
Copyright, 2007 Google
The content of this page is licensed under the Creative Commons Attribution 2.5 License

Introduction to Parallel Programming and MapReduce

Audience and Pre-Requisites

This tutorial covers the basics of parallel programming and the MapReduce programming
model. The pre-requisites are significant programming experience with a language such
as C++ or Java, and data structures & algorithms.

Serial vs. Parallel Programming

In the early days of computing, programs were serial, that is, a program consisted of a
sequence of instructions, where each instruction executed one after the other. It ran from
start to finish on a single processor.

Parallel programming developed as a means of improving performance and efficiency.
In a parallel program, the processing is broken up into parts, each of which can be
executed concurrently. The instructions from each part run simultaneously on different
CPUs. These CPUs can exist on a single machine, or they can be CPUs in a set of
computers connected via a network.

Not only are parallel programs faster, they can also be used to solve problems on large
datasets using non-local resources. When you have a set of computers connected on a
network, you have a vast pool of CPUs, and you often have the ability to read and write
very large files (assuming a distributed file system is also in place).

The Basics

The first step in building a parallel program is identifying sets of tasks that can run
concurrently and/or paritions of data that can be processed concurrently. Sometimes it's
just not possible. Consider a Fibonacci function:

Fk+2 = Fk + Fk+1

A function to compute this based on the form above, cannot be "parallelized" because
each computed value is dependent on previously computed values.

A common situation is having a large amount of consistent data which must be
processed. If the data can be decomposed into equal-size partitions, we can devise a

Copyright, 2007 Google
The content of this page is licensed under the Creative Commons Attribution 2.5 License

parallel solution. Consider a huge array which can be broken up into sub-arrays.

If the same processing is required for each array element, with no dependencies in the
computations, and no communication required between tasks, we have an ideal parallel
computing opportunity. Here is a common implementation technique called
master/worker.

The MASTER:

• initializes the array and splits it up according to the number of available
WORKERS

• sends each WORKER its subarray
• receives the results from each WORKER

The WORKER:

• receives the subarray from the MASTER
• performs processing on the subarray
• returns results to MASTER

This model implements static load balancing which is commonly used if all tasks are
performing the same amount of work on identical machines. In general, load balancing
refers to techniques which try to spread tasks among the processors in a parallel system to
avoid some processors being idle while others have tasks queueing up for execution.

A static load balancer allocates processes to processors at run time while taking no
account of current network load. Dynamic algorithms are more flexible, though more

Copyright, 2007 Google
The content of this page is licensed under the Creative Commons Attribution 2.5 License

computationally expensive, and give some consideration to the network load before
allocating the new process to a processor.

As an example of the MASTER/WORKER technique, consider one of the methods for
approximating pi. The first step is to inscribe a circle inside a square:

The area of the square, denoted As = (2r)2 or 4r2. The area of the circle, denoted Ac, is pi
* r2. So:

pi = Ac / r2
As = 4r2
r2 = As / 4
pi = 4 * Ac / As

The reason we are doing all these algebraic manipulation is we can parallelize this
method in the following way.

1. Randomly generate points in the square
2. Count the number of generated points that are both in the circle and in the square
3. r = the number of points in the circle divided by the number of points in the

square
4. PI = 4 * r

And here is how we parallelize it:
NUMPOINTS = 100000; // some large number - the bigger, the closer the
approximation

p = number of WORKERS;
numPerWorker = NUMPOINTS / p;
countCircle = 0; // one of these for each WORKER

// each WORKER does the following:
for (i = 0; i < numPerWorker; i++) {
 generate 2 random numbers that lie inside the square;
 xcoord = first random number;

Copyright, 2007 Google
The content of this page is licensed under the Creative Commons Attribution 2.5 License

 ycoord = second random number;
 if (xcoord, ycoord) lies inside the circle
 countCircle++;
}

MASTER:
 receives from WORKERS their countCircle values
 computes PI from these values: PI = 4.0 * countCircle / NUMPOINTS;

What is MapReduce?

Now that we have seen some basic examples of parallel programming, we can look at the
MapReduce programming model. This model derives from the map and reduce
combinators from a functional language like Lisp.

In Lisp, a map takes as input a function and a sequence of values. It then applies the
function to each value in the sequence. A reduce combines all the elements of a
sequence using a binary operation. For example, it can use "+" to add up all the elements
in the sequence.

MapReduce is inspired by these concepts. It developed within Google as a mechanism for
processing large amounts of raw data, for example, crawled documents or web request
logs. This data is so large, it must be distributed across thousands of machines in order to
be processed in a reasonable time. This distribution implies parallel computing since the
same computations are performed on each CPU, but with a different dataset. MapReduce
is an abstraction that allows Google engineers to perform simple computations while
hiding the details of parallelization, data distribution, load balancing and fault tolerance.

Map, written by a user of the MapReduce library, takes an input pair and produces a set
of intermediate key/value pairs. The MapReduce library groups together all intermediate
values associated with the same intermediate key I and passes them to the reduce
function.

The reduce function, also written by the user, accepts an intermediate key I and a set of
values for that key. It merges together these values to form a possibly smaller set of
values. [1]

Consider the problem of counting the number of occurrences of each word in a large
collection of documents:

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts

Copyright, 2007 Google
The content of this page is licensed under the Creative Commons Attribution 2.5 License

int result = 0;
for each v in values:
 result += ParseInt(v);
Emit(AsString(result)); [1]

The map function emits each word plus an associated count of occurrences ("1" in this
example). The reduce function sums together all the counts emitted for a particular word.

MapReduce Execution Overview

The Map invocations are distributed across multiple machines by automatically
partitioning the input data into a set of M splits or shards. The input shards can be
processed in parallel on different machines.

Reduce invocations are distributed by partitioning the intermediate key space into R
pieces using a partitioning function (e.g., hash(key) mod R). The number of partitions (R)
and the partitioning function are specifed by the user.

The illustration below shows the overall fow of a MapReduce operation. When the user
program calls the MapReduce function, the following sequence of actions occurs (the
numbered labels in the illustration correspond to the numbers in the list below).

Copyright, 2007 Google
The content of this page is licensed under the Creative Commons Attribution 2.5 License

1. The MapReduce library in the user program first shards the input files into M
pieces of typically 16 megabytes to 64 megabytes (MB) per piece. It then starts up
many copies of the program on a cluster of machines.

2. One of the copies of the program is special: the master. The rest are workers that
are assigned work by the master. There are M map tasks and R reduce tasks to
assign. The master picks idle workers and assigns each one a map task or a reduce
task.

3. A worker who is assigned a map task reads the contents of the corresponding
input shard. It parses key/value pairs out of the input data and passes each pair to
the user-defined Map function. The intermediate key/value pairs produced by the
Map function are buffered in memory.

4. Periodically, the buffered pairs are written to local disk, partitioned into R regions
by the partitioning function. The locations of these buffered pairs on the local disk
are passed back to the master, who is responsible for forwarding these locations to
the reduce workers.

5. When a reduce worker is notified by the master about these locations, it uses
remote procedure calls to read the buffered data from the local disks of the map
workers. When a reduce worker has read all intermediate data, it sorts it by the
intermediate keys so that all occurrences of the same key are grouped together. If

Copyright, 2007 Google
The content of this page is licensed under the Creative Commons Attribution 2.5 License

the amount of intermediate data is too large to fit in memory, an external sort is
used.

6. The reduce worker iterates over the sorted intermediate data and for each unique
intermediate key encountered, it passes the key and the corresponding set of
intermediate values to the user's Reduce function. The output of the Reduce
function is appended to a final output file for this reduce partition.

7. When all map tasks and reduce tasks have been completed, the master wakes up
the user program. At this point, the MapReduce call in the user program returns
back to the user code.

After successful completion, the output of the MapReduce execution is available in the R
output files. [1]

To detect failure, the master pings every worker periodically. If no response is received
from a worker in a certain amount of time, the master marks the worker as failed. Any
map tasks completed by the worker are reset back to their initial idle state, and therefore
become eligible for scheduling on other workers. Similarly, any map task or reduce task
in progress on a failed worker is also reset to idle and becomes eligible for rescheduling.

Completed map tasks are re-executed when failure occurs because their output is stored
on the local disk(s) of the failed machine and is therefore inaccessible. Completed reduce
tasks do not need to be re-executed since their output is stored in a global fille system.

MapReduce Examples

Here are a few simple examples of interesting programs that can be easily expressed as
MapReduce computations.

Distributed Grep: The map function emits a line if it matches a given pattern. The
reduce function is an identity function that just copies the supplied intermediate data to
the output.

Count of URL Access Frequency: The map function processes logs of web page
requests and outputs <URL, 1>. The reduce function adds together all values for the same
URL and emits a <URL, total count> pair.

Reverse Web-Link Graph: The map function outputs <target, source> pairs for each
link to a target URL found in a page named "source". The reduce function concatenates
the list of all source URLs associated with a given target URL and emits the pair: <target,
list(source)>.

Term-Vector per Host: A term vector summarizes the most important words that occur
in a document or a set of documents as a list of <word, frequency> pairs. The map
function emits a <hostname, term vector> pair for each input document (where the
hostname is extracted from the URL of the document). The reduce function is passed all

Copyright, 2007 Google
The content of this page is licensed under the Creative Commons Attribution 2.5 License

per-document term vectors for a given host. It adds these term vectors together, throwing
away infrequent terms, and then emits a final <hostname, term vector> pair.

Inverted Index: The map function parses each document, and emits a sequence of
<word, document ID> pairs. The reduce function accepts all pairs for a given word, sorts
the corresponding document IDs and emits a <word, list(document ID)> pair. The set of
all output pairs forms a simple inverted index. It is easy to augment this computation to
keep track of word positions. [1]

References

[1] Dean, Jeff and Ghemawat, Sanjay. MapReduce: Simplified Data Processing on
Large Clusters http://labs.google.com/papers/mapreduce-osdi04.pdf

[2] Lammal, Ralf. Google's MapReduce Programming Model Revisited.
http://www.cs.vu.nl/~ralf/MapReduce/paper.pdf

[3] Open Source MapReduce: http://lucene.apache.org/hadoop/

