
Reliability & Chubby

CSE 490H

This presentation incorporates content licensed under the 

Creative Commons Attribution 2.5 License.



Overview

� Writable / WritableComparable

� Reliability review

� Chubby + PAXOS



Datatypes in Hadoop

� Hadoop provides support for primitive 
datatypes

�String � Text

� Integer � IntWritable

�Long � LongWritable

�FloatWritable, DoubleWritable, ByteWritable, 

ArrayWritable…



The Writable Interface

interface Writable {

public void readFields(DataInput in);

public void write(DataOutput out);

}



Example: LongWritable
public class LongWritable implements 

WritableComparable {

private long value;

public void readFields(DataInput in) 

throws IOException {

value = in.readLong();

}

public void write(DataOutput out)

throws IOException {

out.writeLong(value);

}

}



WritableComparable

� Extends Writable so the data can be used as a 
key, not just a value

int compareTo(Object what)

int hashCode()

this.compareTo(x) == 0 =>

x.hashCode() == this.hashCode()



A Composite Writable 
class IntPairWritable implements Writable {

private int fst;

private int snd;

public void readFields(DataInput in)

throws IOException {

fst = in.readInt();

snd = in.readInt();

}

public void write(DataOutput out)

throws IOException {

out.writeInt(fst);

out.writeInt(snd);

}

}



A Composite Writable (2)
class IntPairWritable implements Writable {

private IntWritable fst;

private IntWritable snd;

public void readFields(DataInput in)

throws IOException {

fst.readFields(in);

snd.readFields(in);

}

public void write(DataOutput out)

throws IOException {

fst.write(out);

snd.write(out);

}

}



Marshalling Order Constraint

� readFields() and write() must operate in the same order



Subclassing is problematic

class AaronsData implements Writable { }

class TypeA extends AaronsData {

int fieldA;

}

class TypeB extends AaronsData {

float fieldB;

}

� Cannot do this with Hadoop!



Attempt 2…

class AaronsData implements Writable {

int fieldA;

float fieldB;

}

� But we only want to populate one field at a time; 

how do we determine which is the “real” field?



Looking at the Bytes



Tag-Discriminated Union

class AaronsData implements Writable {

static final int TYPE_A = 0, TYPE_B = 1;

int TAG;

int fieldA;

float fieldB;

void readFields(DataInput in) {

TAG = in.readInt();

if (TAG == TYPE_A) { fieldA = in.readInt(); }

else { fieldB = in.readFloat(); }

}

}



Reliability



Reliability Demands

� Support partial failure

�Total system must support graceful decline in 

application performance rather than a full halt



Reliability Demands

� Data Recoverability

� If components fail, their workload must be 

picked up by still-functioning units



Reliability Demands

� Individual Recoverability

�Nodes that fail and restart must be able to 

rejoin the group activity without a full group 

restart



Reliability Demands

� Consistency

�Concurrent operations or partial internal 

failures should not cause externally visible 

nondeterminism



Reliability Demands

� Scalability

�Adding increased load to a system should not 

cause outright failure, but a graceful decline

� Increasing resources should support a 

proportional increase in load capacity



Reliability Demands

� Security

�The entire system should be impervious to 

unauthorized access

�Requires considering many more attack 

vectors than single-machine systems



Ken Arnold, CORBA designer:

“Failure is the defining difference between 

distributed and local programming”



Component Failure

� Individual nodes simply stop



Data Failure

� Packets omitted by overtaxed router

� Or dropped by full receive-buffer in kernel

� Corrupt data retrieved from disk or net



Network Failure

� External & internal links can die
�Some can be routed around in ring or mesh 

topology

�Star topology may cause individual nodes to 
appear to halt

�Tree topology may cause “split”

�Messages may be sent multiple times or not 
at all or in corrupted form…



Timing Failure

� Temporal properties may be violated

�Lack of “heartbeat” message may be 

interpreted as component halt

�Clock skew between nodes may confuse 

version-aware data readers



Byzantine Failure

� Difficult-to-reason-about circumstances 
arise

�Commands sent to foreign node are not 

confirmed: What can we reason about the 

state of the system?



Malicious Failure

� Malicious (or maybe naïve) operator 
injects invalid or harmful commands into 
system



Preparing for Failure

� Distributed systems must be robust to 
these failure conditions

� But there are lots of pitfalls…



The Eight Design Fallacies

� The network is reliable. 

� Latency is zero. 

� Bandwidth is infinite. 

� The network is secure. 

� Topology doesn't change. 

� There is one administrator. 

� Transport cost is zero. 

� The network is homogeneous. 

-- Peter Deutsch and James Gosling, Sun Microsystems



Dealing With Component Failure

� Use heartbeats to monitor component 
availability

� “Buddy” or “Parent” node is aware of 
desired computation and can restart it 
elsewhere if needed

� Individual storage nodes should not be the 
sole owner of data
�Pitfall: How do you keep replicas consistent?



Dealing With Data Failure

� Data should be check-summed and 
verified at several points

�Never trust another machine to do your data 

validation!

� Sequence identifiers can be used to 
ensure commands, packets are not lost



Dealing With Network Failure

� Have well-defined split policy

�Networks should routinely self-discover 

topology

�Well-defined arbitration/leader election 

protocols determine authoritative components

� Inactive components should gracefully clean up 
and wait for network rejoin



Dealing With Other Failures

� Individual application-specific problems 
can be difficult to envision

� Make as few assumptions about foreign 
machines as possible

� Design for security at each step



Chubby



What is it?

� A coarse-grained lock service

�Other distributed systems can use this to 

synchronize access to shared resources

� Intended for use by “loosely-coupled 
distributed systems”



Design Goals

� High availability

� Reliability 

� Anti-goals:

�High performance

�Throughput 

�Storage capacity



Intended Use Cases

� GFS: Elect a master

� BigTable: master election, client discovery, 
table service locking

� Well-known location to bootstrap larger 
systems

� Partition workloads

� Locks should be coarse: held for hours or 
days – build your own fast locks on top 



External Interface

� Presents a simple distributed file system

� Clients can open/close/read/write files

�Reads and writes are whole-file

�Also supports advisory reader/writer locks 

�Clients can register for notification of file 

update



Files == Locks?

� “Files” are just handles to information

� These handles can have several attributes
�The contents of the file is one (primary) 

attribute

�As is the owner of the file, permissions, date 
modified, etc

�Can also have an attribute indicating whether 
the file is locked or not.



Topology



Master election

� Master election is simple: all replicas try to 
acquire a write lock on designated file. The 
one who gets the lock is the master.

�Master can then write its address to file; other 

replicas can read this file to discover the 

chosen master name.

�Chubby doubles as a name service



Distributed Consensus

� Chubby cell is usually 5 replicas

�3 must be alive for cell to be viable

� How do replicas in Chubby agree on their 
own master, official lock values?

�PAXOS algorithm



PAXOS

� Paxos is a family of algorithms (by Leslie 
Lamport) designed to provide distributed 
consensus in a network of several 
processors.



Processor Assumptions

� Operate at arbitrary speed

� Independent, random failures

� Procs with stable storage may rejoin 
protocol after failure

� Do not lie, collude, or attempt to 
maliciously subvert the protocol



Network Assumptions

� All processors can communicate with 
(“see”) one another

� Messages are sent asynchronously and 
may take arbitrarily long to deliver

� Order of messages is not guaranteed: they 
may be lost, reordered, or duplicated

� Messages, if delivered, are not corrupted 
in the process



A Fault Tolerant Memory of Facts

� Paxos provides a memory for individual 
“facts” in the network.

� A fact is a binding from a variable to a 
value.

� Paxos between 2F+1 processors is 
reliable and can make progress if up to F 
of them fail.



Roles

� Proposer – An agent that proposes a fact 

� Leader – the authoritative proposer

� Acceptor – holds agreed-upon facts in its 
memory

� Learner – May retrieve a fact from the 
system



Safety Guarantees

� Nontriviality: Only proposed values can be 
learned

� Consistency: Only at most one value can 
be learned 

� Liveness: If at least one value V has been 
proposed, eventually any learner L will get 
some value



Key Idea

� Acceptors do not act unilaterally. For a fact 
to be learned, a quorum of acceptors 
must agree upon the fact

� A quorum is any majority of acceptors

� Given acceptors {A, B, C, D}, Q = {{A, B, 
C}, {A, B, D}, {B, C, D}, {A, C, D}}



Basic Paxos

� Determines the authoritative value for a 
single variable

� Several proposers offer a value Vn to set 
the variable to. 

� The system converges on a single agreed-
upon V to be the fact.



Step 1: Prepare



Step 2: Promise

� PROMISE x –
Acceptor will accept 
proposals only 
numbered x or higher

� Proposer 1 is 
ineligible because a 
quorum has voted for 
a higher number than 
j



Step 3: Accept!



Step 4: Accepted



Learning values

If a learner interrogates the system, a quorum will respond 

with fact V_k



Basic Paxos…

� Proposer 1 is free to try again with a 
proposal number > k; can take over 
leadership and write in a new authoritative 
value

�Official fact will change “atomically” on all 

acceptors from perspective of learners

� If a leader dies mid-negotiation, value just 

drops, another leader tries with higher 

proposal



More Paxos Algorithms

� Not whole story

� MultiPaxos: steps 1—2 done once, 3—4 
repeated multiple times by same leader

� Also: cheap Paxos, fast Paxos, 
generalized Paxos, Byzantine Paxos…



Paxos in Chubby

� Replicas in a cell initially use Paxos to 
establish the leader. 

� Majority of replicas must agree

� Replicas promise not to try to elect new 
master for at least a few seconds (“master 
lease”)

� Master lease is periodically renewed



Client Updates

� All client updates go through master

� Master updates official database; sends 
copy of update to replicas

�Majority of replicas must acknowledge receipt 

of update before master writes its own value

� Clients find master through DNS

�Contacting replica causes redirect to master



Chubby File System

� Looks like simple UNIX FS: /ls/foo/wombat

�All filenames start with ‘/ls’ (“lockservice”)

�Second component is cell (“foo”)

�Rest of the path is anything you want

� No inter-directory move operation

� Permissions use ACLs, non-inherited

� No symlinks/hardlinks



Files

� Files have version numbers attached

� Opening a file receives handle to file

�Clients cache all file data including file-not-

found

�Locks are advisory – not required to open file



Why Not Mandatory Locks?

� Locks represent client-controlled 
resources; how can Chubby enforce this?

� Mandatory locks imply shutting down client 
apps entirely to do debugging

�Shutting down distributed applications much 

trickier than in single-machine case



Callbacks

� Master notifies clients if files modified, 
created, deleted, lock status changes

� Push-style notifications decrease 
bandwidth from constant polling



Cache Consistency

� Clients cache all file content

� Must send respond to Keep-Alive 
message from server at frequent interval

� KA messages include invalidation 
requests
�Responding to KA implies acknowledgement 

of cache invalidation

� Modification only continues after all 
caches invalidated or KA time out



Client Sessions

� Sessions maintained between client and 
server
�Keep-alive messages required to maintain 

session every few seconds 

� If session is lost, server releases any 
client-held handles.

� What if master is late with next keep-alive?
�Client has its own (longer) timeout to detect 

server failure



Master Failure

� If client does not hear back about keep-
alive in local lease timeout, session is in 
jeopardy

�Clear local cache

�Wait for “grace period” (about 45 seconds)

�Continue attempt to contact master

� Successful attempt => ok; jeopardy over

� Failed attempt => session assumed lost



Master Failure (2)

� If replicas lose contact with master, they 
wait for grace period (shorter: 4—6 secs)

� On timeout, hold new election



Reliability

� Started out using replicated Berkeley DB

� Now uses custom write-thru logging DB

� Entire database periodically sent to GFS 

� In a different data center

� Chubby replicas span multiple racks



Scalability

� 90K+ clients communicate with a single 
Chubby master (2 CPUs)

� System increases lease times from 12 sec 
up to 60 secs under heavy load

� Clients cache virtually everything

� Data is small – all held in RAM (as well as 
disk)



Conclusion

� Simple protocols win again

� Piggybacking data on Keep-alive is a 
simple, reliable coherency protocol


