
2/14/11

1

BigTable
A System for Distributed
Structured Storage

Fay Chang et al., Google
Jeff Dean, UW CSE colloq, 2005

Motivation

  Lots of (semi-)structured data at Google
  URLs:

  Contents, crawl metadata, links, anchors, pagerank,
…

  Per-user data:
  User preference settings, recent queries/search

results, …
  Geographic locations:

  Physical entities (shops, restaurants, etc.), roads,
satellite image data, user annotations, …

  Scale is large
  Billions of URLs, many versions/page (~20K/

version)
  Hundreds of millions of users, thousands of q/sec
  100TB+ of satellite image data

Why not just use commercial DB ?

  Scale is too large for most commercial databases

  Even if it weren't, cost would be very high
  Building internally means system can be applied across

many projects for low incremental cost

  Low-level storage optimizations help performance
significantly
  Much harder to do when running on top of a database

layer

Also fun and challenging to build large-scale systems :)

Goals

  Want asynchronous processes to be continuously
updating different pieces of data
  Want access to most current data at any time

  Need to support:
  Very high read/write rates (millions of ops per

second)
  Efficient scans over all or interesting subsets of data
  Efficient joins of large one-to-one and one-to-many

datasets

  Often want to examine data changes over time
  E.g. Contents of a web page over multiple crawls

2/14/11

2

BigTable

  Distributed multi-level map
  With an interesting data model

  Fault-tolerant, persistent
  Scalable

  Thousands of servers
  Terabytes of in-memory data
  Petabyte of disk-based data
  Millions of reads/writes per second, efficient scans

  Self-managing
  Servers can be added/removed dynamically
  Servers adjust to load imbalance

Status
  Design/initial implementation started beginning of

2004
  Production use or active development for many

projects:
  Google Print
  My Search History
  Orkut
  Crawling/indexing pipeline
  Google Maps/Google Earth
  Blogger
  …

  Largest bigtable cell manages ~200TB of data spread
over several thousand machines (larger cells
planned)

Background: Building Blocks

Building blocks:
  Google File System (GFS): Raw storage
  Scheduler: schedules jobs onto machines
  Lock service: distributed lock manager

  Also can reliably hold tiny files (100s of bytes) w/ high
availability

  MapReduce: simplified large-scale data processing

BigTable uses of building blocks:
  GFS: stores persistent state
  Scheduler: schedules jobs involved in BigTable

serving
  Lock service: master election, location

bootstrapping
  MapReduce: often used to read/write BigTable

data

Google File System (GFS)

  Master manages metadata
  Data transfers happen directly between clients/chunkservers
  Files broken into chunks (typically 64 MB)
  Chunkks triplicated across three machines for safety
  See SOSP^03 paper at http://labs.google.com/papers/gfs.html

R
ep

lic
as

Master
GFS Master

GFS Master Client

Client

C1 C0 C0

C3 C3 C4

C1

C5

C3

C4

2/14/11

3

MapReduce: Easy-to-use Cycles

Many Google problems: “Process lots of data to produce other data”
  Many kinds of inputs:
  Want to use easily hundreds or thousands of CPUs

  MapReduce: framework that provides (for certain classes of
problems):
  Automatic & efficient parallelization/distribution
  Fault-tolerance, I/O scheduling, status/monitoring
  User writes Map and Reduce functions

  Heavily used: ~3000 jobs, 1000s of machine days each day

See: “MapReduce: Simplified Data Processing on Large Clusters”. OSDI^04

BigTable can be input and/or output for MapReduce computations

Typical Cluster

Cluster Scheduling Master Lock Service GFS Master

Machine 1

Scheduler
Slave

GFS
Chunkserver

Linux

User
Task

Machine 2

Scheduler
Slave

GFS
Chunkserver

Linux

User
Task

Machine 3

Scheduler
Slave

GFS
Chunkserver

Linux

Single Task

BigTable
Server

BigTable
Server BigTable Master

BigTable Overview

  Data Model
  Implementation Structure

  Tablets, compactions, locality groups, …

  API
  Details

  Shared logs, compression, replication, …

  Current/Future Work

Basic Data Model

  Distributed multi-dimensional sparse map
 (row, column, timestamp) cell contents

  Good match for most of our applications

…
…

“<html>…”

t1
t2

t3
www.cnn.com

ROWS

COLUMNS

TIMESTAMPS

“contents”

2/14/11

4

Rows

  Name is an arbitrary string
  Access to data in a row is atomic
  Row creation is implicit upon storing data

  Rows ordered lexicographically
  Rows close together lexicographically

usually on one or a small number of
machines

Tablets

  Large tables broken into tablets at row
boundaries
  Tablet holds contiguous range of rows

  Clients can often choose row keys to achieve
locality

  Aim for ~100MB to 200MB of data per tablet
  Serving machine responsible for ~100

tablets
  Fast recovery:

  100 machines each pick up 1 tablet from failed
machine

  Fine-grained load balancing
  Migrate tablets away from overloaded machine
  Master makes load-balancing decisions

Tablets & Splitting

“<html>…”

aaa.com

TABLETS

“contents”

EN cnn.com

cnn.com/sports.html

“language”

Website.com

Zuppa.com/menu.html

…

…

Tablets & Splitting

“<html>…”

aaa.com

TABLETS

“contents”

EN cnn.com

cnn.com/sports.html

“language”

Website.com

Zuppa.com/menu.html

…

Yahoo.com/kids.html

Yahoo.com/kids.html?D

…

…

2/14/11

5

System Structure

Cluster Scheduling Master

handles failover, monitoring

GFS

holds tablet data, logs

Lock service

holds metadata,
handles master-election

Bigtable tablet server

serves data

Bigtable tablet server

serves data

Bigtable tablet server

serves data

Bigtable master

performs metadata ops,
load balancing

Bigtable cell
Bigtable client
Bigtable client

library

Open()

Locating Tablets

  Since tablets move around from server to
server, given a row, how do clients find the
right machine ?
  Need to find tablet whose row range covers the

target row

  One approach: could use the BigTable
master
  Central server almost certainly would be

bottleneck in large system

  Instead: store special tables containing
tablet location info in BigTable cell itself

Locating Tablets (cont.)

  Our approach: 3-level hierarchical lookup scheme for tablets
  Location is ip:port of relevant server
  1st level: bootstrapped from lock server, points to owner of META0
  2nd level: Uses META0 data to find owner of appropriate META1

tablet
  3rd level: META1 table holds locations of tablets of all other tables

  META1 table itself can be split into multiple tablets

Tablet Representation

  SSTable: Immutable on-disk ordered map from stringstring
  String keys: <row, column, timestamp> triples

Write buffer in memory
(random-access) Append-only log on GFS

SSTable on
GFS

SSTable on
GFS

SSTable on
GFS

(mmap)

Tablet

Write

Read

2/14/11

6

Compactions

  Tablet state represented as set of immutable compacted
SSTable files, plus tail of log (buffered in memory)

  Minor compaction:
  When in-memory state fills up, pick tablet with most data

and write contents to SSTables stored in GFS
  Separate file for each locality group for each tablet

  Major compaction:
  Periodically compact all SSTables for tablet into new base

SSTable on GFS
  Storage reclaimed from deletions at this point

Columns

  Columns have two-level name structure:
  Family:optional_qualifier

  Column family
  Unit of access control
  Has associated type information

  Qualifier gives unbounded columns
  Additional level of indexing, if desired

“CNN homepage”

“anchor:cnnsi.com”

“…” cnn.com

“contents:” “anchor:stanford.edu”

“CNN”

Timestamps

  Used to store different versions of data in a cell
  New writes default to current time, but timestamps for

writes can also be set explicitly by clients

  Lookup options:
  “Return most recent K values”
  “Return all values in timestamp range (or all values)”

  Column families can be marked w/ attributes:
  “Only retain most recent K values in a cell”
  “Keep values until they are older than K seconds”

Locality Groups

  Column families can be assigned to a
locality group
  Used to organize underlying storage

representation for performance
  Scans over one locality group are

O(bytes_in_locality_group), not
O(bytes_in_table)

  Data in a locality group can be explicitly
memory-mapped

2/14/11

7

API

  Metadata operations
  Create/delete tables, column families, change

metadata
  Writes (atomic)

  Set(): write cells in a row
  DeleteCells(): delete cells in a row
  DeleteRow(): delete all cells in a row

  Reads
  Scanner: read arbitrary cells in a bigtable

  Each row read is atomic
  Can restrict returned rows to a particular range
  Can ask for just data from 1 row, all rows, etc.
  Can ask for all columns, just certain column families, or

specific columns

Shared Logs

  Designed for 1M tablets, 1000s of tablet servers
  1M logs being simultaneously written performs badly

  Solution: shared logs
  Write log file per tablet server instead of per tablet

  Updates for many tablets co-mingled in same file

  Start new log chunks every so often (64MB)

  Problem: during recovery, server needs to read log
data to apply mutations for a tablet
  Lots of wasted I/O if lots of machines need to read data for

many tablets from same log chunk

Shared Log Recovery

Recovery:
  Servers inform master of log chunks they

need to read
  Master aggregates and orchestrates sorting of

needed chunks
  Assigns log chunks to be sorted to different tablet

servers
  Servers sort chunks by tablet, writes sorted data

to local disk
  Other tablet servers ask master which servers

have sorted chunks they need
  Tablet servers issue direct RPCs to peer tablet

servers to read sorted data for its tablets

Compression
  Many opportunities for compression

  Similar values in the same row/column at different
timestamps

  Similar values in different columns
  Similar values across adjacent rows

  Within each SSTable for a locality group, encode
compressed blocks
  Keep blocks small for random access (~64KB

compressed data)
  Exploit fact that many values very similar
  Needs to be low CPU cost for encoding/decoding

  Two building blocks: BMDiff, Zippy

2/14/11

8

BMDiff

  Bentley, Mcllroy DCC’99: “Data Compression Using
Long Common Strings”

  Input: dictionary * source
  Output: sequence of

  COPY: <x> bytes from offset <y>
  LITERAL: <literal text>

  Store hash at every 32-byte aligned boundary in
  Dictionary
  Source processed so far

  For every new source byte
  Compute incremental hash of last 32 bytes
  Lookup in hash table
  On hit, expand match forwards & backwards and emit COPY

  Encode: ~100MB/s, Decode: ~1000MB/s

Zippy

  LZW-like: Store hash of last four bytes in 16K entry table
  For every input byte:

  Compute hash of last four bytes
  Lookup in table
  Emit COPY or LITERAL

  Differences from BMDiff:
  Much smaller compression window (local repetitions)
  Hash table is not associative
  Careful encoding of COPY/LITERAL tags and lengths

  Sloppy but fast:
Algorithm % remaining Encoding Decoding
Gzip 13.4% 21MB/s 118MB/s
LZO 20.5% 135MB/s 410MB/s
Zippy 22.2% 172MB/s 409MB/s

BigTable Compression

  Keys:
  Sorted strings of (Row, Column, Timestamp):

prefix compression
  Values:

  Group together values by “type” (e.g. column
family name)

  BMDiff across all values in one family
  BMDiff output for values 1..N is dictionary for value

N+1

  Zippy as final pass over whole block
  Catches more localized repetitions
  Also catches cross-column-family repetition,

compresses keys

Compression
Effectiveness

  Experiment: store contents for 2.1B page crawl in BigTable instance
  Key: URL of pages, with host-name portion reversed

  com.cnn.www/index.html:http
  Groups pages from same site together

  Good for compression (neighboring rows tend to have similar contents)
  Good for clients: efficient to scan over all pages on a web site

  One compression strategy: gzip each page: ~28% bytes remaining
  BigTable: BMDiff + Zippy

Type Count(B) Space(TB)
 Compressed %remaining

Web page contents 2.1 45.1 4.2 9.2
Links 1.8 11.2 1.6 13.9
Anchors 126.3 22.8 2.9 12.7

2/14/11

9

In Development/Future
Plans

  More expressive data manipulation/access
  Allow sending small scripts to perform read/modify/

write transactions so that they execute on server?

  Multi-row (I.e. distributed) transaction support
  General performance work for very large cells
  BigTable as a service ?

  Interesting issues of resource fairness, performance
isolation, prioritization, etc. across different clients

