* The Google File System

By Sanjay Ghemawat, Howard Gobioff, and
Shun-Tak Leung

(Presented at SOSP 2003)

i Introduction

= Google — search engine.

= Applications process lots of data.

= Need good file system.

= Solution: Google File System (GFS).

i Motivational Facts

= More than 15,000 commaodity-class PC's.

= Multiple clusters distributed worldwide.

= Thousands of queries served per second.

= One query reads 100's of MB of data.

= One query consumes 10's of billions of CPU cycles.
= Google stores dozens of copies of the entire Web!

Conclusion: Need large, distributed, highly fault-
tolerant file system.

i Topics

= Design Motivations

= Architecture

= Read/Write/Record Append
= Fault-Tolerance

= Performance Results

Design Motivations

1. Fault-tolerance and auto-recovery need to be
built into the system.

2. Standard I/O assumptions (e.g. block size)
have to be re-examined.

3. Record appends are the prevalent form of
writing.

4. Google applications and GFS should be co-
designed.

i GFS Architecture (Analogy)

= On a single-machine FS:
= An upper layer maintains the metadata.

= A lower layer (i.e. disk) stores the data in units
called “blocks”.

= Upper layer store

= In the GFS:
= A master process maintains the metadata.

= A lower layer (i.e. a set of chunkservers) stores
the data in units called “chunks”.

i GFS Architecture

Master
L6 . Metadata
G ’
“\e
20
Client — @
e (e‘)o
Chunkserver Chunkserver
—~ (I‘e
| ad/ Write re
(o7 Write - .
Linux FS Linux FS

i GFS Architecture

What is a chunk?
= Analogous to block, except larger.
= Size: 64 MB!
= Stored on chunkserver as file

= Chunk handle (~ chunk file name) used to
reference chunk.

= Chunk replicated across multiple chunkservers

= Note: There are hundreds of chunkservers in a
GFS cluster distributed over multiple racks.

i GFS Architecture

What is a master?

= A single process running on a separate
machine.

= Stores all metadata:
File namespace
File to chunk mappings
Chunk location information
Access control information
Chunk version numbers
Etc.

i GFS Architecture

Master <-> Chunkserver Communication:
= Master and chunkserver communicate

regularly to obtain state:

= Is chunkserver down?

= Are there disk failures on chunkserver?

= Are any replicas corrupted?

= Which chunk replicas does chunkserver store?
= Master sends instructions to chunkserver:

= Delete existing chunk.

= Create new chunk.

i GFS Architecture

Serving Requests:

= Client retrieves metadata for operation
from master.

= Read/Write data flows between client
and chunkserver.

= Single master is not bottleneck,
because its involvement with read/write
operations is minimized.

i Overview

= Design Motivations

= Architecture
= Master
= Chunkservers
= Clients

= Read/Write/Record Append
= Fault-Tolerance
= Performance Results

i And now for the Meat...

i Read Algorithm

Application

(2)

(file name, byte range) (file name,
chunk index)

Master
GFS Client

(chunk handle,
replica locations)

O

i Read Algorithm

Chunk Server

Application @

N (chunk handle,

\

T

byte range) |+
6)| (data from file) / Chunk Server

GFS Client (data from file)
@ Chunk Server

i Read Algorithm

Application originates the read request.

2. GFS client translates the request from (filename,
byte range) -> (filename, chunk index), and sends
it to master.

3. Master responds with chunk handle and replica
locations (i.e. chunkservers where the replicas are
stored).

4. Client picks a location and sends the (chunk
handle, byte range) request to that location.

s. Chunkserver sends requested data to the client.
6. Client forwards the data to the application.

:L Read Algorithm (Example)

Indexer

@ Master Ch_1001
(crawl_99, 2048 bytes) (crawl_99, {3,8,12}
index: 3) R Ch_1002
GFS Client | crawl_99 [{1,8,14}
(ch_1003, Ch_1003
{chunkservers: {4,7,9}

4,7,9})

)

i Read Algorithm (Example)

Calculating chunk index from byte range:
(Assumption. File position is 201,359,161 bytes)
= Chunk size = 64 MB.

= 64 MB = 1024 ¥1024 * 64 bytes =
67,108,864 bytes.

= 201,359,161 bytes = 67,108,864 * 2 +
32,569 bytes.

= SO, client translates 2048 byte range ->
chunk index 3.

i Read Algorithm (Example)

@ Chunk Server #4
Application (ch_ 1003,
{chunkservers: |~
4,7,9})
6)| (2048 bytes of data) // Chunk Server #7
///
GFS Client " (2048 bytes of
data) Chunk Server #9
:‘ Write Algorithm
Application
(file name, data) (file name,
chunk index)
Master

A,

4

GFS Client

(chunk handle,
primary and
secondary replica
locations)

i Write Algorithm

Application

GFS Client

——

| —T

(Data)

(Data)

(Data)

Pl‘imary
Chunk
J/' Buffer ‘
Secondary
Chunk
/j/' Buffer ‘
Secondary
Chunk

%—‘Effi‘~‘_~—‘_F* Buffer
i \Vrite Algorithm
(write command,
serial order)
Pl‘imary @ % @
Applicati CO%:i;ﬁd) T ’ D1 | D2| D3| D4T»Chunk
pplication
@ Secondary
Chunk
’ D1 | D2| D3| D4 ‘
GFS Client Secondary
Chunk

’ D1 | D2| D3| D4 ‘

i Write Algorithm

@ Primary
Chunk
(response) ’ (empty) ‘
Application
Secondary
Chunk
| empty) |
|
GFS Client Secondary
Chunk
| (empty) |

O,

(response)

i Write Algorithm

1.
2.

Application originates write request.

GFS client translates request from
(filename, data) -> (filename, chunk index),
and sends it to master.

Master responds with chunk handle and
(primary + secondary) replica locations.

Client pushes write data to all locations.
Data is stored in chunkservers’ internal
buffers.

Client sends write command to primary.

i Write Algorithm

8.

9.

Primary determines serial order for data
instances stored in its buffer and writes the
instances in that order to the chunk.

Primag/ sends serial order to the
secondaries and tells them to perform the
write.

Secondaries respond to the primary.
Primary responds back to client.

Note: If write fails at one of chunkservers,

client is informed and retries the Wr/te

i Record Append Algorithm

Important operation at Google:
= Merging results from multiple machines in one file.
= Using file as producer - consumer queue.

1. Application originates record append request.
2. GFS client translates request and sends it to master.

3. Master responds with chunk handle and (primary +
secondary) replica locations.

4. Client pushes write data to all locations.

i Record Append Algorithm

5. Primary checks if record fits in specified chunk.
6. If record does not fit, then the primary:

pads the chunk,

tells secondaries to do the same,

and informs the client.

Client then retries the append with the next
chunk.

7. If record fits, then the primary:

appends the record,

tells secondaries to do the same,
receives responses from secondaries,
and sends final response to the client.

i Observations

= Clients can read in parallel.
= Clients can write in parallel.
= Clients can append records in parallel.

Overview

Design Motivations
Architecture

Algorithms:

= Read

= Write

= Record Append
Fault-Tolerance

Performance Results

Fault Tolerance

» Fast Recovery: master and chunkservers are designed to restart
and restore state in a few seconds.
= Chunk Replication: across multiple machines, across multiple
racks.
= Master Mechanisms:
= Log of all changes made to metadata.
= Periodic checkpoints of the log.
= Log and checkpoints replicated on multiple machines.
= Master state is replicated on multiple machines.
= "Shadow” masters for reading data if “real” master is down.

= Data integrity:
= Each chunk has an associated checksum.

i Performance (7est Cluster)

= Performance measured on cluster with:
= 1 master
= 16 chunkservers
= 16 clients

= Server machines connected to central
switch by 100 Mbps Ethernet.

= Same for client machines.
= Switches connected with 1 Gbps link.

i Performance (Test Cluster)

l Network limit
1004

Aggregate read rate

Read rate (MB/&)

h
=
P R T

0 5 10 15
Number of clients N

Performance (7est Cluster)

Network limit

60 4

404

Write rate (MB/s)

204

Aggregate write rate

(.j T T T
0 5 10 15
Mumber of clients N

Performance (Real-world Cluster)

= Cluster A:
= Used for research and development.
= Used by over a hundred engineers.
« Typical task initiated by user and runs for a few hours.
= Task reads MB’s-TB's of data, transforms/analyzes the
data, and writes results back.

» Cluster B:
= Used for production data processing.
= Typical task runs much longer than a Cluster A task.
= Continuously generates and processes multi-TB data
sets.
=« Human users rarely involved.

= Clusters had been running for about a week
when measurements were taken.

i Performance (Real-world Cluster)

| Cluster | A | B |

Chunkservers 342 227

Available disk space 72 TE 150 TE
Used disk space 55 TB 155 TB
Number of Files 735 k 37 k
Number of Dead files 22 k 232 k
Number of Chunks 002 k| 1550 k
Metadata at chunkservers 13 GB 21 GB
Metadata at master 48 MB G0 MB

i Performance (Real-world Cluster)

Many computers at each cluster (227, 342!)
On average, cluster B file size is triple cluster

A file size.

Metadata at chunkservers:
= Chunk checksums.
= Chunk Version numbers.

Metadata at master is small (48, 60 MB) ->
master recovers from crash within seconds.

i Performance (Real-world Cluster)

[Cluster A B |
Read rate (last minute) 583 MB/s | 380 MB/s
Read rate {last hour) 562 MB/s | 384 MB/s
Read rate (since restart) 580 MB/s 49 MB/s
Write rate (last minute) 1 MB/s | 101 MB/s
Write rate (last hour) 2 MB/s | 117 MB/s
Write rate (since restart) 25 MB/s 13 MB/s

Master ops (last minute)
Master ops (last hour)
Master ops (since restart)

325 Ops/s
381 Ops/s
202 Ops/s

533 Ops/s
518 Owps/s
347 Ops/s

Performance (Real-world Cluster)

= Many more reads than writes.

= Both clusters were in the middle of heavy

read activity.

= Cluster B was in the middle of a burst of write

activity.

= In both clusters, master was receiving 200-
500 operations per second -> master is not a

bottleneck.

i Performance (Real-world Cluster)

Experiment in recovery time:
= One chunkserver in Cluster B killed.

Chunkserver has 15,000 chunks containing
600 GB of data.
Limits imposed:

= Cluster can only perform 91 concurrent clonings.

= Each clone operation can consume at most 6.25 MB/s.

Took 23.2 minutes to restore all the chunks.
This is 440 MB/s.

i Conclusion

= Design Motivations

= Architecture

= Algorithms:

= Fault-Tolerance

= Performance Results

