
MapReduce 

(Slides from Google) 



Functional Programming Review 

 Functional operations do not modify data 
structures: They always create new ones  

 Original data still exists in unmodified form 
 Data flows are implicit in program design 
 Order of operations does not matter 



Functions Can Be Used As 
Arguments 
fun DoDouble(f, x) = f (f x) 
It does not matter what f does to its 
argument; DoDouble() will do it twice. 

What is the type of this function? 



Map 

map f lst: (’a->’b) -> (’a list) -> (’b list) 
   Creates a new list by applying f to each element 

of the input list; returns output in order. 



Fold 

fold f x0 lst: ('a*'b->'b)->'b->('a list)->'b 
   Moves across a list, applying f to each element 

plus an accumulator. f returns the next 
accumulator value, which is combined with the 
next element of the list 



Implicit Parallelism In map 

  In a purely functional setting, elements of a list 
being computed by map cannot see the effects 
of the computations on other elements 

  If order of application of f to elements in list is 
commutative, we can reorder or parallelize 
execution 

  This is the “secret” that MapReduce exploits 



MapReduce Motivation: Large 
Scale Data Processing 
 Want to process lots of data ( > 1 TB) 
 Want to parallelize across hundreds/

thousands of CPUs 
 … Want to make this easy 



MapReduce 

 Automatic parallelization & distribution 
 Fault-tolerant 
 Provides status and monitoring tools 
 Clean abstraction for programmers 



Programming Model 

 Borrows from functional programming 
 Users implement interface of two 

functions: 

  map  (in_key, in_value) ->  
  (out_key, intermediate_value) list 

  reduce (out_key, intermediate_value list) -> 
  out_value list 



map 

 Records from the data source (lines out of 
files, rows of a database, etc) are fed into 
the map function as key*value pairs: e.g., 
(filename, line). 

 map() produces one or more intermediate 
values along with an output key from the 
input. 



map  (in_key, in_value) ->  
 (out_key, intermediate_value) list 

map 



reduce 

 After the map phase is over, all the 
intermediate values for a given output key 
are combined together into a list 

  reduce() combines those intermediate 
values into one or more final values for 
that same output key  

  (in practice, usually only one final value 
per key) 



Reduce 
reduce (out_key, intermediate_value list) -> 
  out_value list 





Parallelism 

 map() functions run in parallel, creating 
different intermediate values from different 
input data sets 

  reduce() functions also run in parallel, 
each working on a different output key 

 All values are processed independently 
 Bottleneck: reduce phase can’t start until 

map phase is completely finished. 



Example: Count word occurrences 
map(String input_key, String input_value): 

  // input_key: document name  

  // input_value: document contents  

  for each word w in input_value:  

    EmitIntermediate(w, 1);  

reduce(String output_key, Iterator<int> 
intermediate_values):  

  // output_key: a word  

  // output_values: a list of counts  

  int result = 0;  

  for each v in intermediate_values:  

    result += v; 

 Emit(result);  



Example vs. Actual Source Code 

 Example is written in pseudo-code 
 Actual implementation is in C++, using a 

MapReduce library 
 Bindings for Python and Java exist via 

interfaces 
 True code is somewhat more involved 

(defines how the input key/values are 
divided up and accessed, etc.) 



MapReduce: High Level 



Locality 

 Master program divvies up tasks based on 
location of data: tries to have map() tasks 
on same machine as physical file data, or 
at least same rack 

 map() task inputs are divided into 64 MB 
blocks: same size as Google File System 
chunks 



Fault Tolerance 

 Master detects worker failures 
 Re-executes completed & in-progress map() 

tasks 
 Re-executes in-progress reduce() tasks 

 Master notices particular input key/values 
cause crashes in map(), and skips those 
values on re-execution. 
 Effect: Can work around bugs in third-party 

libraries! 



Optimizations 

 No reduce can start until map is complete: 
 A single slow disk controller can rate-limit the 

whole process 
 Master redundantly executes “slow-

moving” map tasks; uses results of first 
copy to finish 

Why is it safe to redundantly execute map tasks? Wouldn’t this mess up 
the total computation? 



Combining Phase 

 Run on mapper nodes after map phase 
  “Mini-reduce,” only on local map output 
 Used to save bandwidth before sending 

data to full reducer 
 Reducer can be combiner if commutative 

& associative 



Combiner, graphically 



MapReduce Conclusions 

  MapReduce has proven to be a useful 
abstraction  

  Greatly simplifies large-scale computations at 
Google 

  Functional programming paradigm can be 
applied to large-scale applications 

  Fun to use: focus on problem, let library deal w/ 
messy details  


