
The Google File System

By Sanjay Ghemawat, Howard Gobioff, and
Shun-Tak Leung

(Presented at SOSP 2003)

Introduction

Google – search engine.
Applications process lots of data.
Need good file system.
Solution: Google File System (GFS).

Motivational Facts
More than 15,000 commodity-class PC's.
Multiple clusters distributed worldwide.
Thousands of queries served per second.
One query reads 100's of MB of data.
One query consumes 10's of billions of CPU cycles.
Google stores dozens of copies of the entire Web!

Conclusion: Need large, distributed, highly fault-
tolerant file system.

Topics

Design Motivations
Architecture
Read/Write/Record Append
Fault-Tolerance
Performance Results

Design Motivations
1. Fault-tolerance and auto-recovery need to be

built into the system.
2. Standard I/O assumptions (e.g. block size)

have to be re-examined.
3. Record appends are the prevalent form of

writing.
4. Google applications and GFS should be co-

designed.

GFS Architecture (Analogy)

On a single-machine FS:
An upper layer maintains the metadata.
A lower layer (i.e. disk) stores the data in units
called “blocks”.
Upper layer store

In the GFS:
A master process maintains the metadata.
A lower layer (i.e. a set of chunkservers) stores
the data in units called “chunks”.

GFS Architecture

Master
Metadata

Chunkserver

Linux FS

Chunkserver

Linux FS

Client

(request fo
r

metadata)

(metadata

reponse)

(read/write request)(read/write response)

GFS Architecture

What is a chunk?
Analogous to block, except larger.
Size: 64 MB!
Stored on chunkserver as file
Chunk handle (~ chunk file name) used to
reference chunk.
Chunk replicated across multiple chunkservers
Note: There are hundreds of chunkservers in a
GFS cluster distributed over multiple racks.

GFS Architecture

What is a master?
A single process running on a separate
machine.
Stores all metadata:

File namespace
File to chunk mappings
Chunk location information
Access control information
Chunk version numbers
Etc.

GFS Architecture
Master <-> Chunkserver Communication:

Master and chunkserver communicate
regularly to obtain state:

Is chunkserver down?
Are there disk failures on chunkserver?
Are any replicas corrupted?
Which chunk replicas does chunkserver store?

Master sends instructions to chunkserver:
Delete existing chunk.
Create new chunk.

GFS Architecture

Serving Requests:
Client retrieves metadata for operation
from master.
Read/Write data flows between client
and chunkserver.
Single master is not bottleneck,
because its involvement with read/write
operations is minimized.

Overview

Design Motivations
Architecture

Master
Chunkservers
Clients

Read/Write/Record Append
Fault-Tolerance
Performance Results

And now for the Meat…

Read Algorithm

Application

GFS Client

(file name, byte range)

Master

(file name,
chunk index)

(chunk handle,
replica locations)

2
1

3

Read Algorithm

Application

GFS Client

Chunk Server

Chunk Server

Chunk Server

(chunk handle,
byte range)

(data from file)

(data from file)

4

5

6

Read Algorithm
1. Application originates the read request.
2. GFS client translates the request from (filename,

byte range) -> (filename, chunk index), and sends
it to master.

3. Master responds with chunk handle and replica
locations (i.e. chunkservers where the replicas are
stored).

4. Client picks a location and sends the (chunk
handle, byte range) request to that location.

5. Chunkserver sends requested data to the client.
6. Client forwards the data to the application.

Read Algorithm (Example)

Indexer

GFS Client

(crawl_99, 2048 bytes) (crawl_99,
index: 3)

(ch_1003,
{chunkservers:

4,7,9})

2
1

3

Master

crawl_99

Ch_1001
{3,8,12}

Ch_1002
{1,8,14}

Ch_1003
{4,7,9}

Read Algorithm (Example)
Calculating chunk index from byte range:
(Assumption: File position is 201,359,161 bytes)

Chunk size = 64 MB.
64 MB = 1024 *1024 * 64 bytes =
67,108,864 bytes.
201,359,161 bytes = 67,108,864 * 2 +
32,569 bytes.
So, client translates 2048 byte range ->
chunk index 3.

Read Algorithm (Example)

Application

GFS Client

Chunk Server #4

Chunk Server #7

Chunk Server #9

(ch_1003,
{chunkservers:

4,7,9})
(2048 bytes of data)

(2048 bytes of
data)

4

5

6

Write Algorithm

Application

GFS Client

(file name, data)

Master

(file name,
chunk index)

(chunk handle,
primary and

secondary replica
locations)

2
1

3

Write Algorithm

Application

GFS Client

4

Buffer
Chunk

Primary

Secondary

Buffer
Chunk

Secondary

Buffer
Chunk

(Data)

(Data)

(Data)

Write Algorithm

Application

GFS Client

5

D1 | D2| D3| D4
Chunk

Primary

Secondary

D1 | D2| D3| D4
Chunk

Secondary

D1 | D2| D3| D4
Chunk

(Write
command)

6 7

(write command,
serial order)

Write Algorithm

Application

GFS Client

(empty)
Chunk

Primary

Secondary

(empty)
Chunk

Secondary

(empty)
Chunk

(r
es

po
ns

e)

(response)

8
9

Write Algorithm
1. Application originates write request.
2. GFS client translates request from

(filename, data) -> (filename, chunk index),
and sends it to master.

3. Master responds with chunk handle and
(primary + secondary) replica locations.

4. Client pushes write data to all locations.
Data is stored in chunkservers’ internal
buffers.

5. Client sends write command to primary.

Write Algorithm
6. Primary determines serial order for data

instances stored in its buffer and writes the
instances in that order to the chunk.

7. Primary sends serial order to the
secondaries and tells them to perform the
write.

8. Secondaries respond to the primary.
9. Primary responds back to client.
Note: If write fails at one of chunkservers,

client is informed and retries the write.

Record Append Algorithm

Important operation at Google:
Merging results from multiple machines in one file.
Using file as producer - consumer queue.

1. Application originates record append request.
2. GFS client translates request and sends it to master.
3. Master responds with chunk handle and (primary +

secondary) replica locations.
4. Client pushes write data to all locations.

Record Append Algorithm
5. Primary checks if record fits in specified chunk.
6. If record does not fit, then the primary:

• pads the chunk,
• tells secondaries to do the same,
• and informs the client.
• Client then retries the append with the next

chunk.
7. If record fits, then the primary:

• appends the record,
• tells secondaries to do the same,
• receives responses from secondaries,
• and sends final response to the client.

Observations

Clients can read in parallel.
Clients can write in parallel.
Clients can append records in parallel.

Overview

Design Motivations
Architecture
Algorithms:

Read
Write
Record Append

Fault-Tolerance
Performance Results

Fault Tolerance
Fast Recovery: master and chunkservers are designed to restart
and restore state in a few seconds.
Chunk Replication: across multiple machines, across multiple
racks.
Master Mechanisms:

Log of all changes made to metadata.
Periodic checkpoints of the log.
Log and checkpoints replicated on multiple machines.
Master state is replicated on multiple machines.
“Shadow” masters for reading data if “real” master is down.

Data integrity:
Each chunk has an associated checksum.

Performance (Test Cluster)

Performance measured on cluster with:
1 master
16 chunkservers
16 clients

Server machines connected to central
switch by 100 Mbps Ethernet.
Same for client machines.
Switches connected with 1 Gbps link.

Performance (Test Cluster)

Performance (Test Cluster)

Performance (Real-world Cluster)

Cluster A:
Used for research and development.
Used by over a hundred engineers.
Typical task initiated by user and runs for a few hours.
Task reads MB’s-TB’s of data, transforms/analyzes the
data, and writes results back.

Cluster B:
Used for production data processing.
Typical task runs much longer than a Cluster A task.
Continuously generates and processes multi-TB data
sets.
Human users rarely involved.

Clusters had been running for about a week
when measurements were taken.

Performance (Real-world Cluster)

Performance (Real-world Cluster)

Many computers at each cluster (227, 342!)
On average, cluster B file size is triple cluster
A file size.
Metadata at chunkservers:

Chunk checksums.
Chunk Version numbers.

Metadata at master is small (48, 60 MB) ->
master recovers from crash within seconds.

Performance (Real-world Cluster)

Performance (Real-world Cluster)

Many more reads than writes.
Both clusters were in the middle of heavy
read activity.
Cluster B was in the middle of a burst of write
activity.
In both clusters, master was receiving 200-
500 operations per second -> master is not a
bottleneck.

Performance (Real-world Cluster)

Experiment in recovery time:
One chunkserver in Cluster B killed.
Chunkserver has 15,000 chunks containing
600 GB of data.
Limits imposed:

Cluster can only perform 91 concurrent clonings.
Each clone operation can consume at most 6.25 MB/s.

Took 23.2 minutes to restore all the chunks.
This is 440 MB/s.

Conclusion

Design Motivations
Architecture
Algorithms:
Fault-Tolerance
Performance Results

