Reliability & Chubby

CSE 490H

This presentation incorporates content licensed under the
Creative Commons Attribution 2.5 License.



» I
Overview

m Writable / WritableComparable
m Reliability review
m Chubby + PAXOS



Datatypes in Hadoop

m Hadoop provides support for primitive
datatypes
String > Text
nteger - IntWritable
_ong > LongWritable

~loatWritable, DoubleWritable, ByteWritable,
ArrayWritable...




" A
The Writable Interface

interface Writable {
public void readFields (DatalInput in);
public void write (DataOutput out);



Example: LongWritable

public class LongWritable implements
WritableComparable ({
private long value;

public void readFields (DataInput in)
throws IOException ({
value = in.readLong();

public void write (DataOutput out)
throws IOException ({
out .writelong (value);

}



" A
WritableComparable

m Extends Writable so the data can be used as a
key, not just a value

int compareTo (Object what)
int hashCode ()

this.compareTo(x) == 0 =>
X .hashCode () == this.hashCode ()



A Composite Writable

class IntPairWritable implements Writable {
private int fst;
private int snd;

public void readFields (DataInput in)
throws IOException ({
fst = in.readInt ();
snd = in.readInt ();

public void write (DataOutput out)
throws IOException ({
out .writelnt (fst);
out .writelnt (snd);



A Composite Writable (2)

class IntPairWritable implements Writable {
private IntWritable fst;
private IntWritable snd;

public void readFields (DataInput in)
throws IOException ({
fst.readFields (in) ;
snd.readFields (in) ;

public void write (DataOutput out)
throws IOException ({
fst.write(out);
snd.write (out);



Marshalling Order Constraint

class Foo {
T1A;

T2 B *ﬂta()
}

serialized A serialized B

class Foo {
readFields() i; g\;

}

m readFields() and write() must operate in the same order



" A
Subclassing is problematic

class AaronsData implements Writable { }
class TypeA extends AaronsData ({

int fieldA;
}

class TypeB extends AaronsData ({
float fieldB;

}

m Cannot do this with Hadoop!



"
Attempt 2...

class AaronsData implements Writable {
int fieldA;
float fieldB;

m But we only want to populate one field at a time;
how do we determine which is the “real” field?



Looking at the Bytes

tag (0)

fieldA data

tag (1)

fieldB data




" A
Tag-Discriminated Union

class AaronsData implements Writable ({
static final int TYPE A = 0, TYPE B = 1;
int TAG;
int fieldA;
float fieldB;

void readFields (DataInput in) ({
TAG = in.readInt();
if (TAG == TYPE A) { fieldA = in.readInt(); }
else { fieldB = in.readFloat(); }



Reliability




Reliability Demands

m Support partial failure

Total system must support graceful decline in
application performance rather than a full halt



Reliability Demands

m Data Recoverability

If components fail, their workload must be
picked up by still-functioning units



Reliability Demands

m Individual Recoverability

Nodes that fail and restart must be able to
rejoin the group activity without a full group
restart



Reliability Demands

m Consistency

Concurrent operations or partial internal
failures should not cause externally visible
nondeterminism



Reliability Demands

m Scalability

Adding increased load to a system should not
cause outright failure, but a graceful decline

Increasing resources should support a
proportional increase in load capacity



Reliability Demands

m Security

The entire system should be impervious to
unauthorized access

Requires considering many more attack
vectors than single-machine systems



Ken Arnold, CORBA designer:

“Failure is the defining difference between
distributed and local programming”



Component Failure

m Individual nodes simply stop



" A
Data Failure

m Packets omitted by overtaxed router
m Or dropped by full receive-buffer in kernel
m Corrupt data retrieved from disk or net



" A
Network Failure

m External & internal links can die

Some can be routed around in ring or mesh

topology
Star topology may cause individual nodes to
appear to halt

Tree topology may cause “split”

Messages may be sent multiple times or not
at all or in corrupted form...



Timing Fallure

m Temporal properties may be violated

Lack of “heartbeat” message may be
interpreted as component halt

Clock skew between nodes may confuse
version-aware data readers



Byzantine Failure

m Difficult-to-reason-about circumstances
arise
Commands sent to foreign node are not

confirmed: What can we reason about the
state of the system?



Malicious Failure

m Malicious (or maybe naive) operator
injects invalid or harmful commands into
sysiem



Preparing for Failure

m Distributed systems must be robust to
these failure conditions

m But there are lots of pitfalls...



"
The Eight Design Fallacies

m [he network is reliable.

m Latency is zero.

m Bandwidth is infinite.

m [he network is secure.

m [Topology doesn't change.

m [here is one administrator.

m [ransport cost is zero.

m [he network is homogeneous.

-- Peter Deutsch and James Gosling, Sun Microsystems



" S
Dealing With Component Failure

m Use heartbeats to monitor component
availability
m “Buddy” or “Parent” node is aware of

desired computation and can restart it
elsewhere if needed

m Individual storage nodes should not be the
sole owner of data
Pitfall: How do you keep replicas consistent?



Dealing With Data Failure

m Data should be check-summed and
verified at several points

Never trust another machine to do your data
validation!

m Sequence identifiers can be used to
ensure commands, packets are not lost



" A
Dealing With Network Failure

m Have well-defined split policy
Networks should routinely self-discover

topology
Well-defined arbitration/leader election
protocols determine authoritative components

» [nactive components should gracefully clean up
and wait for network rejoin



" A
Dealing With Other Failures

m Individual application-specific problems
can be difficult to envision

m Make as few assumptions about foreign
machines as possible

m Design for security at each step






" A
What is it?

m A coarse-grained lock service

Other distributed systems can use this to
synchronize access to shared resources

m Intended for use by “loosely-coupled
distributed systems”



"
Design Goals

m High availability
m Reliability

m Anti-goals:
High performance
Throughput
Storage capacity



" A
Intended Use Cases

m GFS: Elect a master

m BigTable: master election, client discovery,
table service locking

m Well-known location to bootstrap larger
systems

m Partition workloads

m Locks should be coarse: held for hours or
days — build your own fast locks on top



External Interface

m Presents a simple distributed file system

m Clients can open/close/read/write files
Reads and writes are whole-file
Also supports advisory reader/writer locks

Clients can register for notification of file
update



" A
Files == Locks?

m “Files” are just handles to information

m [hese handles can have several attributes

The contents of the file is one (primary)
attribute

As is the owner of the file, permissions, date
modified, etc

Can also have an attribute indicating whether
the file is locked or not.



"
Topology

All client traffic

One Chubby “Cell”

Master
replica

replica

replica

replica replica




Master election

m Master election is simple: all replicas try to
acquire a write lock on designated file. The
one who gets the lock is the master.

Master can then write its address to file; other
replicas can read this file to discover the
chosen master name.

Chubby doubles as a name service



Distributed Consensus

m Chubby cell is usually 5 replicas
3 must be alive for cell to be viable
m How do replicas in Chubby agree on their
own master, official lock values?
PAXOS algorithm



"
PAXOS

m Paxos is a family of algorithms (by Leslie
Lamport) designed to provide distributed
consensus in a network of several
processors.



"
Processor Assumptions

m Operate at arbitrary speed
m [ndependent, random failures

m Procs with stable storage may rejoin
protocol after failure

m Do not lie, collude, or attempt to
maliciously subvert the protocol



Network Assumptions

m All processors can communicate with
(“see”) one another

m Messages are sent asynchronously and
may take arbitrarily long to deliver

m Order of messages is not guaranteed: they
may be lost, reordered, or duplicated

m Messages, if delivered, are not corrupted
in the process



A Fault Tolerant Memory of Facts

m Paxos provides a memory for individual
“facts” in the network.

m A fact is a binding from a variable to a
value.

m Paxos between 2F+1 processors is

reliable and can make progress if up to F
of them falil.



" A
Roles

m Proposer — An agent that proposes a fact
m Leader — the authoritative proposer

m Acceptor — holds agreed-upon facts in its
memory

m Learner — May retrieve a fact from the
sysiem



Safety Guarantees

m Nontriviality: Only proposed values can be
learned

m Consistency: Only at most one value can
be learned

m Liveness: If at least one value V has been
proposed, eventually any learner L will get
some value



" A
Key ldea

m Acceptors do not act unilaterally. For a fact
to be learned, a quorum of acceptors
must agree upon the fact

m A quorum is any majority of acceptors

m Given acceptors {A, B, C, D}, Q = {{A, B,
Cl, {A, B, D}, {B, C, D}, {A, C, D}}



" A
Basic Paxos

m Determines the authoritative value for a
single variable

m Several proposers offer a value V, to set
the variable to.

m [he system converges on a single agreed-
upon V to be the fact.



Step 1: Prepare

Proposer
1

PREPARE j

y

Acceptor

Proposer
2

Acceptor

K> j

PREPARE k

Acceptor




" A
Step 2: Promise

m PROMISE x —
Acceptor will accept
proposals only
numbered x or higher

m Proposer 1is
ineligible because a
quorum has voted for
a higher number than

J

PROMISE j

PROMI k

PROMISE k

Acce

ptor




Step 3: Accept!

Proposer
Proposer p2

1

ACCEPT! (v_k, k)

Y

Acceptor Acceptor Acceptor

Proposer 1 is disqualified; Proposer 2 offers a value



Step 4: Accepted

Proposer

Proposer 2

1

Accepted k

Acceptor Acceptor Acceptor

A quorum has accepted value v_k; it is now a fact



Learning values

Sl Learner Proposer Sl Learner Proposer
1 2 1 2
v?
V_k
Acceptor Acceptor Acceptor Acceptor Acceptor Acceptor

If a learner interrogates the system, a quorum will respond
with fact V_k



" A
Basic Paxos...

m Proposer 1 is free to try again with a
proposal number > K; can take over
leadership and write in a new authoritative
value

Official fact will change “atomically” on all
acceptors from perspective of learners

If a leader dies mid-negotiation, value just
drops, another leader tries with higher
proposal



" A
More Paxos Algorithms

m Not whole story

m MultiPaxos: steps 1—2 done once, 3—4
repeated multiple times by same leader

m Also: cheap Paxos, fast Paxos,
generalized Paxos, Byzantine Paxos...



" A
Paxos in Chubby

m Replicas in a cell initially use Paxos to
establish the leader.

m Majority of replicas must agree

m Replicas promise not to try to elect new
master for at least a few seconds (“master

lease”)
m Master lease is periodically renewed



" A
Client Updates

m All client updates go through master

m Master updates official database; sends
copy of update to replicas

Majority of replicas must acknowledge receipt
of update before master writes its own value

m Clients find master through DNS
Contacting replica causes redirect to master



" A
Chubby File System

m Looks like simple UNIX FS: /Is/foo/wombat
All flenames start with ‘/Is’ (“lockservice”)
Second component is cell (“foo”)

Rest of the path is anything you want

m No inter-directory move operation
m Permissions use ACLs, non-inherited
m No symlinks/hardlinks



Files

m Files have version numbers attached

m Opening a file receives handle to file

Clients cache all file data including file-not-
found

Locks are advisory — not required to open file



" J
Why Not Mandatory Locks?

m Locks represent client-controlled
resources; how can Chubby enforce this?

m Mandatory locks imply shutting down client
apps entirely to do debugging

Shutting down distributed applications much
trickier than in single-machine case




" A
Callbacks

m Master notifies clients if files modified,
created, deleted, lock status changes

m Push-style notifications decrease
bandwidth from constant polling



" A
Cache Consistency

m Clients cache all file content

m Must send respond to Keep-Alive
message from server at frequent interval

m KA messages include invalidation
requests

Responding to KA implies acknowledgement
of cache invalidation

m Modification only continues after all
caches invalidated or KA time out



" A
Client Sessions

m Sessions maintained between client and
server

Keep-alive messages required to maintain
session every few seconds

m |f session is lost, server releases any
client-held handles.

m What if master is late with next keep-alive?

Client has its own (longer) timeout to detect
server failure



Master Failure

m |f client does not hear back about keep-
alive In local lease timeout, session Is in
jeopardy

Clear local cache
Wait for “grace period” (about 45 seconds)
Continue attempt to contact master

m Successful attempt => ok; jeopardy over
m Failed attempt => session assumed lost



Master Fallure (2)

m |f replicas lose contact with master, they
wait for grace period (shorter: 4—6 secs)

m On timeout, hold new election



"
Reliability

m Started out using replicated Berkeley DB
m Now uses custom write-thru logging DB

m Entire database periodically sent to GFS
In a different data center

m Chubby replicas span multiple racks



" A
Scalability

m 90K+ clients communicate with a single
Chubby master (2 CPUs)

m System increases lease times from 12 sec
up to 60 secs under heavy load

m Clients cache virtually everything

m Data is small — all held in RAM (as well as
disk)



Conclusion

m Simple protocols win again

m Piggybacking data on Keep-alive is a
simple, reliable coherency protocol



