
UW CSE490H // fall 2008 // gribble@cs 1

CSE490H: Virtualization
It’s turtles all the way down…

Steve Gribble
Associate Professor, CSE
[on sabbatical at Google as a visiting scientist]

UW CSE490H // fall 2008 // gribble@cs

VM demo

2

a virtual machine:
  a software-based implementation of some real (hardware-based) computer

  in its pure form, supports booting and execution of unmodified OSs and apps

a virtual machine monitor:
•  the software that creates and manages the execution of virtual machines

•  a VMM is essentially a simple operating system

Some simple terms

UW CSE490H // fall 2008 // gribble@cs

Outline

•  The history of virtualization

•  How virtualization works

•  Applications of virtualization

3

UW CSE490H // fall 2008 // gribble@cs

Before there were data centers…
Many early commercial computers were mainframes:
•  originally housed in enormous, room-sized metal frames

•  computationally powerful, though less so than a supercomputer

•  highly reliable, with redundancy engineered into hardware and software

•  extensive I/O capabilities for data-intensive business and scientific apps

•  “IBM and the seven dwarfs” – their heyday was the late ‘50s through ‘70s

4

IBM 704 (1954)

$250K - millions

IBM z9 (2005)

$100k - millions

UW CSE490H // fall 2008 // gribble@cs

Issues with early mainframes

Early mainframe families had some disadvantages
•  successive (or even competing!) models were not architecturally compatible

  massive headache to upgrade HW: gotta port software!

•  the systems were primarily batch-oriented

In the meantime, project MAC at MIT was kicking off
•  responsible for developing Multics

•  invented many of the modern ideas behind time-sharing operating systems
•  e.g., fundamentals of protection systems (access control lists, capabilities)

•  the computer was becoming a multiplexed tool for a community of users,
instead of being a batch tool for wizard programmers

•  and the mainframe companies were about to be left in the dust

5

UW CSE490H // fall 2008 // gribble@cs

Big blue’s bold move

IBM bet the company on the System/360 hardware family [1964]
•  S/360 was the first to clearly distinguish architecture and implementation

•  its architecture was virtualizable (with the addition of virtual memory support
in the 360-67)

And, unexpectedly, the CP/CMS system software is a hit [1968]
•  CP: a “control program” that created and managed virtual S/360 machines

•  CMS: the “Cambridge monitor system” -- a lightweight, single-user OS
•  run several different OSs concurrently on the same HW

•  one CMS instance per user: CP/CMS is now great for timesharing!
•  older, batch-oriented jobs on batch-oriented OSs (PCP)
•  presumably, any of the other s/360 compatible OSs (OS/360, DOS/360, etc.)
•  any S/360 software could run in a VM, and hence became time-sharable

•  CP/CMS also enabled OS development and experimentation

6

UW CSE490H // fall 2008 // gribble@cs

Thus began the family tree of IBM mainframes

•  system/360 (1964-1970)
•  ended up supporting virtualization via CP/CMS, channel I/O, virtual memory, byte-

addressable, 32-bit registers with 24 bit addressing, EBCDIC, …

•  several orders of magnitude of performance and cost

•  system/370 (1970-88)
•  shipped as dual-processors, virtual memory support via DAT boxes, moved to 31-

bit architecture; reimplementation of CP/CMS OS as VM/370

•  system/390 (1990-2000)
•  clustering, aka “parallel sysplex”

•  zSeries (2000-present)
•  hot hardware swap and failover, redundant software execution, wide-area failover

Huge moneymaker for IBM, and many business still depend on these!

7

UW CSE490H // fall 2008 // gribble@cs

In the meantime…the PC revolution happened

PCs are much less powerful, but enjoy massive economies of scale
•  “a computer for every desktop” (1980s)

•  ship hundreds of millions of units, not hundreds of units

•  much better price/performance (operations per $)

•  much lower reliability

8

mainframe

PC cluster

Cluster computing (1990s)
•  build a cheap mainframe or

supercomputer out of a cluster
of commodity PCs

•  use clever software to get fault
tolerance

UW CSE490H // fall 2008 // gribble@cs

Mendel Rosenblum makes it big

VMware co-founded by Mendel Rosenblum and Diane Green in 1998
•  commercialized ideas incubated in Stanford DISCO project

•  brought CP/CMS-style virtualization to PC computers

Their initial market was software developers
•  often need to develop and test software on multiple OSs (windows, linux, …)

  (or, similar to CP/CMS, might want to do OS development)

•  can afford multiple PCs, or could dual-boot, but this is very inconvenient

•  instead, run multiple OSs simultaneously in separate VMs
•  very similar to mainframe VM motivation, but for opposite reason – too many

computers now, not too few!

9

UW CSE490H // fall 2008 // gribble@cs

The real PC virtualization moneymaker

Enterprise consolidation
•  big companies usually have their own machine rooms or data centers

•  operate many services: mail servers, file servers, Web servers, remote cycles

•  want to run at most one service per machine (administrative best practices)

•  leads to low utilization, lots of machines, high power bills, administrative hassles

•  instead, run one service per virtual machine
•  and consolidate many VMs per physical machine

•  leads to better utilization, easier management

10

UW CSE490H // fall 2008 // gribble@cs

The forefront of virtualization

Large-scale, hosted cloud computing (e.g., Amazon EC2)
•  the cloud provider buys a bazillion computers and operates a data center

•  your run your software in a VM on their computers, and pay them rent
  the VM is a convenient container for uploading software, and is a safe sandbox

that prevents you and other customers from harming each other

•  run 1,000 VMs images for a day, and pay just $2400.00.

11

UW CSE490H // fall 2008 // gribble@cs

Outline

•  The history of virtualization

•  How virtualization works

•  Applications of virtualization

12

UW CSE490H // fall 2008 // gribble@cs

How do virtual machines work?

Start with a “simpler” question: how do (regular) machines work?

13

hardware

operating system

application application

hardware / software
interface

system call
interface

UW CSE490H // fall 2008 // gribble@cs

What is computer hardware?

Just a bag of devices…
•  CPU

  defines the instruction set of the machine

  provides registers, processes instructions, handles interrupts

  defines privilege modes (e.g., supervisor, user)

•  memory hierarchy
  physical memory words accessible via load/store instructions

  MMU provides paging / segmentation, and therefore virtual memory support

  MMU controlled via special registers, and via page tables (see CSE451)

•  I/O devices
  disks, NICs, etc., controlled by programmed I/O (inb, outb) or by DMA (load/store)

  events delivered to software via polling or interrupts

•  Other devices
  graphics cards, clocks, USB controllers, etc.

14

UW CSE490H // fall 2008 // gribble@cs

What is an OS?

It’s just a program!
•  you write it in some language (C/C++), and compile it into a program image

•  it runs like any other program, but in a privileged (supervisor) CPU mode
•  this allows it to interact with hardware devices using “sensitive” instructions

Looking downwards:
•  an OS issues instructions to control hardware devices

•  it does so to allocate and manage hardware resources on behalf of programs

Looking upwards:

•  OS gives apps a high-level programming interface (system call interface)

•  OS implements this interface using low-level hardware devices
•  file open / read / write close vs. disk block read / write

15

UW CSE490H // fall 2008 // gribble@cs

What’s an application?

A program that relies on the system call interface
•  While executing it, the CPU runs in unprivileged (user) mode

•  a special instruction (“intc” on x86) lets a program call into the OS
•  the OS uses this to expose system calls

•  the program uses system calls to manipulate file system, network stack, etc.

•  OS provides a program with the illusion of its own memory
•  MMU hardware lets the OS define the “virtual address space” of the program

Is this safe?
•  most instructions run directly on the CPU (fast)

•  but sensitive instructions cause the CPU to throw an exception to the OS

•  address spaces prevent program from stomping on OS memory, each other

•  it’s as though each program runs in its own, private machine (the “process”)

16

UW CSE490H // fall 2008 // gribble@cs

Here’s the goofy idea…

What if we run the Windows kernel as a user-level program?

17

hardware

VMM

Windows guest OS

app app

Linux guest OS

app app

(physical) hardware /
software interface

system call
interface

virtual hardware /
software interface

UW CSE490H // fall 2008 // gribble@cs

The goofy idea almost works, but…

What happens when Windows issues a sensitive instruction?

What (virtual) hardware devices should Windows see?

How do you prevent apps running on Windows from hurting Windows?
•  or apps from hurting the VMM…

•  or Windows from hurting Linux…or the VMM…

18

UW CSE490H // fall 2008 // gribble@cs

Trap-and-emulate, and Goldberg

Answer: rely on CPU to trap sensitive instructions and hand off to VMM
•  VMM emulates the effect of sensitive instruction on the virtual hardware that

it provides to its guest OSs

•  instead of OS providing high-level abstractions to process via system calls…
•  VMM provides a virtual HW/SW interface to guest OSs by trapping and emulating

sensitive instructions

Goldberg (1974): two classes of instructions

•  privileged instructions: those that trap when CPU is in user-mode

•  sensitive instructions: those that modify hardware configuration or
resources, and those whose behavior depends on HW configuration

A VMM can be constructed efficiently and safely if the set of sensitive
instructions is a subset of the set of privileged instructions.

19

UW CSE490H // fall 2008 // gribble@cs

Performance implications of trap-and-emulate

There is almost no overhead to non-sensitive instructions
•  they execute directly on the CPU, and do not cause traps

•  CPU-bound code (e.g., many SPEC benchmarks, some scientific programs)
execute at the same speed on a VM as on a physical machine

There is a large potential performance hit to sensitive instructions

•  they raise a trap and must be vectored to and emulated by VMM

•  I/O or system-call intensive applications get hit hard
  recent hardware extensions try to improve this by letting the hardware handle

instructions that used to cause trap/emulate

  in essence, these extensions make the CPU aware of VM boundaries

20

UW CSE490H // fall 2008 // gribble@cs

A hard problem (and why VMware made $$)

Until 2005, the Intel architecture did not meet Goldberg’s requirement
•  17 instructions were not virtualizable

•  they do not trap, and they behave differently in supervisor vs. user mode
•  some leak processor mode (e.g., SMSW, or store machine status word)

•  some behave differently (e.g., CALL or JMP to addresses that reference the
protection mode of the destination)

21

UW CSE490H // fall 2008 // gribble@cs

How to make Intel virtualizable

You have four choices…
1.  Emulate: do not execute instructions directly, but instead interpret each

•  very slow (Virtual PC on the Mac)

2.  Paravirtualize: modify the guest OS to avoid non-virtualizable instructions
•  very fast and safe, but not “pure” or backwards compatible (Denali, Xen)

3.  Use binary translation instead of trap-and-emulate.
•  this is rocket science; and it is what VMware does

4.  Fix the CPUs.
•  In 2005/2006, Intel introduced “VT”, and AMD introduced “Pacifica”

•  re-implemented ideas from VM/370 virtualization support
•  basically added a new CPU mode to distinguish VMM from guest/app

•  now building a VMM is easy!
•  and VMware must make money some other way…

22

UW CSE490H // fall 2008 // gribble@cs

Outline

•  The history of virtualization

•  How virtualization works

•  Applications of virtualization

23

UW CSE490H // fall 2008 // gribble@cs

Cool properties of VM-based systems

A full-blown computer image can be stored in a file
•  VMM manifestly sees all of the state of the virtual hardware

•  virtual disk blocks, virtual (physical) memory pages, virtual CPU registers, virtual
I/O device state, etc.

•  if the VMM saves all this state into a file, it has created a VM snapshot
  and if it loads this state from a file, it is restoring a VM from a snapshot

•  Pop quiz: if all you save in the snapshot is the disk state, what do you have?

You can copy VM image to a new machine and run it there (migration)
•  install a complicated app in an image, and ship it (virtual appliances)

•  optimize the copy, and do the copy while the VM is running (live migration)

24

UW CSE490H // fall 2008 // gribble@cs

More cool properties of VMs

A virtual machine is a (pretty) secure sandbox

•  run malicious code in a VM, and it won’t harm other VMs or the host OS
  e.g., run a web browser in a VM and not worry about malware

  what assumption does this make?

The VMM can observe and log all HW/SW interactions of its guest OSs

•  log non-deterministic interactions to build a flight-data-recorder for replay
  forensics, software-based fault tolerance, time-travel debugging, …

25

UW CSE490H // fall 2008 // gribble@cs

The virtual data center

A cluster of machines, each running a set of VMs
•  drive up utilization by packing many VMs onto each cluster node

•  fault recovery is simplified
•  if hardware fails, copy VM image elsewhere

•  if software fails, restart VM from snapshot

•  can safely allow third parties to inject VM images into your data center
•  hosted VMs in the sky, commercial computing grids

Pop quiz:

•  should a big cloud app provider (Google, Yahoo, Microsoft, …) run VMs on
all of its machines?

26

UW CSE490H // fall 2008 // gribble@cs

Amazon web services

EC2, S3 etc.

•  customer uploads and runs Xen virtual machines; Amazon charges:
•  10 cents per CPU hour

•  10 cents per GB-month of storage

•  10 cents per million I/O requests

•  10 cents per wide-area network EC GB in, 17 per GB out.

•  is very much a low-level utility
•  you decide what software images to run

•  you must manage your fleet of virtual machine images

•  you get to worry about fault tolerance, scalability (sharding), etc.

•  ecosystem is growing around it
•  third-party companies like RightScale help solve these problems, if you run LAMP

27

UW CSE490H // fall 2008 // gribble@cs

For comparison, Google’s AppEngine

Let’s customers implement and execute Web services on Google’s machines

•  programmers write to a Python-based execution environment
  you implement code to handle a Web request

  your code can store and retrieve data from something that looks like BigTable

•  Google figures out…
  how many machines to run your code on

  how to route requests to your machines

  where to store your data, and how to manage data replication

  how to hide faults from you and your users

  the geolocation of your code

•  Google chose to rely on Python + OS as sandbox, rather than a VM

28

