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Motivation 

  Lots of (semi-)structured data at Google 
  URLs: 

  Contents, crawl metadata, links, anchors, pagerank,
… 

  Per-user data: 
  User preference settings, recent queries/search 

results, … 
  Geographic locations: 

  Physical entities (shops, restaurants, etc.), roads, 
satellite image data, user annotations, … 

  Scale is large 
  Billions of URLs, many versions/page (~20K/

version) 
  Hundreds of millions of users, thousands of q/sec 
  100TB+ of satellite image data 

Why not just use commercial DB ? 

  Scale is too large for most commercial databases 

  Even if it weren't, cost would be very high 
  Building internally means system can be applied across 

many projects for low incremental cost 

  Low-level storage optimizations help performance 
significantly 
  Much harder to do when running on top of a database 

layer 

Also fun and challenging to build large-scale systems :) 

Goals 

  Want asynchronous processes to be continuously 
updating different pieces of data 
  Want access to most current data at any time 

  Need to support: 
  Very high read/write rates (millions of ops per 

second) 
  Efficient scans over all or interesting subsets of data 
  Efficient joins of large one-to-one and one-to-many 

datasets 

  Often want to examine data changes over time 
  E.g. Contents of a web page over multiple crawls 
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BigTable 

  Distributed multi-level map 
  With an interesting data model 

  Fault-tolerant, persistent 
  Scalable 

  Thousands of servers 
  Terabytes of in-memory data 
  Petabyte of disk-based data 
  Millions of reads/writes per second, efficient scans 

  Self-managing 
  Servers can be added/removed dynamically 
  Servers adjust to load imbalance 

Status 
  Design/initial implementation started beginning of 

2004 
  Production use or active development for many 

projects: 
  Google Print 
  My Search History 
  Orkut 
  Crawling/indexing pipeline 
  Google Maps/Google Earth 
  Blogger 
  … 

  Largest bigtable cell manages ~200TB of data spread 
over several thousand machines (larger cells 
planned) 

Background: Building Blocks 

Building blocks: 
  Google File System (GFS): Raw storage 
  Scheduler: schedules jobs onto machines 
  Lock service: distributed lock manager 

  Also can reliably hold tiny files (100s of bytes) w/ high 
availability 

  MapReduce: simplified large-scale data processing 

BigTable uses of building blocks: 
  GFS: stores persistent state 
  Scheduler: schedules jobs involved in BigTable 

serving 
  Lock service: master election, location 

bootstrapping 
  MapReduce: often used to read/write BigTable 

data 

Google File System (GFS) 

  Master manages metadata 
  Data transfers happen directly between clients/chunkservers 
  Files broken into chunks (typically 64 MB) 
  Chunkks triplicated across three machines for safety 
  See SOSP^03 paper at http://labs.google.com/papers/gfs.html 
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MapReduce: Easy-to-use Cycles 

Many Google problems: “Process lots of data to produce other data” 
  Many kinds of inputs: 
  Want to use easily hundreds or thousands of CPUs 

  MapReduce: framework that provides (for certain classes of 
problems): 
  Automatic & efficient parallelization/distribution 
  Fault-tolerance, I/O scheduling, status/monitoring 
  User writes Map and Reduce functions 

  Heavily used: ~3000 jobs, 1000s of machine days each day 

See: “MapReduce: Simplified Data Processing on Large Clusters”. OSDI^04 

BigTable can be input and/or output for MapReduce computations 

Typical Cluster 

Cluster Scheduling Master Lock Service GFS Master 

Machine 1 

Scheduler 
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Linux 
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BigTable 
Server 
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BigTable Overview 

  Data Model 
  Implementation Structure 

  Tablets, compactions, locality groups, … 

  API 
  Details 

  Shared logs, compression, replication, … 

  Current/Future Work 

Basic Data Model 

  Distributed multi-dimensional sparse map 
 (row, column, timestamp)  cell contents 

  Good match for most of our applications 

… 
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Rows 

  Name is an arbitrary string 
  Access to data in a row is atomic 
  Row creation is implicit upon storing data 

  Rows ordered lexicographically 
  Rows close together lexicographically 

usually on one or a small number of 
machines 

Tablets 

  Large tables broken into tablets at row 
boundaries 
  Tablet holds contiguous range of rows 

  Clients can often choose row keys to achieve 
locality 

  Aim for ~100MB to 200MB of data per tablet 
  Serving machine responsible for ~100 

tablets 
  Fast recovery: 

  100 machines each pick up 1 tablet from failed 
machine 

  Fine-grained load balancing 
  Migrate tablets away from overloaded machine 
  Master makes load-balancing decisions 

Tablets & Splitting 

“<html>…” 

aaa.com 

TABLETS 

“contents” 

EN cnn.com 

cnn.com/sports.html 

“language” 

Website.com 

Zuppa.com/menu.html 

… 

… 

Tablets & Splitting 
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EN cnn.com 
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Yahoo.com/kids.html 

Yahoo.com/kids.html?D 

… 
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System Structure 

Cluster Scheduling Master 

handles failover, monitoring 

GFS 

holds tablet data, logs 

Lock service 

holds metadata, 
handles master-election 

Bigtable tablet server 

serves data 

Bigtable tablet server 

serves data 

Bigtable tablet server 

serves data 

Bigtable master 

performs metadata ops, 
load balancing 

Bigtable cell 
Bigtable client 
Bigtable client 

library 

Open() 

Locating Tablets 

  Since tablets move around from server to 
server, given a row, how do clients find the 
right machine ? 
  Need to find tablet whose row range covers the 

target row 

  One approach: could use the BigTable 
master 
  Central server almost certainly would be 

bottleneck in large system 

  Instead: store special tables containing 
tablet location info in BigTable cell itself 

Locating Tablets (cont.) 

  Our approach: 3-level hierarchical lookup scheme for tablets 
  Location is ip:port of relevant server 
  1st level: bootstrapped from lock server, points to owner of META0 
  2nd level: Uses META0 data to find owner of appropriate META1 

tablet 
  3rd level: META1 table holds locations of tablets of all other tables 

  META1 table itself can be split into multiple tablets 

Tablet Representation 

  SSTable: Immutable on-disk ordered map from stringstring 
  String keys: <row, column, timestamp> triples 

Write buffer in memory 
(random-access) Append-only log on GFS 

SSTable on  
GFS 

SSTable on  
GFS 

SSTable on  
GFS 

(mmap) 

Tablet 

Write 

Read 
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Compactions 

  Tablet state represented as set of immutable compacted 
SSTable files, plus tail of log (buffered in memory) 

  Minor compaction: 
  When in-memory state fills up, pick tablet with most data 

and write contents to SSTables stored in GFS 
  Separate file for each locality group for each tablet 

  Major compaction: 
  Periodically compact all SSTables for tablet into new base 

SSTable on GFS 
  Storage reclaimed from deletions at this point 

Columns 

  Columns have two-level name structure: 
  Family:optional_qualifier 

  Column family 
  Unit of access control 
  Has associated type information 

  Qualifier gives unbounded columns 
  Additional level of indexing, if desired 

“CNN homepage” 

“anchor:cnnsi.com” 

“…” cnn.com 

“contents:” “anchor:stanford.edu” 

“CNN” 

Timestamps 

  Used to store different versions of data in a cell 
  New writes default to current time, but timestamps for 

writes can also be set explicitly by clients 

  Lookup options: 
  “Return most recent K values” 
  “Return all values in timestamp range (or all values)” 

  Column families can be marked w/ attributes: 
  “Only retain most recent K values in a cell” 
  “Keep values until they are older than K seconds” 

Locality Groups 

  Column families can be assigned to a 
locality group 
  Used to organize underlying storage 

representation for performance 
  Scans over one locality group are 

O(bytes_in_locality_group), not 
O(bytes_in_table) 

  Data in a locality group can be explicitly 
memory-mapped 
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API 

  Metadata operations 
  Create/delete tables, column families, change 

metadata 
  Writes (atomic) 

  Set(): write cells in a row 
  DeleteCells(): delete cells in a row 
  DeleteRow(): delete all cells in a row 

  Reads 
  Scanner: read arbitrary cells in a bigtable 

  Each row read is atomic 
  Can restrict returned rows to a particular range 
  Can ask for just data from 1 row, all rows, etc. 
  Can ask for all columns, just certain column families, or 

specific columns 

Shared Logs 

  Designed for 1M tablets, 1000s of tablet servers 
  1M logs being simultaneously written performs badly 

  Solution: shared logs 
  Write log file per tablet server instead of per tablet 

  Updates for many tablets co-mingled in same file 

  Start new log chunks every so often (64MB) 

  Problem: during recovery, server needs to read log 
data to apply mutations for a tablet 
  Lots of wasted I/O if lots of machines need to read data for 

many tablets from same log chunk 

Shared Log Recovery 

Recovery: 
  Servers inform master of log chunks they 

need to read 
  Master aggregates and orchestrates sorting of 

needed chunks 
  Assigns log chunks to be sorted to different tablet 

servers 
  Servers sort chunks by tablet, writes sorted data 

to local disk 
  Other tablet servers ask master which servers 

have sorted chunks they need 
  Tablet servers issue direct RPCs to peer tablet 

servers to read sorted data for its tablets 

Compression 
  Many opportunities for compression 

  Similar values in the same row/column at different 
timestamps 

  Similar values in different columns 
  Similar values across adjacent rows 

  Within each SSTable for a locality group, encode 
compressed blocks 
  Keep blocks small for random access (~64KB 

compressed data) 
  Exploit fact that many values very similar 
  Needs to be low CPU cost for encoding/decoding 

  Two building blocks: BMDiff, Zippy 
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BMDiff 

  Bentley, Mcllroy DCC’99: “Data Compression Using 
Long Common Strings” 

  Input: dictionary * source 
  Output: sequence of 

  COPY: <x> bytes from offset <y> 
  LITERAL: <literal text> 

  Store hash at every 32-byte aligned boundary in 
  Dictionary 
  Source processed so far 

  For every new source byte 
  Compute incremental hash of last 32 bytes 
  Lookup in hash table 
  On hit, expand match forwards & backwards and emit COPY 

  Encode: ~100MB/s, Decode: ~1000MB/s 

Zippy 

  LZW-like: Store hash of last four bytes in 16K entry table 
  For every input byte: 

  Compute hash of last four bytes 
  Lookup in table 
  Emit COPY or LITERAL 

  Differences from BMDiff: 
  Much smaller compression window (local repetitions) 
  Hash table is not associative 
  Careful encoding of COPY/LITERAL tags and lengths 

  Sloppy but fast: 
Algorithm   % remaining  Encoding  Decoding 
Gzip  13.4%   21MB/s   118MB/s 
LZO    20.5%   135MB/s  410MB/s 
Zippy   22.2%   172MB/s  409MB/s 

BigTable Compression 

  Keys: 
  Sorted strings of (Row, Column, Timestamp): 

prefix compression 
  Values: 

  Group together values by “type” (e.g. column 
family name) 

  BMDiff across all values in one family 
  BMDiff output for values 1..N is dictionary for value 

N+1 

  Zippy as final pass over whole block 
  Catches more localized repetitions 
  Also catches cross-column-family repetition, 

compresses keys 

Compression 
Effectiveness 

  Experiment: store contents for 2.1B page crawl in BigTable instance 
  Key: URL of pages, with host-name portion reversed 

  com.cnn.www/index.html:http 
  Groups pages from same site together 

  Good for compression (neighboring rows tend to have similar contents) 
  Good for clients: efficient to scan over all pages on a web site 

  One compression strategy: gzip each page: ~28% bytes remaining 
  BigTable: BMDiff + Zippy 

Type   Count(B)  Space(TB)
 Compressed  %remaining 

Web page contents 2.1  45.1   4.2   9.2 
Links  1.8   11.2   1.6   13.9 
Anchors  126.3   22.8   2.9   12.7 
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In Development/Future 
Plans 

  More expressive data manipulation/access 
  Allow sending small scripts to perform read/modify/

write transactions so that they execute on server? 

  Multi-row (I.e. distributed) transaction support 
  General performance work for very large cells 
  BigTable as a service ? 

  Interesting issues of resource fairness, performance 
isolation, prioritization, etc. across different clients 


