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Introduction to Parallel Programming and MapReduce 

 

Audience and Pre-Requisites 

This tutorial covers the basics of parallel programming and the MapReduce programming 
model. The pre-requisites are significant programming experience with a language such 
as C++ or Java, and data structures & algorithms.  

Serial vs. Parallel Programming  

In the early days of computing, programs were serial, that is, a program consisted of a 
sequence of instructions, where each instruction executed one after the other. It ran from 
start to finish on a single processor.  

Parallel programming developed as a means of improving performance and efficiency. 
In a parallel program, the processing is broken up into parts, each of which can be 
executed concurrently. The instructions from each part run simultaneously on different 
CPUs. These CPUs can exist on a single machine, or they can be CPUs in a set of 
computers connected via a network.  

Not only are parallel programs faster, they can also be used to solve problems on large 
datasets using non-local resources. When you have a set of computers connected on a 
network, you have a vast pool of CPUs, and you often have the ability to read and write 
very large files (assuming a distributed file system is also in place).  

The Basics  

The first step in building a parallel program is identifying sets of tasks that can run 
concurrently and/or paritions of data that can be processed concurrently. Sometimes it's 
just not possible. Consider a Fibonacci function:  

Fk+2 = Fk + Fk+1 

A function to compute this based on the form above, cannot be "parallelized" because 
each computed value is dependent on previously computed values.  

A common situation is having a large amount of consistent data which must be 
processed. If the data can be decomposed into equal-size partitions, we can devise a 
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parallel solution. Consider a huge array which can be broken up into sub-arrays. 

 

If the same processing is required for each array element, with no dependencies in the 
computations, and no communication required between tasks, we have an ideal parallel 
computing opportunity. Here is a common implementation technique called 
master/worker.  

The MASTER:  

• initializes the array and splits it up according to the number of available 
WORKERS  

• sends each WORKER its subarray  
• receives the results from each WORKER  

The WORKER:  

• receives the subarray from the MASTER  
• performs processing on the subarray  
• returns results to MASTER  

This model implements static load balancing which is commonly used if all tasks are 
performing the same amount of work on identical machines. In general, load balancing 
refers to techniques which try to spread tasks among the processors in a parallel system to 
avoid some processors being idle while others have tasks queueing up for execution.  

A static load balancer allocates processes to processors at run time while taking no 
account of current network load. Dynamic algorithms are more flexible, though more 
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computationally expensive, and give some consideration to the network load before 
allocating the new process to a processor.  

As an example of the MASTER/WORKER technique, consider one of the methods for 
approximating pi. The first step is to inscribe a circle inside a square:  

 

The area of the square, denoted As = (2r)2 or 4r2. The area of the circle, denoted Ac, is pi 
* r2. So:  

pi = Ac / r2 
As = 4r2 
r2 = As / 4 
pi = 4 * Ac / As 

The reason we are doing all these algebraic manipulation is we can parallelize this 
method in the following way.  

1. Randomly generate points in the square  
2. Count the number of generated points that are both in the circle and in the square  
3. r = the number of points in the circle divided by the number of points in the 

square  
4. PI = 4 * r  

And here is how we parallelize it:  
NUMPOINTS = 100000; // some large number - the bigger, the closer the 
approximation 
 
p = number of WORKERS; 
numPerWorker = NUMPOINTS / p; 
countCircle = 0;   // one of these for each WORKER 
 
// each WORKER does the following: 
for (i = 0; i < numPerWorker; i++) { 
  generate 2 random numbers that lie inside the square; 
  xcoord = first random number;  
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  ycoord = second random number; 
  if (xcoord, ycoord) lies inside the circle 
  countCircle++; 
} 
 
MASTER: 
  receives from WORKERS their countCircle values 
  computes PI from these values: PI = 4.0 * countCircle / NUMPOINTS; 

What is MapReduce?  

Now that we have seen some basic examples of parallel programming, we can look at the 
MapReduce programming model. This model derives from the map and reduce 
combinators from a functional language like Lisp.  

In Lisp, a map takes as input a function and a sequence of values. It then applies the 
function to each value in the sequence. A reduce combines all the elements of a 
sequence using a binary operation. For example, it can use "+" to add up all the elements 
in the sequence.  

MapReduce is inspired by these concepts. It developed within Google as a mechanism for 
processing large amounts of raw data, for example, crawled documents or web request 
logs. This data is so large, it must be distributed across thousands of machines in order to 
be processed in a reasonable time. This distribution implies parallel computing since the 
same computations are performed on each CPU, but with a different dataset. MapReduce 
is an abstraction that allows Google engineers to perform simple computations while 
hiding the details of parallelization, data distribution, load balancing and fault tolerance.  

Map, written by a user of the MapReduce library, takes an input pair and produces a set 
of intermediate key/value pairs. The MapReduce library groups together all intermediate 
values associated with the same intermediate key I and passes them to the reduce 
function.  

The reduce function, also written by the user, accepts an intermediate key I and a set of 
values for that key. It merges together these values to form a possibly smaller set of 
values. [1]  

Consider the problem of counting the number of occurrences of each word in a large 
collection of documents:  

map(String key, String value):  
// key: document name  
// value: document contents  
for each word w in value:  
  EmitIntermediate(w, "1");  
 
reduce(String key, Iterator values): 
// key: a word 
// values: a list of counts 
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int result = 0; 
for each v in values: 
  result += ParseInt(v); 
Emit(AsString(result));     [1] 

The map function emits each word plus an associated count of occurrences ("1" in this 
example). The reduce function sums together all the counts emitted for a particular word.  

MapReduce Execution Overview  

The Map invocations are distributed across multiple machines by automatically 
partitioning the input data into a set of M splits or shards. The input shards can be 
processed in parallel on different machines.  

Reduce invocations are distributed by partitioning the intermediate key space into R 
pieces using a partitioning function (e.g., hash(key) mod R). The number of partitions (R) 
and the partitioning function are specifed by the user.  

The illustration below shows the overall fow of a MapReduce operation. When the user 
program calls the MapReduce function, the following sequence of actions occurs (the 
numbered labels in the illustration correspond to the numbers in the list below).  
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1. The MapReduce library in the user program first shards the input files into M 
pieces of typically 16 megabytes to 64 megabytes (MB) per piece. It then starts up 
many copies of the program on a cluster of machines.  

2. One of the copies of the program is special: the master. The rest are workers that 
are assigned work by the master. There are M map tasks and R reduce tasks to 
assign. The master picks idle workers and assigns each one a map task or a reduce 
task.  

3. A worker who is assigned a map task reads the contents of the corresponding 
input shard. It parses key/value pairs out of the input data and passes each pair to 
the user-defined Map function. The intermediate key/value pairs produced by the 
Map function are buffered in memory.  

4. Periodically, the buffered pairs are written to local disk, partitioned into R regions 
by the partitioning function. The locations of these buffered pairs on the local disk 
are passed back to the master, who is responsible for forwarding these locations to 
the reduce workers. 

5. When a reduce worker is notified by the master about these locations, it uses 
remote procedure calls to read the buffered data from the local disks of the map 
workers. When a reduce worker has read all intermediate data, it sorts it by the 
intermediate keys so that all occurrences of the same key are grouped together. If 
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the amount of intermediate data is too large to fit in memory, an external sort is 
used. 

6. The reduce worker iterates over the sorted intermediate data and for each unique 
intermediate key encountered, it passes the key and the corresponding set of 
intermediate values to the user's Reduce function. The output of the Reduce 
function is appended to a final output file for this reduce partition.  

7. When all map tasks and reduce tasks have been completed, the master wakes up 
the user program. At this point, the MapReduce call in the user program returns 
back to the user code.  

After successful completion, the output of the MapReduce execution is available in the R 
output files. [1]  

To detect failure, the master pings every worker periodically. If no response is received 
from a worker in a certain amount of time, the master marks the worker as failed. Any 
map tasks completed by the worker are reset back to their initial idle state, and therefore 
become eligible for scheduling on other workers. Similarly, any map task or reduce task 
in progress on a failed worker is also reset to idle and becomes eligible for rescheduling.  

Completed map tasks are re-executed when failure occurs because their output is stored 
on the local disk(s) of the failed machine and is therefore inaccessible. Completed reduce 
tasks do not need to be re-executed since their output is stored in a global fille system.  

MapReduce Examples  

Here are a few simple examples of interesting programs that can be easily expressed as 
MapReduce computations.  

Distributed Grep: The map function emits a line if it matches a given pattern. The 
reduce function is an identity function that just copies the supplied intermediate data to 
the output.  

Count of URL Access Frequency: The map function processes logs of web page 
requests and outputs <URL, 1>. The reduce function adds together all values for the same 
URL and emits a <URL, total count> pair.  

Reverse Web-Link Graph: The map function outputs <target, source> pairs for each 
link to a target URL found in a page named "source". The reduce function concatenates 
the list of all source URLs associated with a given target URL and emits the pair: <target, 
list(source)>.  

Term-Vector per Host: A term vector summarizes the most important words that occur 
in a document or a set of documents as a list of <word, frequency> pairs. The map 
function emits a <hostname, term vector> pair for each input document (where the 
hostname is extracted from the URL of the document). The reduce function is passed all 



Copyright, 2007 Google 
The content of this page is licensed under the Creative Commons Attribution 2.5 License 

 

per-document term vectors for a given host. It adds these term vectors together, throwing 
away infrequent terms, and then emits a final <hostname, term vector> pair. 

Inverted Index: The map function parses each document, and emits a sequence of 
<word, document ID> pairs. The reduce function accepts all pairs for a given word, sorts 
the corresponding document IDs and emits a <word, list(document ID)> pair. The set of 
all output pairs forms a simple inverted index. It is easy to augment this computation to 
keep track of word positions. [1]  
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