
August 2, 2008

Copyright  20__ by Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or

by any means—electronic, mechanical, photocopying, scanning or otherwise—without prior written

permission of the publisher, Elsevier, Inc.

9 Replication
1

9.1 Introduction
Replication is the technique of using multiple copies of a server or a resource for better availability and

performance. Each copy is called a replica.

The main goal of replication is to improve availability, since a service is available even if some of its

replicas are not. This helps mission critical services, such as many financial systems or reservation systems,

where even a short outage can be very disruptive and expensive. It helps when communications is not

always available, such as a laptop computer that contains a database replica and is only intermittently

connected to the network. It is also useful for making a cluster of unreliable servers into a highly-available

system, by replicating data on multiple servers.

Replication can also be used to improve performance by creating copies of databases, such as data

warehouses, which are snapshots of TP databases that are used for decision support. Queries on the replicas

can be processed without interfering with updates to the primary database server. If applied to the primary

server, such queries would degrade performance, as discussed in Section 6.6 on Query-Update Problems in

two-phase locking.

In each of these cases, replication can also improve response time. The overall capacity of a set of

replicated servers can be greater than the capacity of a single server. Moreover, replicas can be distributed

over a wide area network, ensuring that some replica is near each user, thereby reducing communications

delay.

9.2 Replicated Servers

The Primary-Backup Model

To maximize a server’s availability, we should try to maximize its mean time between failures (MTBF) and

minimize its mean time to repair (MTTR). After doing the best we can at this, we can still expect periods of

unavailability. To improve availability further requires that we introduce some redundant processing

capability by configuring each server as two server processes: a primary server that is doing the real work,

and a backup server that is standing by, ready to take over immediately after the primary fails (see Figure

9-1). The goal is to reduce MTTR: If the primary server fails, then we do not need to wait for a new server

to be created. As soon as the failure is detected, the backup server can immediately become the primary and

start recovering to the state the former primary had after executing its last non-redoable operation. Since we

are primarily interested in transactional servers, this means recovering to a state that includes the effects of

all transactions that committed at the former primary and no other transactions. For higher availability, more

backup servers can be used to guard against the possibility that the primary and backup fail.

Figure 9-1 Primary-Backup Model The primary server does the real work. The backup server is standing

by, ready to take over after the primary fails.

1
 This is a prefix of Chapter 9 of the forthcoming second edition of Principles of Transaction Processing,

by Philip A. Bernstein and Eric Newcomer.

Client

Primary
Server

Backup
Server

 Replication

 Copyright 20__ Elsevier, Inc. All rights reserved. 9-2

This technique is applicable to resource managers and to servers that run ordinary applications, such as

request controllers and transaction servers. When a server of either type fails, it needs to be recreated.

Having a backup server avoids having to create the backup server at recovery time.

To further reduce MTTR, each client connected to the primary server should also have a backup

communication session with the backup server. This avoids recreating the sessions between the client and

backup at recovery time. Since the time to recreate sessions can be quite long, even longer than the time to

recover resource managers, this decreases (i.e., improves) MTTR.

In general, the degree of readiness of the backup server is a critical factor in determining MTTR. If a

backup server is kept up-to-date so that it is always ready to take over when the primary fails with

practically no delay, then it is called a hot backup. If it has done some preparation to reduce MMTR but

still has a significant amount of work to do before it is ready to take over from the primary, then it is called

a warm backup. If it has done no preparation, then it is called a cold backup.

As in the case of a server that has no backup, when the primary server fails, some external agent, such as a

monitoring process, has to detect the failure and then cause the backup server to become the primary. The

delay in detecting failures contributes to MTTR, so fast failure detection is important for high availability.

Once the backup server has taken over for the failed primary, it may be worthwhile to create a backup for

the new primary. An alternative is to wait until the former primary recovers, at which time it can become the

backup. Then, if desired, the former backup (which is the new primary) could be told to fail, so that the

original primary becomes primary again and the backup is restarted as the backup again. This restores the

system to its original configuration, which was tuned to work well, at the cost of some unavailability while

the original primary is recovering after the former backup was made to fail.

When telling a backup to become the primary, some care is needed to avoid ending up with two servers

both of which believe they’re the primary. For example, if the monitor process gets no response from the

primary, it may conclude that the primary is dead. But the primary may actually be operating. It may just be

slow because its system is overloaded (e.g., a network storm is swamping its operating system), and it

therefore hasn’t sent an “I’m alive” message in a long time, which the monitor interprets as a failure of the

primary. If the monitor then tells the backup to become the primary, then two processes will be operating as

primary. If both primaries perform operations against the same resource, they may conflict with each other

and corrupt that resource. For example, if the resource is a disk they might overwrite each other, or if the

resource is a communications line they may send conflicting messages. Sometimes, the resource includes a

hardware lock that only one process (i.e., the primary) can hold, which ensures that only one process can

operate as primary at a time.

Replicating the Resource

As we discussed in Chapter 7, a server usually depends on a resource, typically a database. When

replicating a server, an important consideration is whether to replicate the server’s resource too. The most

widely-used approach to replication is to replicate the resource (i.e., the database) in addition to the server

that manages it (see Figure 9-2). This has two benefits. First, it enables the system to recover from a failure

of a resource replica as well as a failure of a server process. And second, by increasing the number of copies

of the resource, it offers performance benefits when access to the resource is the bottleneck. For example,

the backup can do real work, such as process queries, and not just maintain the backup replica so it can take

over when there is a failure.

 Replication

 Copyright 20__ Elsevier, Inc. All rights reserved. 9-3

Figure 9-2 Replicating a Server and its Resource. Both the server and the resource are replicated, which

enables recovery from a resource failure.

The main technical challenge in implementing this approach to replication is to synchronize updates with

queries and each other when these operations execute on different replicas. This approach of replicating

resources, and its associated technical challenges, are the main subject of this chapter, covered in Sections

9.3 - 9.1.

Replicating the Server with a Shared Resource

Another approach is to replicate the server without replicating the resource, so that all copies of the server

share the same copy of the resource (see Figure 9-3). This is useful in a configuration where processors

share storage, such a storage area network. In a primary-backup configuration, if the primary fails and the

resource is still available, the backup server on another processor can continue to provide service (see

Figure 9-3a).

Figure 9-3 Replicated Server with Shared Resource. In (a), the primary and backup server share the

resource, but only one of them uses the resource at any given time. In (b), many servers share the resource

and can concurrently process requests that require access to the resource.

This primary-backup approach improves availability, but not performance. If the server is the bottleneck

and not the resource, then performance can be improved by allowing multiple servers to access the resource

concurrently, as shown in Figure 9-3b. This approach, often called data sharing, introduces the problem of

conflicts between transactions executing in different servers and accessing the same data item in the

resource. One solution is to partition the resource and assign each partition to one server. That way, each

server can treat the partition as a private resource and therefore use standard locking and recovery

algorithms. If a server fails, its partition is assigned to another server, like in the primary-backup approach.

Another solution is to allow more than one server to access the same data item. This solution requires

synchronization between servers and is discussed in Section 9.1.

Client

Primary
Server

Backup
Server

Resource

Client

Server2

(a) Primary and Backup share the resource (b) Many servers concurrently share the resource

Resource

Servern 
Server1

Resource
Replica

Client

Primary
Server

Backup
Server

Resource
Replica

 Replication

 Copyright 20__ Elsevier, Inc. All rights reserved. 9-4

9.3 Replicating Servers and Resources

One-Copy Serializability

Replicas should behave functionally like non-replicated servers. This goal can be stated precisely by the

concept of one-copy serializability, which extends the concept of serializability to a system where multiple

replicas are present. An execution is one-copy serializable if it has the same effect as a serial execution on

a one-copy database. We would like a system to ensure that its executions are one-copy serializable. In such

a system, the user is unaware that data is replicated.

In a system that produces serializable executions, what can go wrong that would cause it to violate one-copy

serializability? The answer is simple, though perhaps not obvious: a transaction might read a copy of a data

item, say x, that was not written by the last transaction that wrote other copies of x. For example, consider a

system that has two copies of x, stored at locations A and B, denoted xA and xB. Suppose we express

execution histories using the notation of Section 6.1.1, where r, w and c represent read, write, and commit

operations (respectively) and subscripts are transaction identifiers. Consider the following execution

history:

H = r1[xA] w1[xA] w1[xB] c1 r2[xB] w2[xB] c2 r3[xA] w3[xA] w3[xB] c3

This is a serial execution. Each transaction reads just one copy of x; since the copies are supposed to be

identical, any copy will do. The only difficulty with it is that transaction T2 did not write into copy xA. This

might have happened because copy xA was unavailable when T2 executed. Rather than delaying the

execution of T2 until after xA recovered, the system allowed T2 to finish and commit. Since we see r3[xA]

executed after c2, apparently xA recovered after T2 committed. However, r3[xA] read a stale value of xA, the

one written by T1, not T2.

When xA recovered, it should have been refreshed with the newly updated value of x which is stored in xB.

However, we do not see a write operation into xA after T2 committed and before r3[xA] executed. We

therefore conclude that when r3[xA] executed, xA still had the value that T1 wrote.

Clearly, the behavior of H is not what we would expect in a one-copy database. In a one-copy database, T3

would read the value of x written by T2, not T1. There is no other serial execution of T1, T2, and T3 that has

the same effect as H. Therefore, H does not have same effect as any serial execution on a one-copy

database. Thus, it is not one-copy serializable.

One obvious implication of one-copy serializability is that each transaction that writes into a data item x

should write into all copies of x. However, when replication is used for improved availability, this isn’t

always possible. The whole point is to be able to continue to operate even when some copies are

unavailable. Therefore, the not-so-obvious implication of one-copy serializability is that each transaction

that reads a data item x must read a copy of x that was written by the most recent transaction before it that

wrote into any copy of x. This sometimes requires careful synchronization.

Still, during normal operation, each transaction’s updates should be applied to all replicas. There are two

ways to arrange this: replicate update operations or replicate requests. In the first case, each request causes

one transaction to execute. That transaction generates update operations each of which is applied to all

replicas. In the second case, the request message is sent to all replicas and causes a separate transaction to

execute at each replica. We discuss each case, in turn.

Replicating Updates

There are two approaches to sending a transaction’s updates to replicas: synchronous and asynchronous. In

the synchronous approach, when a transaction updates a data item, say x, the update is sent to all replicas

of x. These updates of the replicas execute within the context of the transaction. This is called synchronous

because all replicas are, in effect, updated at the same time (see Figure 9-4a). While this is sometimes

feasible, it often is not, because it produces a heavy distributed transaction load. In particular, it implies that

all transactions that update replicated data have to use two-phase commit, which entails significant

communications cost.

 Replication

 Copyright 20__ Elsevier, Inc. All rights reserved. 9-5

T: Begin Transaction

 . . .

 Write(x1)

 Write(x2)

 Write(x3)

 . . .

 Commit

T: Begin Transaction

 . . .

 Write(x1)

 . . .

 Commit

Sometime later:

 Write(x2)

 Write(x3)

X1

X2

X3

X1

X2

X3

(a) synchronous replication (b) asynchronous replication

Figure 9-4 Synchronous vs. Asynchronous Replication. In synchronous replication, each transaction

updates all copies at the same time. In asynchronous replication, a transaction only updates one replica

immediately. Its updates are propagated to the other replicas later on.

Fortunately, looser synchronization can be used, which allows replicas to be updated independently. This is

called asynchronous replication, where a transaction directly updates one replica and the update is

propagated to other replicas later on (see Figure 9-4b).

Asynchronous updates from different transactions can conflict. If they are applied to replicas in arbitrary

orders, then the replicas will not be identical. For example, suppose transactions T1 and T2 update x, which

has copies xA and xB. If T1 updates xA before T2, but T1 updates xB after T2, then xA and xB end up with

different values. The usual way to avoid this problem is to ensure that the updates are applied in the same

order to all replicas. By executing updates in the same order, all replicas go through the same sequence of

states. Thus, each query (i.e., read-only transaction) at any replica sees a state that could have been seen at

any other replica. And if new updates were shut off and all in-flight updates were applied to all replicas, the

replicas would be identical. So as far as each user is concerned, all replicas behave exactly the same way.

Applying updates in the same order to all replicas requires some synchronization. This synchronization can

degrade performance, because some operations are delayed until other operations have time to complete.

Much of the complexity in replication comes from clever synchronization techniques that minimize this

performance degradation.

Whether synchronous or asynchronous replication is used, applying updates to all replicas is sometimes

impossible, because some replicas are down. The system could stop accepting updates when this happens,

but this is rarely acceptable since it decreases availability. If some replicas do continue processing updates

while other replicas are down, then when the down replicas recover, some additional work is needed to

recover the failed replicas to a satisfactory state. Some of the complexity in replication comes from ways of

coping with unavailable servers and handling their recovery.

Replicas can be down either because a system has failed or because communication has failed (see Figure

9-5). The latter is more dangerous, because it may lead to two or more independently functioning partitions

of the network, each of which allows updates to the replicas it knows about. If a resource has replicas in

both partitions, those replicas can be independently updated. When the partitions are reunited, they may

discover they have processed incompatible updates. For example, they might both have sold the last item

from inventory. Such executions are not one-copy serializable, since it could not be the result of a serial

execution on a one-copy database. There are two solutions to this problem. One is to ensure that if a

partition occurs, only one partition is allowed to process updates. The other is to allow multiple partitions to

process updates and to reconcile the inconsistencies after the partitions are reunitedsomething that often

requires human intervention.

 Replication

 Copyright 20__ Elsevier, Inc. All rights reserved. 9-6

Replica1

Replica2

Replica3

Replica1

Replica2

Replica3

(a) Replica3 fails
(b) Network connection

 to Replica3 fails

Figure 9-5 Node and Communications Failures. Replica1, Replica2, and Replica3 are connected by a

network. In (a), Replica3 fails. In (b), the connection to Replica3 fails. Replica1 and Replica2 cannot

distinguish these two situations, yet the system’s behavior is quite different.

Circumventing these performance and availability problems usually involves compromises. To configure a

system with replicated servers, one must understand the behavior of algorithms used for update propagation

and synchronization. These algorithms are the main subject of this chapter.

Replicating Requests

An alternative to sending updates to all replicas is to send the requests to run the original transactions to all

replicas (see Figure 9-6). To ensure that all of the replicas end up as exact copies of each other, the

transactions should execute in the same order at all replicas. Depending on the approach selected, this is

either slow or tricky. A slow approach is to run the requests serially at one replica and then force the

requests to run in the same order at the other replicas. This ensures they run in the same order at all replicas,

but it allows no concurrency at each replica and would therefore be an inefficient use of each replica’s

resources.

Figure 9-6 Replicating Requests Each transaction runs independently against each replica. In both cases,

conflicting updates must be applied in the same order against all replicas.

The trickier approach is to allow concurrency within each replica and use some fancy synchronization

across replicas to ensure that timing differences at the different replicas don’t lead to different execution

orders at different replicas. For example, in Digital’s Remote Transaction Router (RTR), a replicated

request can be executed at two or more replicas concurrently as a single distributed transaction. Since it

runs as a transaction, it is serialized with respect to other replicated requests (which also run as

transactions). It therefore can execute concurrently with other requests. Transaction synchronization (e.g.,

locking) ensures that the requests are processed in the same order at all replicas. As usual, transaction

termination is synchronized using two-phase commit. However, unlike ordinary two-phase commit, if one of

the replicas fails while a transaction is being committed, the other continues running and commits the

Resource
Replica

Resource
Replica

Primary
Server

Backup
Server

Request

Replicator

Request Request

 Replication

 Copyright 20__ Elsevier, Inc. All rights reserved. 9-7

transaction. This is useful in certain applications, such as securities trading (e.g. stock markets), where the

legal definition of fairness dictates that transactions must execute in the order they were submitted, so it is

undesirable to abort a transaction due to the failure of a replica.

Replicating updates is a more popular approach than replicating requests, by far. Therefore, we will focus

on that approach for the rest of this chapter.

9.4 Single-Master Primary-Copy Replication

Normal Operation

The most straightforward, and often pragmatic, approach to replication is to designate one replica as the

primary copy and to allow update transactions to read and write only that replica. This is the primary-

backup technique as illustrated in Figure 9-1. Updates on the primary are distributed to other replicas,

called secondaries, in the order in which they executed at the primary and are applied to secondaries in that

order (see Figure 9-7). Thus, all replicas process the same stream of updates in the same order. In between

any two update transactions, a replica can process a local query.

Update

Transactions

Primary

Replica

Secondary

Secondary

Secondary
T1

T2

Tn

Update Logs

Figure 9-7 Propagating Updates from Primary to Secondaries. Transactions only update data at the

primary replica. The primary propagates updates to the secondary replicas. The secondaries can process

local queries.

One way to propagate updates is by synchronous replication. For example, in a relational database system,

one could define an SQL trigger on the primary table that remotely updates secondary copies of the table

within the context of the user’s update transaction. This implies that updates are propagated right away,

which may delay the completion of the transaction. It also means that administrators cannot control when

updates are applied to replicas. For example, in some decision support systems, it is desirable to apply

updates at fixed times, so the database remains unchanged when certain analysis work is in progress.

Currently, the more popular approach is asynchronous replication, where updates to the primary generate a

stream of updates to the secondaries which is processed after transactions on the primary commit. For

database systems, the stream of updates is often a log. The log reflects the exact order of the updates that

were performed at the primary, so the updates can be applied directly to each secondary as they arrive.

The log can be quite large, so it is worth minimizing its size if possible. One technique is to filter out

aborted transactions, since they do not need to be applied to replicas (see Figure 9-8a). This reduces the

amount of data transmission and the cost of processing updates at the replica. However, it requires that the

primary not send a log record until it knows that the transaction that wrote the record has committed. This

introduces additional processing time at the primary and delay in updating the secondary, which are the

main costs of reducing the data transmission. Another technique is to send only the finest granularity data

that has changed, e.g., fields of records, rather than coarser-grain units of data, such as entire records.

Rather than using the database system’s log, some relational database systems capture updates to each

primary table in a log table that is co-located with the primary table (see Figure 9-8b). One approach is to

have the system define an SQL trigger on each primary table that translates each update into an insert on the

 Replication

 Copyright 20__ Elsevier, Inc. All rights reserved. 9-8

log table. Periodically, the primary creates a new log table to capture updates and sends the previous log

table to each secondary where it is applied to the replica. This approach to capturing updates can slow down

normal processing of transactions, due to the extra work introduced by the trigger.

Transaction

Updates

Filter aborted

transactions
to replicas

Database
Database

System’s

Log

Database System

(a) Propagating updates from the

 database system’s log

to replicas

Transaction

Updates

read log table

data trigger log

table

Database System

Database

Database

System’s

Log

(b) Propagating updates from a log table

 generated by database triggers

Figure 9-8 Generating Update Streams for Replicas An update stream for replicas can be produced from

(a) the database system’s log or (b) a log table produced by triggers.

Another approach is to post-process the database log to create the stream of updates to the replicas. This

avoids slowing down normal processing of transactions as compared to the trigger approach. In fact, the log

can be sent to a different server, where the post-processing is done.

Some systems allow different parts of the database to be replicated to different locations. For example, the

primary might contain a table describing customers and other tables describing orders. These tables are co-

located at the primary, since many transactions require access to all of these tables. However, the customer

table may be replicated at different servers than the order tables. To enable this, the log post-processing

splits each transaction’s updates into two transactions, one for the customer table and one for the order

tables, and adds them to separate streams, one for the customer replicas and one for the order replicas. If

there is also a replica that contains all of the customer and orders information, then the log post-processor

would generate a third stream for that replica, with all of the updates of each transaction packaged in a

single transaction in the stream.

Given this complex filtering and transaction splitting, often a “buffer database” is used to store updates that

flow from the primary to secondaries. Updates that are destined for different replicas are stored in different

areas of the buffer database. This allows them to be applied to replicas according to different schedules.

Some systems allow application-specific logic to be used to apply changes to replicas. For example, the

application could add a timestamp that tells exactly when the update was applied to the replica.

Although primary-copy replication normally does not allow transactions to update a replica, there are

situations where it can be made to work. For example, consider an update transaction that reads and writes a

replica using two-phase locking. Suppose it keeps a copy of all the values that it read, which includes all of

the data items that the transaction wrote. When it is ready to commit, it sends the values of data items that it

read along with values that it wrote to the primary. Executing within the context of the same transaction, the

primary reads the same data items that the transaction read at the secondary, setting locks as in normal two-

phase locking. If the values of the data items that it reads at the primary are the same as those that the

transaction read at the secondary, then the transaction applies its updates to the primary too and commits. If

not, then it aborts. This is essentially an application of the optimistic concurrency control technique

described in Section 6.8.

 Replication

 Copyright 20__ Elsevier, Inc. All rights reserved. 9-9

Most database systems offer considerable flexibility in configuring replication. Subsets of tables can be

independently replicated, possibly at different locations. For example, a central office’s Accounts table can

be split by branch, and the accounts for each branch are replicated at the system at that branch. As the

number of replicated tables grows, it can be rather daunting to keep track of which pieces of which tables

are replicated at which systems. To simplify management tasks, systems offer tools for displaying, querying,

and editing the configuration of replicas.

The replication services of most database systems work by constructing a log stream or log table of updates

and sending it to secondary servers. This approach was introduced in Tandem’s (now HP’s) Non-Stop SQL

and in Digital’s VAX Data Distributor in the 1980’s. Similar approaches are now offered by IBM, Informix

(now IBM), Microsoft (SQL Server), Oracle and Sybase. Within this general approach, products vary in the

specific features they offer: the granularity of data that can be replicated (a database, a table, a portion of a

table); the flexibility of selecting primaries and secondaries (a server can be a primary server for some data

and a secondary for others); how dynamically the configuration of primaries and secondaries can be

changed; and facilities to simplify managing a large set of replicas.

Failures and Recoveries

This primary-copy approach works well as long as the primary and secondaries are alive. How do we

handle failures? Let us work through the cases.

Secondary Recovery

If a secondary replica fails, the rest of the system continues to run as before. When the secondary recovers,

it needs to catch up processing the stream of updates from the primary. This is not much different than the

processing it would have done if it had not failed; it’s just processing the updates later. The main new

problem is that it must determine which updates it processed before it failed, so it doesn’t incorrectly

reapply them. This is the same problem as log-based database recovery that we studied in Chapter 7.

If a secondary is down for too long, it may be more efficient to get a whole new copy of the database rather

than processing an update stream. In this case, while the database is being copied from the primary to the

recovering secondary, more updates are generated at the primary. So after the database has been copied, to

finish up, the secondary needs to process that last stream of updates coming from the primary. This is

similar to media recovery, as in Chapter 7.

Primary Recovery with One Secondary

If the primary fails, recovery can be more challenging. One could simply disallow updates until the primary

recovers. This is a satisfactory approach when the main goal of replication is better performance for queries.

In fact, it may be hard to avoid if rich filtering and partitioning of updates is supported. Since different

secondaries receive a different subset of the changes that were applied to the primary, secondaries are often

not complete copies of the primary. Therefore, it would be difficult to determine which secondaries should

take over as primary for which parts of the primary’s data.

If a goal of replication is improved availability for updates, then it is usually not satisfactory to wait for the

primary to recover, since the primary could be down for awhile. So if it is important to keep the system

running, some secondary must take over as primary. This leads to two technical problems. First, all replicas

must agree on the selection of the new primary, since the system cannot tolerate having two primariesthis

would lead to total confusion and incorrect results. Second, the last few updates from the failed primary

may not have reached all replicas. If a replica starts processing updates from the new primary before it has

received all updates from the failed primary, it will end up in a different state than other replicas that did

receive all of the failed primary’s updates.

We first explore these problems in a simple case of database mirroring where there are only two replicas,

one primary and one secondary. This case is fairly common in practice. Many database products offer a

high availability feature that uses this technique. This feature is usually distinct from the functionally rich,

primary-copy replication feature described above.

 Replication

 Copyright 20__ Elsevier, Inc. All rights reserved. 9-10

So suppose there are only two replicas, and the secondary detects that the primary has failed. This failure

detection must be based on timeouts. For example, the secondary is no longer receiving log records from

the primary. And when the secondary sends “are you there?” messages to the primary, the secondary

receives no reply from the primary. However, these timeouts may be due to a communications failure

between the primary and secondary, similar to the one shown in Figure 9-5, and the primary may still be

operating.

To disambiguate the case of primary failure from primary-secondary communications failure, an external

agent is needed to decide which replica should be primary. A typical approach is to add a “watchdog”

process, preferably on a different machine than the primary and secondary. The watchdog sends periodic

“are you there?” messages to both the primary and secondary. If the watchdog can communicate with both

the primary and secondary, but they cannot communicate with each other, then the watchdog notifies both

the secondary and primary of this fact. It tells the secondary to fail, since it can no longer function as a

replica. And it tells the primary to create another secondary, if possible. If the watchdog can communicate

only with the secondary, then it tells the secondary that it believes the primary is down. If the secondary too

is unable to communicate with the primary, then it can take over as primary. In this case, if the primary is

still operational but is simply unable to communicate with the watchdog, then the primary must self-

destruct. Otherwise, the old primary and the new primary (which was formerly the secondary) are both

operating as primary. In summary, if the secondary loses communications with the primary, then whichever

replica can still communicate with the watchdog is now the primary. If neither replica can communicate

with the watchdog or with each other, then the neither replica can operate as the primary. This is called a

total failure.

Suppose that the primary did indeed fail and the secondary has been designated to be the new primary. Now

we face the second problem: the new primary may not have received all of the committed updates

performed by the former primary before the former primary failed. One solution to this problem is to have

the primary delay committing a transaction’s updates until it knows that the secondary received those

updates. The primary could wait until the secondary has stored those updates in stable storage, or it could

wait only until the secondary has received the updates in main memory. If the system that stores the

secondary has battery backup, then waiting until the updates are in main memory might be reliable enough.

In either case, we’re back to synchronous replication, where the updates to the replica are included as part

of the transaction. This extra round of commit-time messages between the primary and secondary is

essentially a simple two-phase commit protocol. The performance degradation from these messages can be

significant. The choice between performance (asynchronous replication) and reliability (synchronous

replication) depends on the application and system configuration. Therefore, database products that offer

database mirroring usually offer both options, so the user can choose on a case-by-case basis.

Primary Recovery with Multiple Secondaries

In the next three subsections, we look at the more general case where there are multiple secondaries.

Majority and Quorum Consensus

Suppose there are multiple secondaries, and a secondary detects the failure of a primary. This could be the

result of a communication failure that partitions the network into independent sets of functioning replicas. In

this case the primary could still be operational, so the set of replicas that doesn’t include the primary must

not promote one of the secondaries to be a primary. The same problem can arise even if the primary is

down. In this case, we do want to promote one of the secondaries to become primary. But if there are two

independent sets of replicas that are operating, each set might independently promote a secondary to be the

primary, a situation that we want to avoid.

One simple way to ensure that only one primary exists is to statically declare one replica to be the primary.

If the network partitions, the partition that has the primary is the one that can process updates. This is a

feasible approach, but it is useless if the goal is high availability. If the primary is down, each partition has

to assume the worst, which is that the primary is really running but not communicating with this partition.

Thus, neither partition promotes a secondary to become primary.

 Replication

 Copyright 20__ Elsevier, Inc. All rights reserved. 9-11

A more flexible algorithm for determining which partition can have the primary is called majority

consensus: a set of replicas is allowed to have a primary if and only if the set includes a majority of the

replicas (see Figure 9-9). Since a majority is more than half, only one set of replicas can have a majority.

Moreover, each partition can independently figure out if it has a majority. These are the two critical

properties of majorities that makes the technique work.

Replica

Partition 1 Partition 2

Replica

Replica

Replica

Replica

Replica

Figure 9-9 Majority Consensus Partition 1 has a majority of the replicas and is therefore allowed to

process updates. Partition 2 may not process updates.

Majority consensus is a generalization of the watchdog technique we described for database mirroring. The

watchdog adds a third process to the mix. Two communicating processes comprise a majority. Thus,

whichever partition has at least two communicating processes is allowed to have the primary: either the

existing primary and secondary if the watchdog is down; or the watchdog plus whichever replica(s) it can

communicate with. By convention, if the watchdog can communicate with the primary and secondary but

the latter cannot communicate with each other, then the secondary is told to fail.

Majority consensus does have one annoying problem: it does not work well when there is an even number

of copies. In particular, it is useless when there are just two replicas, since the only majority of two is two,

that is, it can operate only when both replicas are available. When there are four replicas, a majority needs

at least three, so if the network splits into two groups of two copies, neither group can have a primary.

A fancier approach is the quorum consensus algorithm. It gives a weight to each replica and looks for a set

of replicas with a majority of the weight, called a quorum (see Figure 9-10). For example, with two

replicas, one could give a weight of two to the more reliable replica and a weight of one to the other. That

way, the one with a weight of two can be primary even if the other one is unavailable. Giving a weight of

two to the most reliable replica helps whenever there is an even number of replicas. If the network partitions

into two groups with the same number of copies, the group with the replica of weight two still has a quorum.

Replica

weight = 2 Partition 1
Replica

weight = 1

Replica

weight = 1

Partition 2
Replica

weight = 1

Replica

weight = 1

Replica

weight = 1

Figure 9-10 Quorum Consensus Partition 1 has a total weight of 4, which is more than half of the total

weight of 7. It therefore constitutes a quorum and is allowed to process updates.

Reaching Consensus

During normal operation, the set of operational replicas must agree on which replicas are up and which are

down or unreachable. If a replica loses communication with one or more other replicas, then the operational

 Replication

 Copyright 20__ Elsevier, Inc. All rights reserved. 9-12

replicas need to reassess whether they still have a majority. (For the purpose of this discussion, we’ll

assume majority consensus, not quorum consensus.) In fact, the non-operational replicas that are up also

need to do this when they reestablish communications with a replica, since this replica may be the one they

need to reach a majority. After some group of replicas is established as having a majority, that group can

choose a primary and ensure that all replicas in the group have the most up-to-date state.

To discuss the details, we need some terminology: The replica set is the set of all replicas, including those

that are up and down. The current configuration is the set of operational replicas that are able to

communicate with each other and comprise a majority.

An algorithm that enables a set of processes to reach a common decision is called a consensus algorithm.

In this case, that common decision is agreement on the current configuration by a set of operational replicas.

Given our problem context, we’ll call the participants replicas instead of processes. But the algorithm we

describe works for general consensus, not just for deciding on the current configuration.

One problem with such consensus algorithms is that multiple replicas may be trying to drive a common

decision at the same time. It’s important that different replicas don’t drive the replicas towards different

decisions. Another problem is that the system may be unstable, with replicas and communications links

failing and recovering while replicas are trying to reach consensus. There’s not much hope in reaching

consensus during such unstable periods. However, once the system stabilizes, we do want the algorithm to

reach consensus quickly.

There are several variations of algorithms to reach consensus, but they all have a common theme, namely,

that there’s a unique identifier associated with the consensus, that these identifiers are totally ordered, and

that the highest unique identifier wins. We will call that identifier an epoch number. It identifies a period

of time, called an epoch, during which a set of replicas have agreed on the current configuration, called an

epoch set. An epoch number can be constructed by concatenating a counter value with the unique replica

identifier of the replica that generated the epoch number. Each replica keeps track of the current epoch

number e in stable storage.

During stable periods, the epoch set with largest epoch number is the current configuration. During unstable

periods, the actual current configuration may differ from the current epoch set. The goal of the consensus

algorithm is to reach agreement on a new epoch set with associated epoch number that accurately describes

the current configuration.

Suppose a replica R is part of the current configuration, which has epoch number e1. If R detects that the

current configuration is no longer valid (because R has detected a failure or recovery), R becomes the leader

of a new execution of the consensus algorithm, which proceeds as follows:

1. R generates a new epoch number e2 that is bigger than e1. For example, it increments the counter value

part of e1 by one and concatenates it with R’s replica identifier.

2. R sends an invitation message containing the value e2 to all replicas in the replica set.

3. When a replica R receives the invitation, it replies to R with an accept message if R has not accepted

another invitation with an epoch number bigger than e2. R includes its current epoch number in the

accept message. Moreover, if R was the leader of another instance of the consensus algorithm (which

is using a smaller epoch number), it stops that execution. Otherwise, if R has accepted an invitation

with an epoch number bigger than e2, it sends a reject message to R. As a courtesy, it may return the

largest epoch number of any invitation it has previously accepted.

4. R waits for its timeout period to expire (to ensure it receives as many replies as possible).

a. If R receives accept messages from at least one less than a majority of replicas in the replica

set, then it has established a majority (including itself) and therefore has reached consensus. It

therefore sends a new epoch message to all of the accepting replicas and stops. The new

epoch message contains the new epoch number and epoch set. When a replica receives a new

epoch message, it updates its epoch number and the associated list of replicas in the epoch set

and writes it to stable storage.

 Replication

 Copyright 20__ Elsevier, Inc. All rights reserved. 9-13

b. Otherwise, R has failed to reach a majority and stops.

Let’s consider the execution of this algorithm under several scenarios. First, assume that only one leader R

is running this algorithm. Then it will either receive enough accept messages to establish a majority and

hence a new epoch set. Or it will fail to reach a majority.

Suppose a leader R1 fails to establish an epoch set. One reason this could happen is that R1 may be unable to

communicate with enough replicas to establish a majority. In this case, R1 could periodically attempt to re-

execute the algorithm, in case a replica or communication link has silently recovered and thereby made it

possible for R1 to form a majority.

A second reason that R1 may fail to establish an epoch set is that another replica R2 is concurrently trying to

create a new epoch set using a higher epoch number. In this case, it is important that R1 not re-run the

algorithm right away with a larger epoch number, since this might kill R2’s chance of getting a majority of

acceptances. That is, it might turn into an “arms race,” where each replica re-runs the algorithm with

successively higher epoch numbers and thereby causes the other replica’s consensus algorithm to fail.

The arms race problem notwithstanding, if R1 fails to establish an epoch set and, after waiting awhile,

receives no other invitations to join an epoch set with higher epoch number, then it may choose to start

another round of the consensus algorithm. In the previous round, if it received a reject message with a

higher epoch number e3, then it can increase its chances of reaching consensus by using an epoch number

even higher than e3. This ensures that any replica that is still waiting for the result of the execution with

epoch number e3 will abandon waiting and choose the new, higher epoch number instead.

Establishing the Latest State

After the current configuration has been established as the epoch set, the primary needs to be selected and

all of the replicas in the current configuration have to be brought up to date. If the epoch set includes the

primary from the previous epoch, then there is no need to switch primaries. Moreover, the primary has the

most up-to-date state. So to ensure the secondaries are up-to-date, the primary simply needs to determine

the state of each secondary and send it whatever updates it is missing.

If the epoch set does not include the primary from the previous epoch, then a new primary must be selected.

The choice of primary may be based on the amount of spare capacity on its machine (since a primary

consumes more resources than a secondary) and on whether it has the latest or a very recent state (so that it

can recover quickly and start accepting new requests).

The latest state can be determined by comparing the sequence numbers of the last message received by each

secondary from the previous primary. The one with highest sequence number has the latest state and can

forward the tail of the sequence to other secondaries that need it. After a replica receives that state, it

acknowledges that fact to the primary. After the new primary receives acknowledgements from all replicas

in the epoch set, it can start processing new transactions. The new primary should then start off with a

message sequence number greater than that of the largest received by any secondary in the previous epoch.

This recovery procedure relies on the majority consensus rule, which ensures that each epoch includes at

least one replica that was in the epoch set of the previous epoch. These are the only replicas that know the

latest state. This is why the new primary must wait for all replicas to acknowledge receipt of the latest state.

Otherwise, if it starts processing transactions and fails before some secondaries are up-to-date, there’s a risk

that the next epoch won’t have any up-to-date replicas in its epoch set.

This argument is predicated on the use of synchronous replication between the primary and secondaries.

Otherwise, as with database mirroring, the last few transactions committed by the primary before it failed

might not be known to any of the secondaries that are part of the next epoch. The same tradeoff between

performance and reliability that we discussed for database mirroring applies here as well.

