
Lecture 3 – Hadoop

Technical Introduction

CSE 490H

Announcements

� My office hours: M 2:30—3:30 in CSE 212

� Cluster is operational; instructions in
assignment 1 heavily rewritten

� Eclipse plugin is “deprecated”

� Students who already created accounts:
let me know if you have trouble

Breaking news!

� Hadoop tested on 4,000 node cluster

�32K cores (8 / node)

�16 PB raw storage (4 x 1 TB disk / node)

(about 5 PB usable storage)

� http://developer.yahoo.com/blogs/hadoop/2008/09/

scaling_hadoop_to_4000_nodes_a.html

You Say, “tomato…”

ZookeeperChubby

HBaseBigtable

HDFSGFS

HadoopMapReduce

Hadoop equivalent:Google calls it:

Some MapReduce Terminology

� Job – A “full program” - an execution of a
Mapper and Reducer across a data set

� Task – An execution of a Mapper or a
Reducer on a slice of data

�a.k.a. Task-In-Progress (TIP)

� Task Attempt – A particular instance of an
attempt to execute a task on a machine

Terminology Example

� Running “Word Count” across 20 files is
one job

� 20 files to be mapped imply 20 map tasks
+ some number of reduce tasks

� At least 20 map task attempts will be
performed… more if a machine crashes,
etc.

Task Attempts

� A particular task will be attempted at least once,

possibly more times if it crashes

� If the same input causes crashes over and over, that

input will eventually be abandoned

� Multiple attempts at one task may occur in

parallel with speculative execution turned on

� Task ID from TaskInProgress is not a unique
identifier; don’t use it that way

MapReduce: High Level

��������	�

���	��	�����

�������	����

���	���������	�

���	����	

���������	�

����	���	

������������	

���������	�

����	���	

������������	

���������	�

����	���	

������������	

Node-to-Node Communication

� Hadoop uses its own RPC protocol

� All communication begins in slave nodes

�Prevents circular-wait deadlock

�Slaves periodically poll for “status” message

� Classes must provide explicit serialization

Nodes, Trackers, Tasks

� Master node runs JobTracker instance,
which accepts Job requests from clients

� TaskTracker instances run on slave nodes

� TaskTracker forks separate Java process
for task instances

Job Distribution

� MapReduce programs are contained in a Java

“jar” file + an XML file containing serialized

program configuration options

� Running a MapReduce job places these files

into the HDFS and notifies TaskTrackers where

to retrieve the relevant program code

� … Where’s the data distribution?

Data Distribution

� Implicit in design of MapReduce!

�All mappers are equivalent; so map whatever

data is local to a particular node in HDFS

� If lots of data does happen to pile up on
the same node, nearby nodes will map
instead

�Data transfer is handled implicitly by HDFS

Configuring With JobConf

� MR Programs have many configurable options

� JobConf objects hold (key, value) components

mapping String � ’a

� e.g., “mapred.map.tasks” � 20

� JobConf is serialized and distributed before running

the job

� Objects implementing JobConfigurable can

retrieve elements from a JobConf

What Happens In MapReduce?

Depth First

Job Launch Process: Client

� Client program creates a JobConf
� Identify classes implementing Mapper and

Reducer interfaces
� JobConf.setMapperClass(), setReducerClass()

�Specify inputs, outputs
� FileInputFormat.addInputPath(),

� FileOutputFormat.setOutputPath()

�Optionally, other options too:
� JobConf.setNumReduceTasks(),

JobConf.setOutputFormat()…

Job Launch Process: JobClient

� Pass JobConf to JobClient.runJob() or
submitJob()

� runJob() blocks, submitJob() does not

� JobClient:

�Determines proper division of input into

InputSplits

�Sends job data to master JobTracker server

Job Launch Process: JobTracker

� JobTracker:

� Inserts jar and JobConf (serialized to XML) in

shared location

�Posts a JobInProgress to its run queue

Job Launch Process: TaskTracker

� TaskTrackers running on slave nodes
periodically query JobTracker for work

� Retrieve job-specific jar and config

� Launch task in separate instance of Java

�main() is provided by Hadoop

Job Launch Process: Task

� TaskTracker.Child.main():

�Sets up the child TaskInProgress attempt

�Reads XML configuration

�Connects back to necessary MapReduce

components via RPC

�Uses TaskRunner to launch user process

Job Launch Process: TaskRunner

� TaskRunner, MapTaskRunner,
MapRunner work in a daisy-chain to
launch your Mapper
�Task knows ahead of time which InputSplits it

should be mapping

�Calls Mapper once for each record retrieved
from the InputSplit

� Running the Reducer is much the same

Creating the Mapper

� You provide the instance of Mapper

�Should extend MapReduceBase

� One instance of your Mapper is initialized
by the MapTaskRunner for a
TaskInProgress

�Exists in separate process from all other

instances of Mapper – no data sharing!

Mapper

� void map(K1 key,

V1 value,

OutputCollector<K2, V2> output,

Reporter reporter)

� K types implement WritableComparable

� V types implement Writable

What is Writable?

� Hadoop defines its own “box” classes for
strings (Text), integers (IntWritable), etc.

� All values are instances of Writable

� All keys are instances of
WritableComparable

Getting Data To The Mapper
��

�
�

��
�

��
�

�

Reading Data

� Data sets are specified by InputFormats

�Defines input data (e.g., a directory)

� Identifies partitions of the data that form an

InputSplit

�Factory for RecordReader objects to extract

(k, v) records from the input source

FileInputFormat and Friends

� TextInputFormat – Treats each ‘\n’-
terminated line of a file as a value

� KeyValueTextInputFormat – Maps ‘\n’-
terminated text lines of “k SEP v”

� SequenceFileInputFormat – Binary file of
(k, v) pairs with some add’l metadata

� SequenceFileAsTextInputFormat – Same,
but maps (k.toString(), v.toString())

Filtering File Inputs

� FileInputFormat will read all files out of a
specified directory and send them to the
mapper

� Delegates filtering this file list to a method
subclasses may override

�e.g., Create your own “xyzFileInputFormat” to

read *.xyz from directory list

Record Readers

� Each InputFormat provides its own
RecordReader implementation

�Provides (unused?) capability multiplexing

� LineRecordReader – Reads a line from a
text file

� KeyValueRecordReader – Used by
KeyValueTextInputFormat

Input Split Size

� FileInputFormat will divide large files into
chunks

�Exact size controlled by mapred.min.split.size

� RecordReaders receive file, offset, and
length of chunk

� Custom InputFormat implementations may
override split size – e.g., “NeverChunkFile”

Sending Data To Reducers

� Map function receives OutputCollector
object

�OutputCollector.collect() takes (k, v) elements

� Any (WritableComparable, Writable) can
be used

� By default, mapper output type assumed
to be same as reducer output type

WritableComparator

� Compares WritableComparable data

�Will call WritableComparable.compare()

�Can provide fast path for serialized data

� JobConf.setOutputValueGroupingComparator()

Sending Data To The Client

� Reporter object sent to Mapper allows
simple asynchronous feedback

� incrCounter(Enum key, long amount)

�setStatus(String msg)

� Allows self-identification of input

� InputSplit getInputSplit()

Partition And Shuffle

���	�

����	��	���	��

���	�

����	��	���	��

���	�

����	��	���	��

���	�

����	��	���	��

�	��	� �	��	� �	��	�

����	��	���	�� ����	��	���	�� ����	��	���	��

���������	� ���������	� ���������	� ���������	�

�
�
�

���
!

Partitioner

� int getPartition(key, val, numPartitions)

�Outputs the partition number for a given key

�One partition == values sent to one Reduce

task

� HashPartitioner used by default

�Uses key.hashCode() to return partition num

� JobConf sets Partitioner implementation

Reduction

� reduce(K2 key,

Iterator<V2> values,

OutputCollector<K3, V3> output,

Reporter reporter)

� Keys & values sent to one partition all go
to the same reduce task

� Calls are sorted by key – “earlier” keys are
reduced and output before “later” keys

Finally: Writing The Output

OutputFormat

� Analogous to InputFormat

� TextOutputFormat – Writes “key val\n”
strings to output file

� SequenceFileOutputFormat – Uses a
binary format to pack (k, v) pairs

� NullOutputFormat – Discards output

Questions?

