


optionalAttr="val2">(body)</text></revision>

The body text of the page also has all newlines converted to spaces to ensure it stays on
one line in this representation.

MapReduce Steps:

This presents the high-level requirements of what each phase of the program should do:
(While there may be other, equivalent implementations of PageRank, this suggests one
such method that can be implemented in this lab.)

Step 1: Create Link Graph

Process individual lines of the input corpus, one at a time. These lines contain the XML
representations of individual pages of Wikipedia. Turn this into a link graph and initial
page rank values (Use 1-d as your initial PageRank value).

Think: What output key do you need to use? What data needs to be in the output value?

Step 2: Process PageRank

This is the component which will be run in your main loop. The output of this section
should be directly readable as the input of this same step, so that you can run it multiple
times.

In this section, you should divide fragments of the input PageRank up among the links
on a page, and then recombine all the fragments received by a page into the next
iteration of PageRank.

Step 3: Cleanup and Sorting

The goal of this lab is to understand which pages on Wikipedia have a high PageRank
value. Therefore, we use one more "cleanup" pass to extract this data into a form we
can inspect. Strip away any data that you were using during the repetitions of step 2 so
that the output is just a mapping between page names and PageRank values. We would
like our output data sorted by PageRank value.

Hint: Use only 1 reducer to sort everything. What should your key and value be to sort
things by PageRank?

At this point, the data can be inspected and the most highly-ranked pages can be
determined.

CodeLab Exercise:

Implement the PageRank algorithm described above. You will need a driver class to run
this process, which should run the link graph generator, calculate PageRank for 10
iterations, and then run the cleanup pass. Run PageRank, and find out what the top ten
highest-PageRank pages are.

Overall advice:
• Our local copy of wikipedia is stored in "/shared/wikipedia" on the DFS. Use this

as your first input directory. Do NOT use it as your output directory.



• And, do not use it at all until you are sure you've got everything
working! There is a test data set stored in "/shared/wiki_small" on the DFS--
this contains about 100,000 articles. Use the data from this source as your first
input directory to test your system. Move up to the full copy when you are
convinced that your system works.

• SequenceFiles are a special binary format used by Hadoop for fast intermediate
I/O. The output of the link graph generator, the input and output of the
PageRank cycle, and the input to the cleanup pass, can all be set to
org.apache.hadoop.mapred.SequenceInputFormat and SequenceOutputFormat
for faster processing, if you don't need the intermediate values for debugging.

• Test running a single pass of the PageRank mapper/reducer before putting it in a
loop

• Each pass will require its own input and output directory; one output directory is
used as the input directory for the next pass of the algorithm. Set the input and
output directory names in the JobConf to values that make sense for this flow.

• Create a new JobClient and JobConf object for each MapReduce pass. main()
should call a series of driver methods.

• Remember that you need to remove your intermediate/output directories
between executions of your program

• The input and output types for each of these passes should be Text. You should
design a textual representation for the data that must be passed through each
phase, that you can serialize to and parse from efficiently. Alternatively, if you're
feeling daring, implement your own subclass of Writable which includes the
information you need.

• Set the number of map tasks to 300 (this is based on our cluster size)
• Set the number of reduce tasks to 50.
• The PageRank for each page will be a very small floating-point number. You may

want to multiply all PageRank values by a constant 10,000 or so in the cleanup
step to make these numbers more readable.

• The final cleanup step should have 1 reduce task, to get a single list of all pages.
• Don't forget, this is "real" data. We've done most of the dirty work for you in

terms of formatting the input into a presentable manor, but there might be lines
which don't conform to the layout you expect, blank lines, etc. Your code must
be robust to these parsing errors. Just ignore any lines that are illegal -- but
don't cause a crash!

• Start early. This project represents considerably more programming effort
than project 1.

Remember, project 1 provides instructions on how to set up a project and execute a
program on the Hadoop cluster. Refer back to the instructions in that document for how
to do this assignment as well.

Testing Your Code:

If you try to test your program on the cluster you're going to waste inordinate amounts
of time shuttling code back and forth, as well as potentially waiting on other students
who run long jobs.

Before you run any MapReduce code, you should unit test individual functions, calling
them on a single piece of example input data (e.g., a single line out of the data set) and
seeing what they do.

After you have unit tested all your components, you should do some small integration
tests which make sure all the working parts fit together, and work on a small amount of
representative data.



For this purpose, we have posted a *very* small data set on the web site at:
http://www.cs.washington.edu/education/courses/cse490h/08au/projects/wiki-
micro.txt.gz
This is a ~2 MB download which will unzip to about 5 MB of text in the exact format you
should expect to see on the cluster.

Download the contents of this file and stick it in an "input" folder on your local machine.
Test against this for your unit testing and initial debugging. After this works, then move
up to /shared/wiki_small. After it works there, then and only then should you run on the
full dataset. If individual passes of your MapReduce program take more than 15 minutes,
you have done something wrong. You should kill your job (see instructions in assignment
1), figure out where your bugs are, and try again. (Don't forget to pre-test on smaller
datasets again!)

Extensions: (For the Fearless)

If you're finished early and want a challenge, feel free to try some/all of these. Karma++
if you do.

• Write a pass that determines whether or not PageRank has converged, rather
than using a fixed number of iterations

• Get an inverted indexer working over the text of this XML document
• Combine the inverted indexer and PageRank to make a simple search engine
• Write a MapReduce pass to find the top ten pages without needing to push

everything through a single reducer

(I haven't done these. No bets on how easy/hard these are.)

Writeup:

Please write up in a text file (no Word documents, PDFs, etc -- plain old text, please!)
the answers to the following questions:

1) How much time did this lab take you? What was the most challenging component?

2) Describe the data types you used for keys and values in the various MapReduce
stages. If you serialized data to Text and back, describe how you laid the contents of the
Text out in the data stream.

3) What scalability hazards, if any, do you see in this system? Do you have any ideas
how these might be overcome or mitigated?

4) What are the 10 pages with the highest PageRank? Does that surprise you? Why/why
not?

5) Describe how you tested your code before running on the large data set. Did you find
any tricky or surprising bugs? Include any test programs / JUnit test cases, etc, in your
code submission.

6) List any extensions you performed, assumptions you made about the nature of the
problem, etc.

http://www.cs.washington.edu/education/courses/cse490h/08au/projects/wiki-micro.txt.gz
http://www.cs.washington.edu/education/courses/cse490h/08au/projects/wiki-micro.txt.gz



	assignment2-1.pdf
	Pages from assignment2.pdf
	assignment2-5.pdf

