
2/14/11

1

BigTable
A System for Distributed
Structured Storage

Fay Chang et al., Google
Jeff Dean, UW CSE colloq, 2005

Motivation

  Lots of (semi-)structured data at Google
  URLs:

  Contents, crawl metadata, links, anchors, pagerank,
…

  Per-user data:
  User preference settings, recent queries/search

results, …
  Geographic locations:

  Physical entities (shops, restaurants, etc.), roads,
satellite image data, user annotations, …

  Scale is large
  Billions of URLs, many versions/page (~20K/

version)
  Hundreds of millions of users, thousands of q/sec
  100TB+ of satellite image data

Why not just use commercial DB ?

  Scale is too large for most commercial databases

  Even if it weren't, cost would be very high
  Building internally means system can be applied across

many projects for low incremental cost

  Low-level storage optimizations help performance
significantly
  Much harder to do when running on top of a database

layer

Also fun and challenging to build large-scale systems :)

Goals

  Want asynchronous processes to be continuously
updating different pieces of data
  Want access to most current data at any time

  Need to support:
  Very high read/write rates (millions of ops per

second)
  Efficient scans over all or interesting subsets of data
  Efficient joins of large one-to-one and one-to-many

datasets

  Often want to examine data changes over time
  E.g. Contents of a web page over multiple crawls

2/14/11

2

BigTable

  Distributed multi-level map
  With an interesting data model

  Fault-tolerant, persistent
  Scalable

  Thousands of servers
  Terabytes of in-memory data
  Petabyte of disk-based data
  Millions of reads/writes per second, efficient scans

  Self-managing
  Servers can be added/removed dynamically
  Servers adjust to load imbalance

Status
  Design/initial implementation started beginning of

2004
  Production use or active development for many

projects:
  Google Print
  My Search History
  Orkut
  Crawling/indexing pipeline
  Google Maps/Google Earth
  Blogger
  …

  Largest bigtable cell manages ~200TB of data spread
over several thousand machines (larger cells
planned)

Background: Building Blocks

Building blocks:
  Google File System (GFS): Raw storage
  Scheduler: schedules jobs onto machines
  Lock service: distributed lock manager

  Also can reliably hold tiny files (100s of bytes) w/ high
availability

  MapReduce: simplified large-scale data processing

BigTable uses of building blocks:
  GFS: stores persistent state
  Scheduler: schedules jobs involved in BigTable

serving
  Lock service: master election, location

bootstrapping
  MapReduce: often used to read/write BigTable

data

Google File System (GFS)

  Master manages metadata
  Data transfers happen directly between clients/chunkservers
  Files broken into chunks (typically 64 MB)
  Chunkks triplicated across three machines for safety
  See SOSP^03 paper at http://labs.google.com/papers/gfs.html

R
ep

lic
as

Master
GFS Master

GFS Master Client

Client

C1 C0 C0

C3 C3 C4

C1

C5

C3

C4

2/14/11

3

MapReduce: Easy-to-use Cycles

Many Google problems: “Process lots of data to produce other data”
  Many kinds of inputs:
  Want to use easily hundreds or thousands of CPUs

  MapReduce: framework that provides (for certain classes of
problems):
  Automatic & efficient parallelization/distribution
  Fault-tolerance, I/O scheduling, status/monitoring
  User writes Map and Reduce functions

  Heavily used: ~3000 jobs, 1000s of machine days each day

See: “MapReduce: Simplified Data Processing on Large Clusters”. OSDI^04

BigTable can be input and/or output for MapReduce computations

Typical Cluster

Cluster Scheduling Master Lock Service GFS Master

Machine 1

Scheduler
Slave

GFS
Chunkserver

Linux

User
Task

Machine 2

Scheduler
Slave

GFS
Chunkserver

Linux

User
Task

Machine 3

Scheduler
Slave

GFS
Chunkserver

Linux

Single Task

BigTable
Server

BigTable
Server BigTable Master

BigTable Overview

  Data Model
  Implementation Structure

  Tablets, compactions, locality groups, …

  API
  Details

  Shared logs, compression, replication, …

  Current/Future Work

Basic Data Model

  Distributed multi-dimensional sparse map
 (row, column, timestamp)  cell contents

  Good match for most of our applications

…
…

“<html>…”

t1
t2

t3
www.cnn.com

ROWS

COLUMNS

TIMESTAMPS

“contents”

2/14/11

4

Rows

  Name is an arbitrary string
  Access to data in a row is atomic
  Row creation is implicit upon storing data

  Rows ordered lexicographically
  Rows close together lexicographically

usually on one or a small number of
machines

Tablets

  Large tables broken into tablets at row
boundaries
  Tablet holds contiguous range of rows

  Clients can often choose row keys to achieve
locality

  Aim for ~100MB to 200MB of data per tablet
  Serving machine responsible for ~100

tablets
  Fast recovery:

  100 machines each pick up 1 tablet from failed
machine

  Fine-grained load balancing
  Migrate tablets away from overloaded machine
  Master makes load-balancing decisions

Tablets & Splitting

“<html>…”

aaa.com

TABLETS

“contents”

EN cnn.com

cnn.com/sports.html

“language”

Website.com

Zuppa.com/menu.html

…

…

Tablets & Splitting

“<html>…”

aaa.com

TABLETS

“contents”

EN cnn.com

cnn.com/sports.html

“language”

Website.com

Zuppa.com/menu.html

…

Yahoo.com/kids.html

Yahoo.com/kids.html?D

…

…

2/14/11

5

System Structure

Cluster Scheduling Master

handles failover, monitoring

GFS

holds tablet data, logs

Lock service

holds metadata,
handles master-election

Bigtable tablet server

serves data

Bigtable tablet server

serves data

Bigtable tablet server

serves data

Bigtable master

performs metadata ops,
load balancing

Bigtable cell
Bigtable client
Bigtable client

library

Open()

Locating Tablets

  Since tablets move around from server to
server, given a row, how do clients find the
right machine ?
  Need to find tablet whose row range covers the

target row

  One approach: could use the BigTable
master
  Central server almost certainly would be

bottleneck in large system

  Instead: store special tables containing
tablet location info in BigTable cell itself

Locating Tablets (cont.)

  Our approach: 3-level hierarchical lookup scheme for tablets
  Location is ip:port of relevant server
  1st level: bootstrapped from lock server, points to owner of META0
  2nd level: Uses META0 data to find owner of appropriate META1

tablet
  3rd level: META1 table holds locations of tablets of all other tables

  META1 table itself can be split into multiple tablets

Tablet Representation

  SSTable: Immutable on-disk ordered map from stringstring
  String keys: <row, column, timestamp> triples

Write buffer in memory
(random-access) Append-only log on GFS

SSTable on
GFS

SSTable on
GFS

SSTable on
GFS

(mmap)

Tablet

Write

Read

2/14/11

6

Compactions

  Tablet state represented as set of immutable compacted
SSTable files, plus tail of log (buffered in memory)

  Minor compaction:
  When in-memory state fills up, pick tablet with most data

and write contents to SSTables stored in GFS
  Separate file for each locality group for each tablet

  Major compaction:
  Periodically compact all SSTables for tablet into new base

SSTable on GFS
  Storage reclaimed from deletions at this point

Columns

  Columns have two-level name structure:
  Family:optional_qualifier

  Column family
  Unit of access control
  Has associated type information

  Qualifier gives unbounded columns
  Additional level of indexing, if desired

“CNN homepage”

“anchor:cnnsi.com”

“…” cnn.com

“contents:” “anchor:stanford.edu”

“CNN”

Timestamps

  Used to store different versions of data in a cell
  New writes default to current time, but timestamps for

writes can also be set explicitly by clients

  Lookup options:
  “Return most recent K values”
  “Return all values in timestamp range (or all values)”

  Column families can be marked w/ attributes:
  “Only retain most recent K values in a cell”
  “Keep values until they are older than K seconds”

Locality Groups

  Column families can be assigned to a
locality group
  Used to organize underlying storage

representation for performance
  Scans over one locality group are

O(bytes_in_locality_group), not
O(bytes_in_table)

  Data in a locality group can be explicitly
memory-mapped

2/14/11

7

API

  Metadata operations
  Create/delete tables, column families, change

metadata
  Writes (atomic)

  Set(): write cells in a row
  DeleteCells(): delete cells in a row
  DeleteRow(): delete all cells in a row

  Reads
  Scanner: read arbitrary cells in a bigtable

  Each row read is atomic
  Can restrict returned rows to a particular range
  Can ask for just data from 1 row, all rows, etc.
  Can ask for all columns, just certain column families, or

specific columns

Shared Logs

  Designed for 1M tablets, 1000s of tablet servers
  1M logs being simultaneously written performs badly

  Solution: shared logs
  Write log file per tablet server instead of per tablet

  Updates for many tablets co-mingled in same file

  Start new log chunks every so often (64MB)

  Problem: during recovery, server needs to read log
data to apply mutations for a tablet
  Lots of wasted I/O if lots of machines need to read data for

many tablets from same log chunk

Shared Log Recovery

Recovery:
  Servers inform master of log chunks they

need to read
  Master aggregates and orchestrates sorting of

needed chunks
  Assigns log chunks to be sorted to different tablet

servers
  Servers sort chunks by tablet, writes sorted data

to local disk
  Other tablet servers ask master which servers

have sorted chunks they need
  Tablet servers issue direct RPCs to peer tablet

servers to read sorted data for its tablets

Compression
  Many opportunities for compression

  Similar values in the same row/column at different
timestamps

  Similar values in different columns
  Similar values across adjacent rows

  Within each SSTable for a locality group, encode
compressed blocks
  Keep blocks small for random access (~64KB

compressed data)
  Exploit fact that many values very similar
  Needs to be low CPU cost for encoding/decoding

  Two building blocks: BMDiff, Zippy

2/14/11

8

BMDiff

  Bentley, Mcllroy DCC’99: “Data Compression Using
Long Common Strings”

  Input: dictionary * source
  Output: sequence of

  COPY: <x> bytes from offset <y>
  LITERAL: <literal text>

  Store hash at every 32-byte aligned boundary in
  Dictionary
  Source processed so far

  For every new source byte
  Compute incremental hash of last 32 bytes
  Lookup in hash table
  On hit, expand match forwards & backwards and emit COPY

  Encode: ~100MB/s, Decode: ~1000MB/s

Zippy

  LZW-like: Store hash of last four bytes in 16K entry table
  For every input byte:

  Compute hash of last four bytes
  Lookup in table
  Emit COPY or LITERAL

  Differences from BMDiff:
  Much smaller compression window (local repetitions)
  Hash table is not associative
  Careful encoding of COPY/LITERAL tags and lengths

  Sloppy but fast:
Algorithm % remaining Encoding Decoding
Gzip 13.4% 21MB/s 118MB/s
LZO 20.5% 135MB/s 410MB/s
Zippy 22.2% 172MB/s 409MB/s

BigTable Compression

  Keys:
  Sorted strings of (Row, Column, Timestamp):

prefix compression
  Values:

  Group together values by “type” (e.g. column
family name)

  BMDiff across all values in one family
  BMDiff output for values 1..N is dictionary for value

N+1

  Zippy as final pass over whole block
  Catches more localized repetitions
  Also catches cross-column-family repetition,

compresses keys

Compression
Effectiveness

  Experiment: store contents for 2.1B page crawl in BigTable instance
  Key: URL of pages, with host-name portion reversed

  com.cnn.www/index.html:http
  Groups pages from same site together

  Good for compression (neighboring rows tend to have similar contents)
  Good for clients: efficient to scan over all pages on a web site

  One compression strategy: gzip each page: ~28% bytes remaining
  BigTable: BMDiff + Zippy

Type Count(B) Space(TB)
 Compressed %remaining

Web page contents 2.1 45.1 4.2 9.2
Links 1.8 11.2 1.6 13.9
Anchors 126.3 22.8 2.9 12.7

2/14/11

9

In Development/Future
Plans

  More expressive data manipulation/access
  Allow sending small scripts to perform read/modify/

write transactions so that they execute on server?

  Multi-row (I.e. distributed) transaction support
  General performance work for very large cells
  BigTable as a service ?

  Interesting issues of resource fairness, performance
isolation, prioritization, etc. across different clients

