
CSE 490H 08au
Assignment 3

Rendering Map Data

Administrative Details

Assigned: Tue 11/4/08
Due: Tue 11/18/08 at 4:30 pm

Partners: Max of 2 people per group

If you would like, you may pick a partner for this project. This will also be your partner
for project 4 -- so choose wisely ;)

Submit: via turnin on attu, as usual

Starter Source Code: http://www.cs.washington.edu/education/courses/cse490h/
08au/projects/geosource.zip

Introduction

A picture's worth a thousand words, so... the shortest description of this assignment is,
do this:

You will be using geographic survey data and census data to render a map of the major
transportation/geographic features of the United States. The United States Census
(www.census.gov) produces a dataset describing all roads, highways, cities, civic works

http://www.cs.washington.edu/education/courses/cse490h/08au/projects/geosource.zip
http://www.cs.washington.edu/education/courses/cse490h/08au/projects/geosource.zip
http://www.census.gov


(hospitals, parks, etc), bodies of water, etc. in the United States. This data set is
referred to as the TIGER dataset (Topologically Integrated Geographic Encoding and
Referencing system). We are using the "2006 TIGER/Line" dataset.

This project relies on processing the raw TIGER input data, combining it with other
census data (e.g., population estimates for municipalities), and rendering the map of the
US as a set of tiles. We will use Hadoop to perform this processing in parallel.

In the next assignment, you will take your computed data and host it on Amazon's EC2
and S3 platform, building a dynamic web application to allow access to your information.
Effectively, assignment 3 is the Google Maps "backend" assignment, and assignment 4
will be building (a simplified version of) the Google Maps frontend without traffic
direction routing.

We have provided starter code at http://www.cs.washington.edu/education/courses/
cse490h/08au/projects/geosource.zip -- you should use this as the base for your
project, conforming to its interfaces and extending it where indicated.

Tiles, Ranges, Zoom Levels, and Tile Sets

It is inefficient and unwieldy to attempt to render the entire map, at every zoom level
you would like, as a single entity. So we break the map into tiles.

A tile is a square region of the map corresponding to the smallest unit we render at a
time. The view that you display in a web browser is made of several tiles arranged in a
2d grid. A tile is defined by a tile extent which is a northern-most and a southern-most
latitude, and a western-most and eastern-most longitude. We are making a major
simplifying assumption in this assignment, that latitude and longitude are a rectangular
coordinate system. This will result in some rendering inaccuracy, but for the latitudes in
the USA, this is acceptable.

The tiles are arranged in a rectangular grid across a mappable range. The mappable
range is the entire area we wish to render (e.g., the whole USA for your final production
run, or maybe a few square miles for testing). A mappable range is a square (assuming
rectilinear latitude/longitude) defined by the latitudes and longitudes of its edges. We
break the mappable range into a 2D array of tiles.

Within this 2D array each tile has an ID. A tile ID is an (x, y) index into the 2D array
that spans the mappable range.

So if we had 9 tiles across some mappable range, their tile IDs may be:

(0, 0) (1, 0) (2, 0)
(0, 1) (1, 1) (2, 1)
(0, 2) (1, 2) (2, 2)

We will render tiles using an algorithm similar to the one described in Barry's lecture in
class. The mappers will read all the features in our map data, and emit them to the
reducers responsible for rendering them onto tiles. We will precalculate which tile(s) are
responsible for which features, and the mappers will send the features to the reducer(s)
for those tile(s). In the reducer, we will then render each output image.

We do not want to use a separate reducer for each tile; this is far too many reduce
processes. Instead, each reducer will be responsible for rendering a tile set. A tile set is
simply a set of tiles which will be rendered by a single reducer. These tiles do not
necessarily need to be adjacent to one another (although, since a feature like a long

http://www.cs.washington.edu/education/courses/cse490h/08au/projects/geosource.zip
http://www.cs.washington.edu/education/courses/cse490h/08au/projects/geosource.zip


road segment may be rendered on multiple tiles, it would be nice if we could minimize
the amount of data motion required between mappers and reducers).

The minimum tile size is a constant defined in the code which is the smallest width and
height in degrees of lat/lon (we assume these are equal in nature) which corresponds to
an individual tile. Do not change this constant, as changing this determines how fine the
tile grid is, and has a dramatic effect on cluster utilization. Each tile is defined to be 256
x 256 pixels.

The zoom level is an integer >= 1, which is an exponential multiplier of the minimum
tile size that determines how much land area is rendered onto a tile. At zoom level 1, the
minimum tile size of land area is rendered onto a 256x256 pixel tile; this gives the
closest zoom and the most detailed features. At zoom level 2, we take 2x the longitude
in width, and 2x the latitude in height, and render that much land onto the same sized
tile image. Zoom level 3 is 4x the width, 4x the height (16x the area), etc.

One of the components you must implement is a tile set divider which, given the
number of reducers, the mappable range, and the intended zoom level to render, will
break the mappable range into tiles, assign them tile IDs, and group the tile IDs into as
many tile sets as there are reducers. This tile set divider is responsible for maintaining a
2-way mapping: it must be able to return a tile ID for any (lat, lon) in the mappable
range, and given a tile ID, it must return the (lat, lon) of the northwest (top-left) corner
of its tile extent. (Note that this is not neccessarily a direct inverse operation.)



This figure shows a mappable range broken up into several tiles (only some of the tiles
are drawn in). The tiles have been broken up into two tile sets, "A" and "B." Tiles in the
same tile set have the same background color. The mappable range is a square of (lat,
lon) coordinates, as are each tile. The tile set divider determined the number of tiles to
build based on the zoom level provided as an initialization parameter.

The same mappable range (e.g., "the United States") will be passed through the render
process several times, one for each zoom level we intend to render.

Starter Source Code

We have provided source code for you to use to get started. These should strongly
inform the design of your system. All of the source code is under the package
edu.washington.cse490h.geo.

This contains the following subpackages:

• protocol - Defines data types which are marshaled from Mapper to Reducer
and from Reducer to the next phase's Mapper.

• mapred - This is where all your mapper and reducer classes should go



Test Data Set

Use the datasets given below for local testing and debugging. Do not use the entire US
dataset for debugging. Download the King County TIGER/Line data from:

http://www2.census.gov/geo/tiger/tiger2006se/WA/TGR53033.ZIP.

This is about 10 MB compressed. Do all your local testing on this data set. Only run on
the cluster after everything works perfectly locally.
Download the BGN dataset for Washington state here:

http://geonames.usgs.gov/docs/stategaz/WA_Features_20080815.zip

Download the Population dataset for Washington state here:

http://www.cs.washington.edu/education/courses/cse490h/CurrentQtr/projects/
wa_pop.txt

Data Extraction and Data Types

The TIGER data files come as a set of fields organized in records. Each record is a single
line of text. The fields are fixed width, which means that there are no commas, tabs, or
other delimiters marking the edges of fields. Instead, we know how many characters
each field can take up, and all the text in those character designations is the field.

For example, the following record has fields "A", "B", and "C", and is 15 characters wide.
If A was a 3-character field, B is a 6-character field, and C is a 6-character field, the
fields would occupy positions:

0123456789ABCDE (position in hex)
AAABBBBBBCCCCCC (corresponding field)

Some example records in this format may look like:

1 Foo 542571
276Record1337

Note how records that do not occupy their full width are padded on one side or the
other. (The specification determines whether fields are left- or right-side-padded.) Other
fields that occupy their full width run up against the adjacent fields.

The first challenge you must face is parsing your input data set.
The TIGER data provides several types of records. As extensions, you may try to parse
several of these record types and incorporate them into your output tiles. At minimum,
you must parse the first two record types. These are:

1 - Complete chain basic data (line data)
2 - Complete chain shape coordinates (polygon data)

The classes protocol.TigerRecordType1 and protocol.TigerRecordType2 describe the
fields of these two record types that we are interested in. We have provided you with the
data fields; it is your job to write the readFields() and write() methods, and write the
parser which turns a textual record into one of these objects.

http://www2.census.gov/geo/tiger/tiger2006se/WA/TGR53033.ZIP
http://geonames.usgs.gov/docs/stategaz/WA_Features_20080815.zip
http://www.cs.washington.edu/education/courses/cse490h/CurrentQtr/projects/


Below is reproduced the pages from the TIGER data dictionary, which defines the records
precisely:

Record Type 1 - Complete Chain Basic Data Record
Field BV Fmt Type Beg End Len Description
RT No L A 1 1 1 Record Type
VERSION No L N 2 5 4 Version Number
TLID No R N 6 15 10 TIGER/Line(R) ID,

Permanent 1-Cell Number
SIDE1 Yes R N 16 16 1 Single-Side Source Code
SOURCE Yes L A 17 17 1 Linear Segment Source Code
FEDIRP Yes L A 18 19 2 Feature Direction, Prefix
FENAME Yes L A 20 49 30 Feature Name
FETYPE Yes L A 50 53 4 Feature Type
FEDIRS Yes L A 54 55 2 Feature Direction, Suffix
CFCC No L A 56 58 3 Census Feature Class Code
FRADDL Yes R A 59 69 11 Start Address, Left
TOADDL Yes R A 70 80 11 End Address, Left
FRADDR Yes R A 81 91 11 Start Address, Right
TOADDR Yes R A 92 102 11 End Address, Right
FRIADDL Yes L A 103 103 1 Start Imputed Address Flag, Left
TOIADDL Yes L A 104 104 1 End Imputed Address Flag, Left
FRIADDR Yes L A 105 105 1 Start Imputed Address Flag, Right
TOIADDR Yes L A 106 106 1 End Imputed Address Flag, Right
ZIPL Yes L N 107 111 5 ZIP Code(R), Left
ZIPR Yes L N 112 116 5 ZIP Code(R), Right
AIANHHFPL Yes L N 117 121 5 FIPS 55 Code

(American Indian/Alaska Native Area/Hawaiian Home Land), 2000 Left
AIANHHFPR Yes L N 122 126 5 FIPS 55 Code

(American Indian/Alaska Native Area/Hawaiian Home Land), 2000 Right
AIHHTLIL Yes L A 127 127 1

American Indian/Hawaiian Home Land Trust Land Indicator, 2000 Left
AIHHTLIR Yes L A 128 128 1

American Indian/Hawaiian Home Land Trust Land Indicator, 2000 Right
CENSUS1 Yes L A 129 129 1 Census Use 1
CENSUS2 Yes L A 130 130 1 Census Use 2
STATEL Yes L N 131 132 2 FIPS State Code, 2000

Left (always filled both sides, except at U.S.
boundaries)
STATER Yes L N 133 134 2 FIPS State Code, 2000

Right (always filled both sides, except at U.S.
boundaries)
COUNTYL Yes L N 135 137 3 FIPS County Code, 2000

Left (always filled both sides, except at U.S.
boundaries)
COUNTYR Yes L N 138 140 3 FIPS County Code, 2000

Right (always filled both sides, except at U.S.
boundaries)
COUSUBL Yes L N 141 145 5 FIPS 55 Code (County

Subdivision), 2000 Left
COUSUBR Yes L N 146 150 5 FIPS 55 Code (County



Subdivision), 2000 Right
SUBMCDL Yes L N 151 155 5 FIPS 55 Code (Subbarrio),

2000 Left
SUBMCDR Yes L N 156 160 5 FIPS 55 Code (Subbarrio),

2000 Right
PLACEL Yes L N 161 165 5 FIPS 55 Code (Place/CDP),

2000 Left
PLACER Yes L N 166 170 5 FIPS 55 Code (Place/CDP),

2000 Right
TRACTL Yes L N 171 176 6 Census Tract, 2000 Left
TRACTR Yes L N 177 182 6 Census Tract, 2000 Right
BLOCKL Yes L N 183 186 4 Census Block Number, 2000

Left
BLOCKR Yes L N 187 190 4 Census Block Number, 2000

Right
FRLONG No R N 191 200 10 Start Longitude
FRLAT No R N 201 209 9 Start Latitude
TOLONG No R N 210 219 10 End Longitude
TOLAT No R N 220 228 9 End Latitude

BV (Blank Value):
Yes = Blank value may occur here; No = Blank value should not occur here
Fmt:
L = Left-justified (numeric fields have leading zeros and may be
interpreted as character data)
R = Right-justified (numeric fields do not have leading zeros and may be
interpreted as integer data)
Type:
A = Alphanumeric, N = Numeric

Record Type 2 - Complete Chain Shape Coordinates
Field BV Fmt Type Beg End Len Description
RT No L A 1 1 1 Record Type
VERSION No L N 2 5 4 Version Number
TLID No R N 6 15 10 TIGER/Line(R) ID,

Permanent 1-Cell Number
RTSQ No R N 16 18 3 Record Sequence Number
LONG1 No R N 19 28 10 Point 1, Longitude
LAT1 No R N 29 37 9 Point 1, Latitude
LONG2 Yes R N 38 47 10 Point 2, Longitude
LAT2 Yes R N 48 56 9 Point 2, Latitude
LONG3 Yes R N 57 66 10 Point 3, Longitude
LAT3 Yes R N 67 75 9 Point 3, Latitude
LONG4 Yes R N 76 85 10 Point 4, Longitude
LAT4 Yes R N 86 94 9 Point 4, Latitude
LONG5 Yes R N 95 104 10 Point 5, Longitude
LAT5 Yes R N 105 113 9 Point 5, Latitude
LONG6 Yes R N 114 123 10 Point 6, Longitude
LAT6 Yes R N 124 132 9 Point 6, Latitude
LONG7 Yes R N 133 142 10 Point 7, Longitude



LAT7 Yes R N 143 151 9 Point 7, Latitude
LONG8 Yes R N 152 161 10 Point 8, Longitude
LAT8 Yes R N 162 170 9 Point 8, Latitude
LONG9 Yes R N 171 180 10 Point 9, Longitude
LAT9 Yes R N 181 189 9 Point 9, Latitude
LONG10 Yes R N 190 199 10 Point 10, Longitude
LAT10 Yes R N 200 208 9 Point 10, Latitude

Note:
The TIGER/Line(R) files contain a maximum of ten shape coordinates on
one record. The number of shape records for a complete chain may be
zero, one, or more. Complete chains with zero shape points (a straight
line) do not have a Record Type 2. Coordinates have an implied six
decimal places. See the Positional Accuracy section in Chapter 5 for
more details.

All TIGER records have a 1 character Record Type (RT) field as their first field; this
identifies the type of the record you are parsing.

Joining

Looking at the datatypes above, it is clear that the polygon files contain the points which
make up the polygon, but does not say what the polygon actually is. The polygon record,
however, contains a Tiger/Line ID. This is the same id as some record of type 1, which
describes a line. This line is adjacent to one of the sides of the polygon. The line's record
describes what type of object the polygon represents (e.g., body of water, school, park,
etc). This is stored in its CFCC field (Census Feature Code Class). A MapReduce pass
must join the polygon to its associated line record to fill out a more complete record
body to determine the type of the polygon, and thus how to render it.

There is a second join between the BGN and Population datasets. BGN records contain
the identifier for a location (city and state names), and its latitude and longitude
coordinates. The population dataset has the name of the city/state entity, and its
population -- but not its latitude and longitude. You should use MapReduce to execute a
join so that you can complete the population entity data structure by filling in the
latitude and longitude from the corresponding BGN record.

The protocol.BgnRecord and protocol.PopRecord classes contain the names
of all the imporatant fields; they also contain comments describing from
where these fields are filled. You should read these comments before
implementing the parsing for these records. We have already provided you
with a complete parser for the population records; you must implement
parsers for BGN and the TIGER datatypes.

If you are confused about how to execute a join, refer to Barry Brumitt's slides (posted
on the course web site).



Rendering

The primary component of this assignment is the tile renderer. Tile rendering is done by
subclasses of the TileRenderer abstract class. You must implement a concrete subtype
of this class that renders important geographic features on tiles.

We have provided you with an example of how to implement this with the
FakeTileRenderer class. The FakeTileRenderer will draw the same picture on every tile,
regardless of its input features. The purpose of this class is to familiarize you with the
graphics primitives necessary to perform the drawing. This renderer will render a line, a
polygon, and a text object; it shows you how to change colors and fonts. When you are
stuck on how to do something, refer to the example uses in this file, and of course,
always refer to the Java API documentation online for specific methods to use and types
of arguments.

The TileRenderer is used in a Reducer. The Reducer receives all shape object records for
a given Tile Set. The Mapper should read in all shape object records, determine which
tile or tiles they cover, and emit them to the reducers for the Tile Sets containing the tile
IDs in question.

When features are read in by the Reducer, they are added to the collection seen by the
TileRenderer with the addRecord() method. After buffering all its features, the Reducer
invokes the TileRenderer repeatedly to render every Tile in its Tile Set. The setTile()
method is used to set the tile extent which should be rendered. Feature records which
are visible (partially or fully) within this tile should then be rendered on to the output
buffer when renderTile() is called. You must provide the body of renderTile() to draw
things nicely.

How elaborate you want to get with your rendering is up to you. We appreciate
interesting refinements to your rendering algorithm, which make your tiles "prettier" in
any way. You should document any extensions or tweaks you make here.

At minimum, your renderer must do the following:
• Render all roads and highways at low zoom levels
• Render major highways at farther-out zoom levels
• Make a reasonable effort to abstract away densely-developed areas at high zoom

levels (e.g., render "some roads," make roads fade into the background, etc, so
that Seattle appears neither a solid mass of black when zoomed out, but nor is it
just the intersection of 520 and I-5)

• Do a "best effort" to draw polygon objects (see below) at all zoom levels
• Place labels on top of the tiles so they are legible

Label Placement

Label placement is a difficult problem (optimum label placement is, in fact, NP-
Complete). You must draw labels on your maps. You must invent an algorithm to place
labels "reasonably." How you do this is up to you. Document this thoroughly in your
writeup, and defend why it is a reasonable algorithm.

Your algorithm should follow these guidelines:
• At each zoom level, "appropriate" labels should be shown (surface roads at low

zoom levels, cities at farther-out zoom levels, etc)
• Labels should be legible (they should not be hard to read because of lines or

polygons underneath of them; they should not overlap one another, etc
• When labels might overlap or otherwise conflict, employ a conflict resolution

strategy



◦ Bigger cities should take priority over smaller cities
• Labels should not overly clutter your map

◦ At wider zoom levels, do not draw a label for every surface road; "some
roads" is a good idea (how do you choose which roads?)

◦ Don't draw an excessive number of the same label (i.e., don't relabel I-5
every 25 pixels)

◦ Labels should be chosen so they are relatively uniformly distributed
across the tile (don't have 30 labels all in the corner)

• Font sizes chosen for labels should reflect the stature of the object they
represent (cities should have more prominent labels than roads; larger cities
should have more prominent labels than smaller cities)

Polygons

Polygon drawing is tricky and we don't have a good solution. The points which
correspond to each polygon are not presented in the type-2 record in order; you cannot
necessarily draw them clockwise (for example) and expect the correct shape to come
out. More problematically, they allow concave shapes, so standard "lasso" techniques to
resolve the polygons do not necessarily work. Do something reasonable here, but it is
okay if polygons are rendered poorly.

Tile Set Divider Algorithms

The Mapper and Reducer for tile rendering rely on a TileSetDivider to inform them which
tile IDs are grouped together in which reducers.

We have provided you with a SimpleDivider class which implements the TileSetDivider
interface. This will divide the mappable range into a set of tile extents, assign them tile
IDs, and assign the tile IDs to as many tile sets as there are reducers. The tile sets are
created in a very naive way.

Imagine a line segment (e.g., road) that spans two adjacent tiles. This road feature data
must be sent to the reducers for the tile sets for both tiles.



Consider SR-520 in the above diagram. Assuming a slightly simplified version where this
is a single straight line segment, it can extend to 2 or more tiles. The Mapper that reads
in the record for SR-520 must emit it to each Reducer for the tilesets corresponding to
Tile 1 and Tile 2 (and possibly others, if the length of this line segment is very long).
Your TileSetDivider can tell you the tile IDs (and thus the tile sets) for the endpoints of
the line segment; from there you can determine all tile IDs and thus all tile sets that
need a copy of the record. Don't forget, if a long line segment is oriented "diagonally," it
may need to be emitted to a rectangle of tile IDs.

The SimpleDivider is very inefficient -- tile sets do a poor job of taking into account the
locality of tiles to one another. We would like you to implement a better divider, which
you should call the HilbertDivider. The HilbertDivider will draw Hilbert curves over the
2D array of tile IDs. A Hilbert curve is a space-filling curve: It will draw a "snake" that
runs through all points in the space (the 2D array of tile IDs), and never overlaps with
itself.

Linear regions of the Hilbert curve are used as the set of tile IDs comprising a given tile
set. There is a mathematical theorem that shows that the Hilbert curve is the optimal
partitioning of tile IDs into tile sets, to use minimum bandwidth for grouping tiles
together that are likely to share features. Which is to say, given that we cannot predict
whether there are more north-south or east-west roads that are shared between
adjacent tiles, we should do "something reasonable" to make sure that tiles that are
likely to share features wind up in the same tile set. The Hilbert curve is an algorithm for
determining the best such partitioning

The Wikipedia article http://en.wikipedia.org/wiki/Hilbert_curve does a good job of
explaining the Hilbert curve. See also http://en.wikipedia.org/wiki/Space-filling_curve

Your implementation should number the tiles in the range along the curve, then split the
range into tile sets by dividing the curve into a number of segments equal to the number
of the rendering tasks. The starter code includes a JUnit test case for the Hilbert divider
you will write so that you can test it to see if your implementation is working correctly

http://en.wikipedia.org/wiki/Hilbert_curve
http://en.wikipedia.org/wiki/Space-filling_curve


Geocode Index Generation

As mentioned in the introduction, the next assignment will be a crude version of the
online Google Maps interface. The goal of assignment four is to display to a user a
pannable map on a web page. This web page will contain a text input where a user can
type an address; the map should then jump to this address. To do this, we will need to
generate a geocode index. The geocode index is a data structure that can quickly
return the latitude and longitude for any address. From this latitude and longitude, your
TileSetDivider can then look up the particular tile IDs (and thus the filenames of tiles)
which correspond to the tiles the user should be shown.

We want to support primarily queries in the format of "Street address, ZIP code".
(although you are welcome to implement geocoding for other types of queries as well -
see the extensions section below).

Your geocode should be output in such a way that you can efficiently look up a latitude
and longitude given an address. One way to structure your geocode index, for example,
is to have the keys be zip codes and street names and the values be address ranges with
appropriate street coordinates. Your output would then be sorted first numerically by zip
code, and then alphabetically by street name. You could then seek into the index (think
binary search) to quickly find the latitude and longitude for a desired address. (You may
wish to consider java's RandomAccessFile class for this)

Extensions

This project has virtually limitless room for extensions. None of them are required. Here
are just a few we have thought of (ranked roughly from easiest to hardest):

• Exploit other data present in the datasets. Currently we are asking you to use
records type 1 and 2 from the TIGER/Line data. There are about fifteen others
with a range of other useful data (census, economic census, further address
resolution data, etc. Find a way to use this data in this project

• Build the geocode index to support other types of queries, some ideas for query
types are:

◦ City, State
◦ County, State
◦ State
◦ Street address + city + state

• Exploit other data sets. Several examples are the National Hydrography Dataset
(NHD), satellite tiles, etc

• Currently we are making a simplifying assumption that the world is a flat
rectilinear coordinate system. (ie, we are not compensating for the spherical
coordinates.) Correct this so the tiles represent actual squares in terms of land
distance and not in terms of degree distance.

• Label placement: this is deceptively hard. There are at least three types of label
placement. Point labeling(cities, features, etc), line labeling(roads, rivers, etc),
and shape labeling(lakes, seas, etc). With each you must figure out which labels
to place at which zoom level and how to place them optimally. With line labeling
you must figure out how to place the label along the linear feature (eg the road
label curves with the road). With shape labeling you must figure out how to
efficiently calculate centers of polygons where to place labels. This is all
complicated of course by having to figure out relative importance of labels,
dealing with labels that have to cross tile edges, etc. These are all very hard
problems, there are several papers that you can find about these topics if you
look for them



• Driving directions. Barry mentioned a few papers that might help you here, but
you are on your own….

Writeup

Answer the following questions in your writeup:

1. Put both your and your partner's names here.
2. In your own words, describe your complete pipeline. Name the most important

classes, and describe how they function. Indicate design choices you had to
make, what options you considered, and how you resolved them.

3. Describe your label placement algorithm. Why do you think this is a good
algorithm to solve this problem?

4. Describe, in your own words, how the HilbertDivider you implemented works,
and why it is important. That is, explain how it is better than the SimpleDivider
that was included in the starter code.

5. Describe how the geocode index works to facilitate address queries efficiently.
6. Describe any extensions you implemented. What additional data sets or record

types did you employ?
7. Describe your test plan. Include any test source code in your source code

submission.
8. How did you and your partner break down the labor in this project?

How To Get Started

The above sections have described the complete pipeline for the map data preprocessor.
Here are a set of concrete steps to orient you through building the various pipeline
stages. This is not the only order in which you can do things. You will note that while
there are some dependencies (some steps here must be completed before others), other
steps are independent of one another. Make efficient use of both partners.

• Build your datatypes and record parser for TIGER data. The classes in the
protocol package contain all the fields you need. You need to write string parsing
code which will read in the fixed-length record types 1 and 2 from the TIGER
data set. You should be able to read in the files, discard irrelevant (or corrupt)
data, pull the requisite fields from those two record types, and emit them back
as output with a toString() method that lets you know that you've parsed them
correctly. For you to be able to get from mappers to reducers, you must
implement write() and readFields(), of course, too.

• Build the joiner that can take in records of type 1 (line) and type 2 (polygon).
This must populate the fields of the type 2 record with some of the type-1 fields;
the fields are populated from whichever line record shares the Tiger Line ID with
the type 2 record.

• Get the existing render pipeline to run start to finish, parsing the TIGER records,
joining them, and emitting the joined records from a mapper to a reducer that
uses the FakeRenderer to render King County as a set of fake tiles with the
dummy image on every tile.

• Copy this renderer to a new class and modify this so that it actually draws the
roads instead. Draw all line data as simple black 1-pixel-wide lines.

• Add polygons, labels, etc
• Discriminate between line types, drawing highways and roads differently (color,

line width, label font, etc)
• Implement thresholding in the render step mapper so that only the relevant

features at a given zoom level are emitted to the reducer at that zoom level.
• Implement the HilbertDivider to divide tile sets more efficiently



• Parse the BGN data records into a data type. Make sure that toString() output
from this looks sane.

• Join population records with BGN data so that we have a mapping from cities to
population.

• Refine your label placement and rendering algorithm (take advantage of
population data where possible)

• Make all your tiles look pretty on your computer for King County.
• Write the address geocode index generator
• Run the geocode index pipeline on King County, locally.
• Think about any extensions you might want to implement (fancier tile

generation, polar latitude/longitude coordinates, other TIGER record types, other
data sets, etc). Obviously this optional step is to be done only when you have
finished everything else.

• Run the entire pipeline on the cluster for a larger area than just king county at
an intermediate zoom level (ie 6 or so)

Final Misc Information and Hints

• The full TIGER dataset is in /shared/tiger
• The TIGER dataset for King County is in /shared/tiger-king -- do testing on this
• The BGN dataset is in /shared/allstates
• The population dataset is in /shared/population
• The BGN and population datasets are small; there are no test-only versions of

these
• If you are excluding certain features at a particular zoom level, do your filtering

in the mapper, so that you don't waste bandwidth (and time).
• Be aware of the way the number of mappers and reducers at a particular stage

affects performance.
• Zoom level has an exponential effect on the number of tiles to render (work to

do). For testing, make sure you clamp down your mappable range to a very
small area to test how you render close-zoom tiles, or else you'll be doing a lot
of work (you should pick a range of say 4--12 tiles and render that when
tweaking your renderer; don't render several hundred tiles each time until you
are sure your renderer works well). Start your experimentation at around zoom
level 6.

• When re-running the mapreduce pipeline, you do not need to re-run every pass
every time. For example, it is fine to generate the filtered and joined data once
(when you have gotten the filtering and joining right) and run only the render
step when developing/testing the renderer multiple times. Note that when you
run the full pipeline and some intermediate steps have already been computed
(eg TIGER data has already been filtered), that step in the pipeline will fail with
an exception message about the output already existing - this is OK, this simply
means that this step will be skipped and the existing output will be used instead.

• Use the reporter and the job tracker page to your advantage when running on
the large dataset. This can help you understand where the bottlenecks in your
code are.

• If your renderer runs out of memory try creating more rendering tasks (more
reducers) or try rendering a smaller subset of the US. Also be careful how many
features you emit at higher zoom levels - you do not need every road at high
zoom levels and trying to add every road to a renderer will fill up your heap
space in a hurry.



Image Extractor Tool

The output of the render step will be stored on the DFS in SequenceFiles. We have
provided a class that will extract individual tiles to PNG images on the local disk (the
machine from which the job is being run) with appropriate file names.

Map Visualization Web Page (for testing)

Also included is a small html file (viewer.html) that can display a 3x3 grid of tiles, can
scroll in all 4 directions, and can zoom in and out. This html page relies on the tile
images being located in the "tiles/<z>" directory relative to it. (For example to display
tiles at zoom level 6 make sure that the tiles are located in "tiles/6/" relative to the
viewer.html file. This viewer also relies on tiles being named in format specified by the
image extractor tool, as well as on the static images in the 'html_img' directory.

What To Turn In

Turn in all your code for your complete pipeline. This must be capable of start-to-finish
parsing the data sets, joining the appropriate records, and rendering the tiles. It must
also generate the indices that allow you to look up the latitude and longitude coordinates
for addresses, cities, and states.

Add a text file containing your writeup.

Add the tile image files at zoom levels 4 to 8 for the area centered at the University of
Washington (include a reasonable area, but not too large - 10 or so tiles per zoom level
should be enough). When you zip up your submission, put these in "tiles/4/", "tiles/5/",
..., "tiles/8/"

You should run your full rendering pipeline on the cluster and leave your image files and
geocode indices in your /user/username directory. You will need this data for assignment
4; you should not need to rerender it at that time.

Appendix: Data Sets

TIGER -- The 2006 complete US TIGER/LINE survey data.
-------------------------------------------------------
2006 TIGER/Line data home:
http://www.census.gov/geo/www/tiger/tiger2006se/tgr2006se.html
Complete TIGER/Line Technical Reference Document: http://www.census.gov/geo/www/
tiger/tiger2006se/TGR06SE.pdf

In particular, see section 6 (Data Dictionary), which defines all the record types.
Tiger CFCC's (Census Feature Class Codes)
http://proximityone.com/tgrcfcc.htm

BGN -- This ties place names to locations.
----------------------------------------
USGS BGN Home:
http://geonames.usgs.gov/
BGN File Format spec:
http://geonames.usgs.gov/domestic/gaz_fileformat.htm
BGN Feature Classes:
http://geonames.usgs.gov/domestic/feature_class.htm

http://www.census.gov/geo/www/tiger/tiger2006se/tgr2006se.html
http://www.census.gov/geo/www/tiger/tiger2006se/TGR06SE.pdf
http://www.census.gov/geo/www/tiger/tiger2006se/TGR06SE.pdf
http://proximityone.com/tgrcfcc.htm
http://geonames.usgs.gov/
http://geonames.usgs.gov/domestic/gaz_fileformat.htm
http://geonames.usgs.gov/domestic/feature_class.htm



	Pages from assignment3.pdf
	assignment3-16.pdf

