
CSE 490H 08au
Assignment 4

Cloud-Based Web Application Hosting

Administrative Details

Assigned: Thu 11/20/08

Part A Due: Tue 11/25/08 by 4:30pm
Part B Due: Tue 12/9/08 by 4:30 pm

Partners: You are required to use the same partner(s) as from assignment 3.

Submit: Part A via an email to Aaron and Slava. Part B via turnin on attu.

Starter Source Code: http://www.cs.washington.edu/education/courses/cse490h/
08au/projects/ec2source.zip

Introduction

In assignment 3 you:
• Generated map tiles comprising a map of the the United States, computed at

several zoom levels
• Computed an index from every street address range in the United States to its

(lat, lon) coordinate

In this assignment, you will connect these data structures to a web-site frontend
application which displays map tiles for a particular range of the map, and can be
relocated to point at any address the user requests via a form submission.

We will host these web applications "in the cloud" using computers provided by
Amazon's EC2 (Elastic Compute Cloud) framework. We will upload our data into S3 (the
Simple Storage Service) where our EC2 instances will retrieve the information.

This assignment is to be performed in two stages. The first of these stages (Part A)
involves configuring your user account so that you can log in to EC2. The second stage
(Part B) is the "meat" of the assignment itself. Assuming there are no hiccups, part A
should take you no more than two hours. Of course, the reason we want you to do this
early is because there are always hiccups. You will need to get your EC2 access issues
squared away, so we're including a "mini assignment" to make sure you can turn EC2
on.

Part A - Getting Started with EC2

In Part A, you must do the following:
• Initialize your compute environment
• Create an SSH keypair registered with EC2
• Start an EC2 instance and read back some information

http://www.cs.washington.edu/education/courses/cse490h/08au/projects/ec2source.zip
http://www.cs.washington.edu/education/courses/cse490h/08au/projects/ec2source.zip

• Prove to Aaron and Slava that you have done so by emailing this information to
them before the part A deadline

This is not complicated;the instructions here are lengthy because they are a step-by-
step formula to getting access to the machines.

If you have not already read the EC2 Getting Started Guide, stop and do so now.
http://docs.amazonwebservices.com/AWSEC2/2008-05-05/GettingStartedGuide/

If you are stuck, refer back to this document, and the notes from the course lecture on
Amazon Web Services.

Download the EC2 API tools from http://s3.amazonaws.com/ec2-downloads/ec2-api-
tools.zip
These tools require that Java is installed, and that the JAVA_HOME environment variable
points to their installation root.

Unzip the API tools to a directory somewhere. Set the environment variable EC2_HOME
to point to this directory.

Important information about our shared account

We are all sharing one big account for our Amazon Web Services usage.
Much like our shared Hadoop cluster, this requires that we all tread lightly
and be polite to one another. As with the Hadoop cluster, security and
isolation is minimal. Don't cheat or copy one another's data; this is strictly
forbidden. (Obviously.) Furthermore, please don't terminate one another's
instances, etc. There are no system checks that will prevent you from doing
so -- you just need to be careful.

The rules for our shared account:

Aaron has distributed to you a set of files that identify our shared account. There is one
account for all of us.

• Do not forward the account credentials files to anyone else.
• Do not run more than one EC2 instance per group. If you bork an instance, shut

it down with ec2-terminate-instances, and then start a new one.
• Only run m1.small instances; do not use any 64-bit instances.
• Do not create multiple S3 buckets -- only one per group.
• Do not write to any S3 bucket besides your own.
• Always launch your instances in a security group identified by your netid
• Always launch your instances with a keypair identified by your netid

Setting up the rest of your environment:

The EC2 credentials come in two files: one named pk-XXXXX.pem, which is a private key
that identifies our account, and another named cert-XXXXX.pem which is our public
certificate.

Set the environment variable EC2_CERT to the full path to the cert file. Set the
environment variable EC2_PRIVATE_KEY to the full path to the private key file.

You'll probably want to put $EC2_HOME/bin in your PATH variable, so that you can run

http://docs.amazonwebservices.com/AWSEC2/2008-05-05/GettingStartedGuide/
http://s3.amazonaws.com/ec2-downloads/ec2-api-tools.zip
http://s3.amazonaws.com/ec2-downloads/ec2-api-tools.zip

the ec2-* commands without typing out the full path to them every time.

Testing that your environment is correctly set:

You should now have four environment variables set (JAVA_HOME, EC2_HOME,
EC2_CERT, EC2_PRIVATE_KEY). You may have optionally updated PATH. Restart any
cygwin shells that were started before you set your environment up.

Then type "ec2-describe-images"; you should get the following output:

~$ ec2-describe-images
IMAGE ami-a86783c1 490h-data/490h-server-i386.manifest.xml 540060130083
available private i386 machine aki-a71cf9ce ari-a51cf9cc

This identifies the Amazon Machine Image (AMI) our class will use. It's name is the "ami-
a86...." in the second field. There are several other AMIs available (type ec2-describe-
images -a to see all images you have access to), but this one has all the software
neccessary for hosting your service already installed.

SSH Keys:

ssh, as you know, is the tool of choice to remotely log in to a machine somewhere. ssh
will attempt to log in with whatever username you provide; the remote machine may ask
for a password which you type in -- the password is then encrypted for transmission and
sent to the server -- and the server either grants or denies access.

An alternate ssh authentication mechanism is called public key exchange. In this system,
you create two files: a "public key" and a "private key." Each of these files contains a
very long number (encoded in ASCII). These two numbers are chosen in a special way
so that you cannot deduce the contents of one number from another, but any
"messages" encrypted by the public key can only be read by the person holding the
private key.

SSH can use these files to authenticate a user. You install the public key file on the
machine you want to log in to. You keep your private key secret -- it only lives on your
own machine. SSH can prove that you are who you say you are, because you are the
only person with the private key that matches the public key the server already knows.

This is how you can log in to your EC2 instance. You create a public/private keypair
on your computer, and send the public key to a database maintained by EC2. When EC2
starts an instance for you, it will inject a copy of your public key file into the new
instance. You can then log in with the ssh private key. Since you are the only one with
the private key, this is secure.

To create a keypair, run:

$ ec2-add-keypair keyname

The keyname is how Amazon refers to your key, to distinguish it from mine, a
classmate's, etc. Use your net id for your keyname. This will emit several lines of text to
the console -- this is the private key. Save all of this output in a file named
"id_rsa-keyname". This is the traditional name for an RSA-encryption private key file.
You may share this key with your partner so you can both log in to the same instance
conveniently, but don't post your private key to the world -- treat it like a password.

ssh wants you to keep this file secure, too. So it will refuse to use the file as your private
key unless you set its permissions to be private to you only. You'll have to change the
file permissions with chmod:

$ chmod 0600 id_rsa-keyname

If you prefer to use the mnemonics, equivalent commands are:

$ chmod go-rwx id_rsa-keyname

Security Groups:

EC2 instances run in a datacenter shared with dozens (hundreds? thousands?) of other
users. To keep you isolated from them, and vice versa, Amazon provides a firewall
service to prevent unauthorized traffic getting to your machine. You must enable the
"ports" on your computer that define the intra-machine addresses for the various
services you want to host.

Your server will need to allow connections to ssh so you can log in. It must also allow
connections to the web server. These run on ports 22 and 80, respectively.

EC2 firewall settings are applied to an object called a "security group." When you start
an instance, you chose which security group it is created in. You must create your own
security group, and enable the ports we need.

To create the security group, run:

$ ec2-add-group groupname -d "Description of the group"

Enter your netid for both the groupname and description. When it succeeds, it will give
you back a line something like:
GROUP 540060130083 aaron Aaron

Now you must enable the ports you want:
$ ec2-authorize groupname -P tcp -p 22
$ ec2-authorize groupname -P tcp -p 80

If you then read back the information about your security group, you should see:

$ ec2-describe-group groupname

with output something like:
GROUP 540060130083 aaron Aaron
PERMISSION 540060130083 aaron ALLOWS tcp 22 22 FROM CIDR
0.0.0.0/0
PERMISSION 540060130083 aaron ALLOWS tcp 80 80 FROM CIDR
0.0.0.0/0

The "FROM CIDR 0.0.0.0/0" means that the entire Internet can access those ports.
(Good thing ssh has the private key file check.) If you wanted to, you could restrict it so
that only certain subnet addresses could access the machine.

Launching an instance:

You are now ready to launch your instance! First, run ec2-describe-images to get the
name of our image ("ami-XXXXXXX").

Then run an instance of our image with the following command:

$ ec2-run-instances -t m1.small -n 1 -k keypairname -g groupname ami-XXXXXX

This will return information about your new instance, including the word "pending";
something like the following:

RESERVATION r-f0e54399 540060130083 aaron
INSTANCE i-96eb5bff ami-a86783c1 pending aaron 0m1.small
2008-11-20T03:23:40+0000 us-east-1b aki-a71cf9ce ari-a51cf9cc

The instance is not yet started; you have simply asked the EC2 provisioning service to
run it, and it immediately returns. The provisioninng service will now find space for your
instance, download a copy of our AMI to that machine, and then power it on for you.
This takes about a minute or two.

After a couple minutes, see if your instance is ready. Run:

$ ec2-describe-instances

and it will give you a list of all our instances which are pending, running, or recently
terminated. This gives you information about not only your instances, but all instances
associated with our account. Fortunately, they are sorted by security group. Each
"RESERVATION" line begins the list of instances associated with another security group.
Find your reservation in the list, and then look at the instance following it. (You should
only ever have one instance in your reservation at a time.) If your instance is still
"pending," wait a bit. If for some reason it is marked "shutting-down" or "terminated",
you'll need to launch another one.

Hopefully, though, you'll see a line that looks something like this:

$ ec2-describe-instances
RESERVATION r-f6e4429f 540060130083 aaron
INSTANCE i-98ea5af1 ami-2b5fba42
ec2-75-101-220-49.compute-1.amazonaws.com
domU-12-31-39-00-79-82.compute-1.internal running aaron 0m1.small
2008-11-20T02:55:51+0000 us-east-1b aki-a71cf9ce ari-a51cf9cc

The word "running" means that our instance has powered on. (It may not be 100%
booted, but this takes less than a minute, so if you still have trouble, just wait a
minute.)

The "ec2-75-...amazonaws.com" entry is the machine's external DNS name. You can ssh
to your instance now by running:

$ ssh -i /path/to/id_rsa-keyname root@ec2-75-whatever-dns-you-have.amazonaws.com

Hopefully your machine is now running; you should be able to log in and get a welcome
message and a terminal. You can now look around (cd, ls, and all the other usual linux
commands are there). Point your web browser at the DNS address for your machine. You
should see a web page with the magic word on it.

What to Turn in for Part A:

Email aaron and slava with:
• The magic word from the web page at http://ec2-your-address-

here.amazonaws.com/
• The rev number from /etc/ec2/release-notes (type "cat /etc/ec2/release-notes"

to read the file)

Shutting Down your Instance:

mailto:root@ec2-75-whatever-dns-you-have.amazonaws.com
http://ec2-your-address-here.amazonaws.com/
http://ec2-your-address-here.amazonaws.com/
http://ec2-your-address-here.amazonaws.com/

It is important not to just walk away and leave instances running indefinitely. We can
only run a fixed number at a time, and they cost money (against our credit cap) to run,
even when idle. To shut down an instance, log in as root and type "/sbin/shutdown -h
now" without the quotes. This will shut down your instance.

You may notice that you're doing all of your commands on this instance as root. This
means that you have unchecked access to all of the system's configuration. If you type a
powerful delete command, for instance, it won't stop you from blowing away the entire
machine's file system (or possibly locking you out, etc). If you get locked out of your
instance, or otherwise screw it up, you will need to kill it "the hard way."

Type:

$ ec2-describe-instances

To get a list of all the instances. Find your instance in the list. It will have an instance id:
"i-XXXXXXXX" in the second field. Terminate it with the command:

$ ec2-terminate-instances i-XXXXXXXX

This will terminate the instance. Remember: we all share an account. Make sure that you
only do this to your own instances; other students will be very unhappy if you
accidentally shut down theirs!

Important: If students report that they can't create an instance because other students
have created too many, I'll just look through the list for whomever is running multiple
instances and start terminating them until you're left with one per security group.
Hopefully I don't shut down the one you are using :) Please monitor what your usage is.

Part B - Web Application Development

We will be using a servlet engine to allow you to write programs people can access
through the web. This system is designed to connect small Java programs called
"servlets" to URLs. The servlet is comprised of two things: Java code to run, and an XML
file describing which Java classes are bound to which URLs. When a request is given via
HTTP to a URL on your server, the servlet engine checks if it is a URL associated with a
servlet. If so, it then runs your servlet program. The servlet program is given access to a
response object which it can fill with a status code (e.g., "404 not found") and text (the
"document body"). This response is then sent back to the originator of the HTTP request.

The particular servlet engine we will be using is called Tomcat 5.5. It is itself written in
Java. You will need to download this from http://tomcat.apache.org/download-55.cgi to
compile your source code. You do not need to configure this on your own system -- you
just need to have the .jar files so that you can compile against them (much like with
Hadoop).

Your servlet must:
• accept a 4-tuple of (address, street name, zipcode, zoomlevel)
• return a 4-tuple of (lat, lon, tile_x, tile_y)

The format for each of these is described in more detail below. In general, this project
should be significantly less work than project 3. There is considerably less code to write.
That having been said, you should still start early because:

http://tomcat.apache.org/download-55.cgi

• This project relies on you being a bit more of an expert user of a linux system
than you might already be. You're going to need to get comfortable with these
tools with unfamiliar syntax.

• You may need to go back to project 3 and modify your geocode index, depending
on whether or not you set up your index in a way that makes it efficiently
scannable.

Download the starter source code for this project if you have not already done so, and
unzip it. We will call this directory $BASE.

This contains a few directories and files:
• html/ - Contains the web front end (e.g., the map viewer); this is very similar

to the one you had for project 3, but it has been programmed to use JavaScript
to send requests to your servlet

• WEB-INF/ - Contains the XML description of the servlet bindings
• WEB-INF/lib/ - Contains Java libraries you need to include in your package
• src/ - Contains starter source code
• build.xml - A script that can be parsed by ant to compile and package up your

servlet. If you are doing this on a lab machine, ant is already installed. If you are
working on your own machine, download and install ant from
http://ant.apache.org/ now.

• bootstrap - A placeholder for your bootstrap script

Using ant:

Open the build.xml file in a text editor. Near the top is a property named "tomcat-
home". You should edit the value="..." to point to the directory where you unzipped
tomcat 5.5 to. This will allow compilation against Tomcat. You won't be able to compile
otherwise.

To compile all your .java files in the $BASE/src/ directory, go to the $BASE directory and
run "ant". This compiles .java into .class files.

To remove any intermediate and output files, run: ant clean
To build a file named map.tar.gz which contains everything you should upload to your
server, run: ant tar

This requires cygwin on windows.

In the src/ dir...:

You must edit edu/washington/cse490h/geo/LookupServlet.java so that it contains your
servlet body. An instance of your servlet will be constructed, and the doGet() method
will be invoked when your URL is visited (each time an address is looked up).

The doGet() method must:

• Return status code SC_NOT_FOUND (404) if it cannot look up an address
• Write each of the latitude, longitude, tileId.x, and tileId.y to the 'out' writer if it

can look up an address. Each of these must be on its own line. They must be in
the same order listed here.

You are free to create your own helper methods, helper classes, etc, as necessary to
make your implementation efficient. You may copy in some or all of your sources from
project 3 to support this implementation. (Several classes such as your TileSetDivider
implementation and record data types may prove very useful.)

http://ant.apache.org/

The doGet() method receives an HttpServletRequest object from the servlet engine. This
describes the entire request that was used to invoke the servlet. This is how you receive
"arguments" that describe, for example, what address you want to look up.

The method request.getQueryString() will return a string that lists all the arguments to
your servlet in the form "key1=val1&key2=val2&key3=val3&..." You should pull these
arguments apart into individual entities. The keys and values themselves will be "URL
encoded" so they can be transmitted in a URL. (For example, URLs cannot contain
spaces, so they use a special escape sequence to encode this fact.) Use the
java.net.URLDecoder.decode() method to turn a URL-encoded string into a "plain" string.
The character encoding that you should assume is "UTF-8" (see the Java API reference
for this method for more information if you need it).

The index.html page will send a request with four keys to your servlet. The keys are:
• address -- the number to lookup (e.g., "600")
• street -- the street the address is on (e.g., "apple st")
• zip -- the zip code (e.g., "98105")
• zoom -- the map's current zoom level (e.g., "6")

It is important that your lookup system be efficient. It should not need to do a linear
scan of the entire index to find an address. Using hashing and sorted indices, you must
be able to support O(log(n)) lookup time.

Uploading your system:

So you've written source code locally. Time to run it on EC2. Run 'ant tar' to compile
your code and make it into a big tarball to upload. This will be in $BASE/map.tar.gz

You can upload the package with the 'scp' program. Use ec2-describe-instances to get
the DNS name of your server, then do:

$ scp -i /path/to/id_rsa-keyname map.tar.gz root@your-instance-dns.amazonaws.com:

This will upload the map.tar.gz file to /root/ on your instance. If you specify a directory
after the ...amazonaws.com:/some/dir/goes/here, it will upload the file there instead.

You should then log in to your instance and unzip this into the directory where tomcat
looks for web applications:

root@yourinstance# tar vzxf path/to/map.tar.gz -C /usr/share/tomcat5/webapps

Tomcat caches your servlet in memory for higher performance. If you change your
servlet, you may need to restart tomcat. Run:

root@yourinstance# /etc/init.d/tomcat5 restart

...to do this. Tomcat takes about 30 seconds or so to start up even after it returns
"[OK]"; be patient.

To access the servlet itself, you can send a web browser to:

http://your-instance-dns.amazonaws.com:/map/
LookupAddress?key=val&key2=val2&key3=val3

If given the keys "address", "street", "zip", and "zoom" and good values for all the
above, it should print four lines of text when you return lat, lon, tile_x, and tile_y. If it
returns an error, time to debug! When it looks like this works, then try it through the
web site interface. Navigate to http://your-instance-dns.amazonaws.com:/map/ (note:

mailto:root@your-instance-dns.amazonaws.com:
http://your-instance-dns.amazonaws.com:/map/
http://your-instance-dns.amazonaws.com:/map/

the final '/' is important) and type an address in to the text boxes and click the lookup
button. Hopefully this is successful :) If not, go back up to the previous step.

Getting data off our Hadoop cluster and into S3:

The astute reader will note that completing all of the above is pretty much doomed to
failure on its own. How can this display your map, or look up addresses in your index
when it's all trapped in our Hadoop cluster? So the first thing we have to do is get the
data from Hadoop into EC2.

The server includes a hadoop-0.18.2 installation, which is itself configured to talk to our
Hadoop cluster. This will require you to log in to the gateway node from the EC2
instance. So ssh to your EC2 instance, then SSH to
yourusername@hadoop.cs.washington.edu with "-D 2600":

$ ssh -D 2600 username@hadoop.cs.washington.edu

Now you have a tunnel open to our hadoop cluster. Minimize this ssh session and forget
about it for the time being. Use ssh to log in to your EC2 instance a second time.

Hadoop is installed in /usr/local/hadoop. So you should now be able to run:

$ /usr/local/hadoop/bin/hadoop fs -ls /

And see the contents of HDFS :)
More importantly, you will be able to run commands of the form:

$ /usr/local/hadoop/bin/hadoop fs -copyToLocal /some/hdfs/path /some/local/path

Using this, you can copy your data from HDFS onto your instance. You should put this
data in the /mnt/ directory on your instance. Your instance has two disks associated with
it. '/' has a small system disk mounted on it that is only a few GB. Just enough to boot
the system. '/mnt/', however, is a 160 GB volume that is completely empty. All of your
tile and geocode index data should be downloaded to here from HDFS.

Remember that your instance is ephemeral. When you shut it down, all the data on it
disappears. (So if you modify source code on the instance itself, make sure you copy it
off before you shut it down!) It is a very bad idea to always acquire data from our
hadoop cluster every time you need it. Our hadoop cluster is in Seattle; EC2 servers are
on the east coast. This is time consuming, puts a heavy load on our cluster, and incurs
bandwidth charges ($$/GB) that we want to minimize. So we only want to copy data
from our Hadoop cluster once.

After you run the copyToLocal commands necessary to get your data from HDFS into
your instance, you should then copy this data to S3 -- the Amazon simple storage
service. This service lives in the same datacenters as EC2. Bandwidth between S3 and
EC2 is much faster, and it's free.

There are two programs which allow you to access S3: s3cmd.rb and s3sync.rb. These
commands allow you to copy local data to S3 and vice versa. s3cmd.rb is good for
copying individual files. s3sync.rb is good for copying entire directories.

In the same email where you were given the EC2 credentials, you were also given a set
of environment variables to use with S3. We will use these here. These environment
variables are named AWS_ACCESS_KEY_ID, AWS_ACCOUNT_ID, and
AWS_SECRET_ACCESS_KEY.

mailto:yourusername@hadoop.cs.washington.edu
mailto:username@hadoop.cs.washington.edu

On your EC2 instance in your ssh terminal, run commands of the form "export
VARIABLE=value" to set these. For example "export
AWS_ACCESS_KEY_ID=0123456789". Do this for all the above. You can then use the
s3sync.rb and s3cmd.rb programs.

(If you log out and log in with another ssh terminal, you'll need to repeat the above
process.)

The first thing you should do with S3 is create a bucket to hold your data. Bucket
names must be globally unique -- across our account, and all others -- so it is unlikely
that you'll get a very basic bucket name like "bob". Try to name it something involving
your netid:

$ s3cmd.rb createbucket bucketname

You can list all our buckets with:

$ s3cmd.rb listbuckets

You can then copy an individual file to S3 using the command:

$ s3cmd.rb put bucketname:filenameInBucket local/path/to/file

If you want to copy an entire directory to S3, you have a couple options:
• Create a .tar.gz containing all the files in the directory and then put that file with

s3cmd.rb
• Use s3sync

In general, getting and putting many small objects is a very bad idea. Each get or put
has a high overhead to start. So putting 10,000 files will take a very long time. Putting
them in a compressed tar file and uploading that 1 file will take a very small fraction of
that time. But copying 50 or 100 files with s3sync to S3 is ok.

To create a tarball, let's assume we have a directory named /foo/bar, and we want the
contents of 'bar' and all its children to be in the tarball.

Do:

you:~$ cd /foo
you:foo$ ls
bar/
you:foo$ tar cvzf bar.tar.gz bar/
... all files in bar/ are listed..
you:foo$ ls
bar.tar.gz bar/

Then
you:foo$ s3cmd.rb put mybucket:myFileInSpace bar.tar.gz

To use s3sync, run:

you:~$ cd /foo
you:foo$ s3sync.rb -v --make-dirs bar/ myBucket:bar/

This will upload bar/ and all its contents to S3. s3sync.rb is picky about how you use
trailing '/' characters; it may or may not store the directory name itself, depending on

this.

You will need to get all your tiles (For all zoom levels) and your entire Geocode index
into S3.

Getting data out of S3 and in place on your server:

Assuming that you've uploaded your files into S3 and then shut down your instance..
you will eventually want to continue working on this project. Start a new instance -- no
map tiles are there. This time, let's retrieve them from S3 -- much faster than
transferring from UW!

First, set the AWS_... environment variables as described in the previous section.

Now, get individual files by running:

$ s3cmd.rb get mybucket:myfilename path/to/local/destination

Note that s3cmd.rb uses (s3obj, localobj) as its argument order; not necessarily (dest,
src) or (src, dest) in particular.

To run s3sync.rb in reverse, run:

$ s3sync.rb -v --make-dirs myBucket:bar/ bar/

This does use (src, dest) as its argument order.

To uncompress a tarball, run:

$ tar vzxf tarballFileName.tar.gz

If you add the argument "-C some/dir", it will change directory to some/dir before
unzipping.

The geo program from project 3 generated compressed sequence files as its output
format for all your tiles. You need to "unpack" these files before you can display them on
the web site. Run the extraction tool in edu.washington.cse490h.geo.TileExtractor to
unpack the SequenceFiles. This will generate a directory called tiles/ with several
numbered subdirectories, one per zoom level. Move the tiles/ directory into /mnt/html/
(so you have /mnt/html/tiles/). This is where the web page is programmed to look for
the tile data.

You should put your geocode index into a directory under /mnt; where you put these
files is up to you, as the code that must read this index is entirely in your control.

Bootstrap scripts:

All of the steps that you had to perform in the preceeding section must be done every
time the instance starts. Ideally, you will eventually have a system that can turn on, and
perform these steps automatically. This is done with a bootstrap script. The AMI is pre-
programmed to download a file named myBucket:bootstrap from S3, and run it. You
should write a shell script that runs all of the above unpacking commands, and use
s3cmd.rb to put this in your bucket. There is a file named "bootstrap" in your starter
source code; you should start from here.

Eventually, you should put your map.tar.gz file in S3. Your bootstrap script should

download this from S3 and unpack it to /usr/share/tomcat5/webapps. We will launch a
copy of our AMI, with the metadata pointing at your bucket. Your bootstrap script should
completely initialize your server so that it can be "cold started" with no human
intervention.

Sending metadata to your instance:

When the system is bootstrapping, how does it know which bucket to read the file from?
How does it know what to set the AWS_ACCOUNT_ID, etc, environment variables to?

This is accomplished with instance-specific metadata. Your bootstrap script is run by yet
another script, which is already in the AMI. This is called start-bootstrap. You can set the
environment variables that are present in start-bootstrap with a specially formatted
metadata string, of the form "VAR=value:VAR2=value2:VAR3=value3:..." This string can
be passed to ec2-run-instances with the -d argument.

e.g.,

$ ec2-run-instances ami-XXXXX -g group -k keypair -d "FOO=fval:BAR=bval"

The environment variables that are needed are:
AWS_ACCOUNT_ID
AWS_SECRET_ACCESS_KEY
AWS_ACCESS_KEY_ID
BUCKET

The first three are their usual names; the final one of these identifies your bucket, from
which it looks for a file named 'bootstrap'.

Extensions:

Totally not necessary, but if you're ambitious, here are some random ideas...

• Do more clever things with the map; add "pins" that float over addresses you
look up; allow more interaction with the mouse, etc. This requires knowledge of
JavaScript/AJAX and modifying the index.html file we gave you

• Create another servlet that can parse an address out of a single line, rather than
requiring users to break up the fields themselves.

• Do some mashup with the real google map API widget side-by-side with yours,
or with data from both overlaid on a single surface (?!). Sky's the limit.

• Driving directions. Satelite coverage. Telephone number lookup by address.
Totally awesome and ridiculous mappy things, etc.

Hints and Tips:

• Write a non-web-based lookup system first with its own main() method and test
this first

• When this works, directly send URLs to http://your-address.aws.com/map/
LookupAddress?... to test the servlet interface

• Then and only then should you be testing with the AJAX interface in /map/
index.html

• When writing your bootstrap script, test individual commands on the command
line as you add them to the script. Then run the script start-to-finish on your
own... then upload it to S3 as the bootstrap script and see if it powers your
instance on properly.

• When writing and debugging a bash script, replacing "#!/bin/bash" with "#!/bin/
bash -x" at the top yields useful information.

http://your-address.aws.com/map/

• Putting the command "set -e" in your bash script makes it halt if a sub-command
returns an error. "set +e" undoes this.

• Important: we get charged by the hour for each instance we run. This is fine, as
we have many hours available to us. But if you run an instance for even a
minute, shut it down, and start another one -- that 1 minute instance also costs
an hour. So don't start and stop instances 50 times an hour to test your
bootstrap system, as that's the same as running 50 instances for an hour/1
instance for 50 hours. Run your script on the command line on one instance
yourself, tweaking things as needed, and only run it "from boot" after you're
pretty sure it works.

• Leverage as much functionality from your project 3 code as possible.
• If you don't know how a linux command works, type "man somecommand" to

read its manual page.
• Start early, naturally :)

What to Turn In:

• All source code for part B
• A writeup answering the following questions:

1. The names / netids of everyone in your group
2. What is your bucket name?
3. Describe your servlet system design.
4. What steps does your bootstrap script do?
5. What parts of project 3, if any, did you reuse? For what purposes?
6. Did you need to change how you computed the geocode index from what you

turned in for project 3? What changes did you need to make? How did these
help?

7. Describe how you tested your system
8. We are going to launch your server by running our AMI with ec2-run-instances.

This must completely boot all the way to a functioning web app with no more
intervention on our part. What is the metadata string neccessary to run your
server like this?

9. As a purely fun and voluntary contest, we are going to hold a "demo contest" to
show off everyone's successful implementations. We will email the mailing list
with a list of servers running your map implementations. Then you can all look at
these and vote on who has the niftiest map. If you would like to be included in
the contest, please say "yes" here.

References and Links

EC2 Getting Started Guide: http://docs.amazonwebservices.com/AWSEC2/2008-05-05/
GettingStartedGuide/
EC2 Tools: http://s3.amazonaws.com/ec2-downloads/ec2-api-tools.zip
Tomcat 5.5 download: http://tomcat.apache.org/download-55.cgi
Tomcat 5.5 reference manual: http://tomcat.apache.org/tomcat-5.5-doc/index.html
Starter source code: http://www.cs.washington.edu/education/courses/cse490h/08au/
projects/ec2source.zip
Ant: http://ant.apache.org/

http://docs.amazonwebservices.com/AWSEC2/2008-05-05/GettingStartedGuide/
http://docs.amazonwebservices.com/AWSEC2/2008-05-05/GettingStartedGuide/
http://s3.amazonaws.com/ec2-downloads/ec2-api-tools.zip
http://tomcat.apache.org/download-55.cgi
http://tomcat.apache.org/tomcat-5.5-doc/index.html
http://www.cs.washington.edu/education/courses/cse490h/08au/projects/ec2source.zip
http://www.cs.washington.edu/education/courses/cse490h/08au/projects/ec2source.zip
http://ant.apache.org/

The preceding material is from the University of Washington Computer Science &
Engineering senior undergraduate course:

CSE 490H
Scalable Systems: Design, Implementation and Use of Large Scale

Clusters
Autumn 2008

For further information (including all lecture material) see:

 http://www.cs.washington.edu/education/courses/490h/08au/

Except as otherwise noted, all content is licensed under the Creative Commons
Attribution 2.5 License.

http://www.cs.washington.edu/education/courses/490h/08au/

	assignment4.pdf
	Cloud-Based Web Application Hosting
	
	Administrative Details
	Introduction
	Part A - Getting Started with EC2
	Part B - Web Application Development
	References and Links

	This material is from the University of Washington Computer Science.pdf

