
Introduction to Synoptic

1 Introduction

Synoptic is a tool that summarizes log files. More exactly, Synoptic takes a set of log files, and some
rules that tell it how to interpret lines in those logs, and outputs a summary that concisely and
accurately captures the important properties of lines in the logs. Synoptic summaries are directed
graphs. Synoptic is especially intended for use with distributed systems logs, which is one of the
reason we would like for you apply it to logs of systems you build for this class. This document
describes features of the 490H framework that integrate with Synoptic. It is assumed that you are
using framework version v0.2 (you can test for this by passing it the -v option).

2 Installation

1. Synoptic depends on a tool called dot, which you can install as part of the Graphviz suite:
http://www.graphviz.org/. This writeup assumes that the dot command is installed in
/usr/bin/dot.

2. As of this writing, the latest release of Synoptic is version 0.0.3. You can download it
(synoptic-0.0.3.tar.gz) here:
http://code.google.com/p/synoptic/downloads/list

3. You also need to download a supporting set of files specific to 490H. This includes files
containing Synoptic command line arguments for processing logs generated by the 490H
framework code, as well as some sample logs that will be used as examples in this writeup.
You can download the archive with these files (490h-0.0.3.tar.gz) from the above link.

4. Unpack the release archive into some directory. This writeup assumes that that you’ve un-
packed things into ∼/synoptic/.

5. Unpack the supporting files archive into ∼/synoptic/.

6. The Synoptic release you unpacked is a set of jars. Synoptic is written in Java and its current
interface is the command line. From within ∼/synoptic/, execute the following command to
show the help screen, as a test of your installation:
java -jar synoptic.jar -h

7. As a final test, from the same location as above, run the unit tests distributed with Synoptic:
java -jar synoptic.jar --runTests

For more information, see the installation instructions on the website:
http://code.google.com/p/synoptic/wiki/DocsInstallation

1

http://www.graphviz.org/
http://code.google.com/p/synoptic/downloads/list
http://code.google.com/p/synoptic/wiki/DocsInstallation


3 Usage through examples

Lets first run synoptic on sample logs that you have downloaded. For these examples to work you
have to (1) create an output directory – ∼/synoptic/output/– to store Synoptic output files; and
(2) make sure that you run the following commands from ∼/synoptic/.

3.1 Example 1: basic usage

The following command will process example1.log by using command line arguments stored in
example1.args and use the dot command at /usr/bin/dot for output:

java -jar synoptic.jar -c example1.args -d /usr/bin/dot example1.log

By default this command will generate four files in output/:

1. example1.initial.dot: the initial graph parsed from example1.log file in dot command
file format.

2. example1.initial.dot.png : the graphic corresponding to example1.initial.dot (Fig-
ure 1(a)).

3. example1.dot : Synoptic’s final graph in dot command file format.

4. example1.dot.png : the graphic corresponding to example1.dot (Figure 1(b)).

(a) example1.initial.dot.png (b) example1.dot.png

Figure 1: Example1 output. ((a)) Initial graph, ((b)) Final graph.

Figure 1 above illustrates the two outputs. The graph on the left represents the input graph
to Synoptic. The graph on the right is the final graph that summarizes the input log.

2



The input graph is a translation of the log into a graph form. It allows you to check visually
whether Synoptic correctly parsed the input. For example, example1.log has a trace that goes:
connect, read, read, read, disconnect. This trace is shown as the first from the left in the
input graph. You can suppress the output of the initial graph with the --dumpInitialGraph=false
option.

Note that the edges in these graphs are labeled with numbers, which represent transition proba-
bilities. For the input graph, these labels are always 0.00. For the final graph a transition probability
indicates the percentage of time that the transition (edge) appeared in the log file (along the paths
that get to this node).

Also, in both graphs nodes that represent events or event types that are the first in a trace are
represented as square nodes. Final events in a trace are represented as diamonds. All other nodes
are ovals.

3.2 Example 2: TwoGenerals simulator log

The TwoGenerals problem discussed in class is implemented and released as an example in the
proj/ directory of the framework. Synoptic output from 10 executions of this example of sample
synoptic logs is in the files example2.0.log, ... , example2.9.log. The corresponding com-
mand line arguments are in example2.args. Run the following command to generate the graphs
below:

java -jar synoptic.jar -c example2.args -d /usr/bin/dot example2.*.log

(a) example2.initial.dot.png (b) example2.dot.png

Figure 2: Example2 output. ((a)) Initial graph, ((b)) Final graph.

3



3.3 Example 3: ignoring certain event types

The framework logs all possible events that might be interesting to you. The 490h.args file contains
the regular expressions to parse all of these different event types.

However, you might find yourself tracking down a bug that only implicates a subset of events.
For example, a bug that manifests itself only when you use persistent storage. You can constraint
Synoptic to consider just the events you are interested in by ignoring log lines that do not match
the specified regular expressions. You can do this by (1) commenting out regular expressions for
the events types that do not interest you in the 490h.args file, and (2) passing the -i option to
Synoptic to ignore unmatched lines.

Consider the logs from example 2. These log contains TIMESTEP events, which are generated
by the framework whenever internal framework time is incremented. This event might not be of
interest, therefore you can use example3.args to ignore these events (it specifies the -i option) by
re-running on the same set of logs:

java -jar synoptic.jar -c example3.args -d /usr/bin/dot example2.*.log

Figure 3: Example3 final graph output.

4 Logging framework events

For your convenience the 490H framework is capable of generating logs in a format that can be
then parsed by synoptic. The Synoptic arguments for parsing all event types generated by the
framework are in the 490h.args file.

In fact, the framework can generate two kinds of event logs – a totally ordered log, and a
partially ordered log (each event is annotated with a vector clock value). The totally ordered log
can only be generated in simulator mode (with the -s option), while the partially ordered log can
be generated in both simulator and emulator (-e) modes. 1 For the framework to output these logs

1The totally ordered log is possible in simulator mode because the simulator is implemented as a single thread.

4



you have to pass it appropriate command line options:

• The -L option takes a filename as argument for storing a totally ordered log of events.

• The -l option takes a filename as argument for storing a partially ordered log of events.

For example, to have the RIOTester example output both kinds of logs in simulator mode, you
can run the following:
./execute.pl -L total.log -l partial.log -s -n RIOTester -c scripts/RIOTest -f 0

As a result of the above, total.log and partial.log files will contain the totally and partially
ordered simulator event logs respectively.

4.1 Framework event types

The framework logs different kinds of event. The above examples illustrated most of these, but
here is the full list:

• Packet sends and receives : SEND, RECVD

• Packet delays and drops : DELAY, DROP

• Timeouts : TIMEOUT

• Script file commands : COMMAND

• Persistent storage events : READ, WRITE

• Node start and stopped events : START, STOPPED

• Simulator time ticks : TIMESTEP

• User defined events : USER-EVENT

Each of these events types is parameterized with values. In some cases there is a set format for
the event type. For example, the packet SEND event log line specifies the source and destination
nodes, the protocol id, and the packet payload. Here is an example:
31 SEND src:1 dest:3 proto:0 rio-proto:20 rio-seqNum:0 rio-payload:0

In other cases the event log line may vary depending on the function invoked. For example, the
persistent storage WRITE event log line has many types of formats in which the line may include or
exclude the offset, and len fields depending on which method was invoked. Example log lines:
138 node:0 WRITE buf:’HELLO’
139 node:0 WRITE buf:’HELLO WORLD’ offset:0 len:6

The best way to figure out the line format for an event type is to trigger the event from code
and then inspect the generated log. The 490h Synoptic regular expression files illustrate how to
parse most of the event types generated by the framework, but they do not always differentiate
between different sub-types of the same event. For example, the two WRITE log lines above are
treated identically.

Therefore, all events are eventually serialized during execution. The emulator, however, cannot serialize all events,
therefore a totally ordered log cannot be generated in emulator mode.

5



4.2 User events interface

As indicated in the last example above, you can insert user defined events into Synoptic logs. To
do so, use the logSynopticEvent method, defined in the Node class. You can invoke this method
directly on the class you used to extend the Node class. This method call takes a single event string
description argument which will appear last on the generated log line.

4.3 Correctly logging packet payload

The framework has no control over how your code converts Packets into byte arrays (i.e. byte[]).
However, to log events that are parameterized with packet payloads the framework needs to know
how to convert these byte arrays into strings. For this, the framework relies on the packetBytesToString
method in the Node class. By default, this method uses the Utility.byteArrayToString method
to convert Packets to strings. However, if you translate your packets into byte arrays differently, or
if you would like to elide packet payload from the logs altogether, you should override this method
in your derived Node class.

4.4 Usage Tips

• When debugging log parsing, use the --debugParse option. This option will print each log
line and the corresponding reg-exp groups that were parsed from that line.

• When using Synoptic your first goal should always be to generate the right looking initial
graph. Therefore, always look at the initial graph output. This graph will conform to how
Synoptic interpreted your regular expressions.

• Synoptic produces most useful output for input logs that contain many runs of a system
because it excels at compressing shared event sequences from multiple runs. Passing it a log
from a single run of the system, or one in which each event type appears just once, will result
in a large final graph.

• Synoptic may seem to hang or take a very long time on large logs, or on logs that have too
many event types. This is a known issue. Try running it on a sub-sample of the logs, or
reducing the number of event types. If the problem persists, contact us.

• Synoptic is a research project that is under active development. If you run into a problem
that is not answered by this writeup and is not covered in Synoptic’s online documentation,
please contact us!

5 Other resources

If you run into problems or have questions about installing/using Synoptic or interpreting its out-
put, do not hesitate to seek help. The Synoptic website contains a tutorial and additional usage
information that you might find helpful. The website contains the most up to date information
about the tool:
http://code.google.com/p/synoptic/

Synoptic is developed by many people, almost all of whom are at UW CSE. Your main point
of contact with this group is Ivan: ivan@cs.washington.edu.

6

http://code.google.com/p/synoptic/
ivan@cs.washington.edu

	Introduction
	Installation
	Usage through examples
	Example 1: basic usage
	Example 2: TwoGenerals simulator log
	Example 3: ignoring certain event types

	Logging framework events
	Framework event types
	User events interface
	Correctly logging packet payload
	Usage Tips

	Other resources

