combines those intermediate
values into one or more final values for
that same output key

  (in practice, usually only one final value
per key)

Reduce
reduce (out_key, intermediate_value list) ->
 out_value list

Parallelism

 map() functions run in parallel, creating
different intermediate values from different
input data sets

  reduce() functions also run in parallel,
each working on a different output key

 All values are processed independently
 Bottleneck: reduce phase can’t start until

map phase is completely finished.

Example: Count word occurrences
map(String input_key, String input_value):

 // input_key: document name

 // input_value: document contents

 for each word w in input_value:

 EmitIntermediate(w, 1);

reduce(String output_key, Iterator<int>
intermediate_values):

 // output_key: a word

 // output_values: a list of counts

 int result = 0;

 for each v in intermediate_values:

 result += v;

 Emit(result);

Example vs. Actual Source Code

 Example is written in pseudo-code
 Actual implementation is in C++, using a

MapReduce library
 Bindings for Python and Java exist via

interfaces
 True code is somewhat more involved

(defines how the input key/values are
divided up and accessed, etc.)

MapReduce: High Level

Locality

 Master program divvies up tasks based on
location of data: tries to have map() tasks
on same machine as physical file data, or
at least same rack

 map() task inputs are divided into 64 MB
blocks: same size as Google File System
chunks

Fault Tolerance

 Master detects worker failures
 Re-executes completed & in-progress map()

tasks
 Re-executes in-progress reduce() tasks

 Master notices particular input key/values
cause crashes in map(), and skips those
values on re-execution.
 Effect: Can work around bugs in third-party

libraries!

Optimizations

 No reduce can start until map is complete:
 A single slow disk controller can rate-limit the

whole process
 Master redundantly executes “slow-

moving” map tasks; uses results of first
copy to finish

Why is it safe to redundantly execute map tasks? Wouldn’t this mess up
the total computation?

Combining Phase

 Run on mapper nodes after map phase
  “Mini-reduce,” only on local map output
 Used to save bandwidth before sending

data to full reducer
 Reducer can be combiner if commutative

& associative

Combiner, graphically

MapReduce Conclusions

  MapReduce has proven to be a useful
abstraction

  Greatly simplifies large-scale computations at
Google

  Functional programming paradigm can be
applied to large-scale applications

  Fun to use: focus on problem, let library deal w/
messy details

