
Amazon Web Services

CSE 490H

This presentation incorporates content licensed under the
Creative Commons Attribution 2.5 License.

Overview

� Questions about Project 3?

� EC2

� S3

� Putting them together

Brief Virtualization Review

Host and Guest Systems

Fully Virtualized Machine

�����������	
�����������

��

����

��

����

����������

Interacting with the Hypervisor

�����������	
�����������

��

����

��

����

����������
��������

�������	�

“add machine”

�����������	
�����������

��

����

��

����

����������
��������

�������	�

�����

New machine added

Managing Large Deployments

�����������	
�����������

��

����

��

����

����������
��������

�������	�

����������������

��������	����	����

How Web Servers Work

� Interacting with a web servers has three
stages

�Request – A URL (and some data) is sent to
the server

�Handler – Some logic looks at the request

�Response – Some data is sent back to the
user

Serving a Web Page

� Request: “GET /index.html”

� Handler: The server itself reads the
$wwwroot/index.html file

� Response: The contents of the file are
sent back to the user

Web Applications

� Request: “GET
/buyItem.php?itemId=414&customerId=20
00”

� Handler: The server invokes the
buyItem.php script and runs the code

� Response: Whatever output is sent back
from the script gets sent back to the end
user’s web browser

CGI Scripts

� This sort of “Web page that does
something” is referred to as CGI (the
Common Gateway Interface)

� Typically a script that takes in parameters,
does some processing, and returns a new
web page to view in your browser

REST Interfaces

� … Buy why the focus on “pages?”

� Request: “GET
/launchMissiles.exe?authCode=12345”

� Handler: launchMissiles program works

� Response: “Boom!”

� …This is a “web service”

REST Interfaces

� Well-defined “URLs” perform operations

� Web server is connected to programs
specific to each of those operations

� Typically work with XML-formatted data

� Designed for connections to be self-
contained and non-persistent

Web without the Web Browser

� Any application can send/receive data with
the HTTP protocol

� Requests can be sent by command-line
utilities, other GUI apps, etc

� They then parse the XML response,
display data as is appropriate

Put them together…

EC2 Terminology

� Instance – A virtual machine

� Image, AMI – The initial state for a VM

� Security Group – A set of instances with
shared firewall settings

Launching Instances

� ec2-run-instances

�Requires AMI id (e.g., ami-1a2b3c4d)

�User key, security group, instance type, count

� Doesn’t run immediately – instances start
in “pending” state; later transition to
“running”

Where’s my instance?

� ec2-describe-instances

RESERVATION r-b27edbdb 726089167552 tom

INSTANCE i-90a413f9 ami-4715f12e

ec2-67-202-10-48.compute-1.amazonaws.com

ip-10-251-22-143.ec2.internal

running tom 0 m1.large

2008-11-11T17:23:39+0000

us-east-1c aki-b51cf9dc ari-b31cf9da

Firewall rules

� ec2-describe-group (groupname)

GROUP 726089167552 aaron aaron

PERMISSION 726089167552 aaron ALLOWS

tcp 22 22 FROM CIDR 0.0.0.0/0

PERMISSION 726089167552 aaron ALLOWS

tcp 80 80 FROM CIDR 0.0.0.0/0

� Create a group with ec2-add-group

� Control permissions with ec2-(de)authorize

A new instance, a blank slate

� How do you log in to an instance?

� How does an instance know what it should
do?

�Per-instance metadata

ssh keypairs

� ssh lets you log in to a remote machine
with a username

�Authentication can be done by password

�Also can be done with public/private keys

� EC2 will let you register a key pair in db

� Injects public key into instance on boot

�You have the private key, you can log in

Shutting down instances

� ec2-terminate-instance (instance id)

� Terminates a running instance

� Use ec2-describe-instances to get the
instance id (i-XXXXXXXX)

Using Instance Metadata

� You can create an AMI to do anything you
want

� Very specific AMI may already have full
application stack already loaded

� More generic AMI may run a bootstrap
script
�Can download more programs, data from

another source

S3 – The Simple Storage Service

� S3 is an infinitely-large, web-accessible
storage service

� Data is stored in “buckets” as (key, value)
pairs

�Effectively (server, filename) � file mapping

S3 has a REST API too

� PUT request to a URL with data uploads
the data as the value bound to the key
specified by the URL

� GET request to the URL retrieves the
value (file) or “404 Not Found”

S3 Buckets

� Names must be globally unique

� (Since they are addressable as DNS entries)

� Can hold an unlimited number of keys

� Each key can have up to 5 GB of value

Starting a Server

� ec2-run-instances can specify metadata

� A new server is provisioned and boots

� Boot process runs a script that reads
metadata

�This specifies location of another program

�Retrieves the program, runs it

�Retrieves data, starts more services, etc…

Project 4 And You

� Project 3 will provide you with map tiles
and an index from (address � lat, lon)

� In project 4, you will:
�Upload this into S3

�Write a web server handler applet to do
address lookups

�Write the bootstrap scripts to retrieve data
from S3 into your instance and launch your
server

More Web Services

� Simple Queue Service (SQS)

�Reliable producer—consumer queues that
hold millions of queue entries, with hundreds
of servers connecting…

� Simple Database Service (SDB)

�A lot like BigTable

Self-Scaling Applications

��� ��� ���

 �����������
!��"�#�

�������������

������

 ���$%����	����&�����������

�'�%�	���������������

	�������������(��

"��$(����

��)(����

Self-Scaling Backends

�������

������

*�%���(�	
��
!��"�#�

�������������

������

+����)(�(�

�'��(��(��%(���

,������������

�����-

�'����(��%(���

&����	����	�����

���	�����
.����$���������

GrepTheWeb

� Large web crawl data is stored in S3

� Users can submit regular expression to
the GTW program

�GTW uses Hadoop to search for data

�Puts your results in an output bucket and
notifies you when it’s ready

Conclusions

� Web Services make for clean couplings
between systems

� Hardware as a Service (EC2/S3) allows
applications to use physical resources
dynamically

� The two put together allow for very
scalable application design

