
MapReduce 

(Slides from Google) 



Functional Programming Review 

 Functional operations do not modify data 
structures: They always create new ones  

 Original data still exists in unmodified form 
 Data flows are implicit in program design 
 Order of operations does not matter 



Functions Can Be Used As 
Arguments 
fun DoDouble(f, x) = f (f x) 
It does not matter what f does to its 
argument; DoDouble() will do it twice. 

What is the type of this function? 



Map 

map f lst: (’a->’b) -> (’a list) -> (’b list) 
   Creates a new list by applying f to each element 

of the input list; returns output in order. 



Fold 

fold f x0 lst: ('a*'b->'b)->'b->('a list)->'b 
   Moves across a list, applying f to each element 

plus an accumulator. f returns the next 
accumulator value, which is combined with the 
next element of the list 



Implicit Parallelism In map 

  In a purely functional setting, elements of a list 
being computed by map cannot see the effects 
of the computations on other elements 

  If order of application of f to elements in list is 
commutative, we can reorder or parallelize 
execution 

  This is the “secret” that MapReduce exploits 



MapReduce Motivation: Large 
Scale Data Processing 
 Want to process lots of data ( > 1 TB) 
 Want to parallelize across hundreds/

thousands of CPUs 
 … Want to make this easy 



MapReduce 

 Automatic parallelization & distribution 
 Fault-tolerant 
 Provides status and monitoring tools 
 Clean abstraction for programmers 



Programming Model 

 Borrows from functional programming 
 Users implement interface of two 

functions: 

  map  (in_key, in_value) ->  
  (out_key, intermediate_value) list 

  reduce (out_key, intermediate_value list) -> 
  out_value list 



map 

 Records from the data source (lines out of 
files, rows of a database, etc) are fed into 
the map function as key*value pairs: e.g., 
(filename, line). 

 map() produces one or more intermediate 
values along with an output key from the 
input. 



map  (in_key, in_value) ->  
 (out_key, intermediate_value) list 

map 



reduce 

 After the map phase is over, all the 
intermediate values for a given output key 
are combined together into a list 

  reduce() combines those intermediate 
values into one or more final values for 
that same output key  

  (in practice, usually only one final value 
per key) 



Reduce 
reduce (out_key, intermediate_value list) -> 
  out_value list 





Parallelism 

 map() functions run in parallel, creating 
different intermediate values from different 
input data sets 

  reduce() functions also run in parallel, 
each working on a different output key 

 All values are processed independently 
 Bottleneck: reduce phase can’t start until 

map phase is completely finished. 



Example: Count word occurrences 
map(String input_key, String input_value): 

  // input_key: document name  

  // input_value: document contents  

  for each word w in input_value:  

    EmitIntermediate(w, 1);  

reduce(String output_key, Iterator<int> 
intermediate_values):  

  // output_key: a word  

  // output_values: a list of counts  

  int result = 0;  

  for each v in intermediate_values:  

    result += v; 

 Emit(result);  



Example vs. Actual Source Code 

 Example is written in pseudo-code 
 Actual implementation is in C++, using a 

MapReduce library 
 Bindings for Python and Java exist via 

interfaces 
 True code is somewhat more involved 

(defines how the input key/values are 
divided up and accessed, etc.) 



MapReduce: High Level 



Locality 

 Master program divvies up tasks based on 
location of data: tries to have map() tasks 
on same machine as physical file data, or 
at least same rack 

 map() task inputs are divided into 64 MB 
blocks: same size as Google File System 
chunks 



Fault Tolerance 

 Master detects worker failures 
 Re-executes completed & in-progress map() 

tasks 
 Re-executes in-progress reduce() tasks 

 Master notices particular input key/values 
cause crashes in map(), and skips those 
values on re-execution. 
 Effect: Can work around bugs in third-party 

libraries! 



Optimizations 

 No reduce can start until map is complete: 
 A single slow disk controller can rate-limit the 

whole process 
 Master redundantly executes “slow-

moving” map tasks; uses results of first 
copy to finish 

Why is it safe to redundantly execute map tasks? Wouldn’t this mess up 
the total computation? 



Combining Phase 

 Run on mapper nodes after map phase 
  “Mini-reduce,” only on local map output 
 Used to save bandwidth before sending 

data to full reducer 
 Reducer can be combiner if commutative 

& associative 



Combiner, graphically 



MapReduce Conclusions 

  MapReduce has proven to be a useful 
abstraction  

  Greatly simplifies large-scale computations at 
Google 

  Functional programming paradigm can be 
applied to large-scale applications 

  Fun to use: focus on problem, let library deal w/ 
messy details  


