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" A
How Web Servers Work

m [nteracting with a web servers has three
stages

Request— A URL (and some data) is sent to
the server

Handler — Some logic looks at the request

Response — Some data is sent back to the
user



"
Serving a Web Page

m Request: “GET /index.html”

m Handler: The server itself reads the
Swwwroot/index.html file

m Response: The contents of the file are
sent back to the user



" J
Web Applications

m Request: “GET

/buyltem.php?itemld=414&customerld=20
OO”

m Handler: The server invokes the
buyltem.php script and runs the code

m Response: Whatever output is sent back
from the script gets sent back to the end
user’'s web browser



" A
CGl Scripts

m This sort of “Web page that does
something” is referred to as CGl (the
Common Gateway Interface)

m [ypically a script that takes in parameters,
does some processing, and returns a new
web page to view in your browser



" A
REST Interfaces

m ... Buy why the focus on “pages?”

m Request: “GET
/launchMissiles.exe?authCode=12345"

m Handler: launchMissiles program works
m Response: “Boom!”

m ...Thisis a “web service”



" A
REST Interfaces

m Well-defined “URLSs” perform operations

m Web server is connected to programs
specific to each of those operations

m Typically work with XML-formatted data

m Designed for connections to be self-
contained and non-persistent



" A
Web without the Web Browser

m Any application can send/receive data with
the HT TP protocol

m Requests can be sent by command-line
utilities, other GUI apps, etc

m [hey then parse the XML response,
display data as is appropriate
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EC2 Terminology

m [nstance — A virtual machine
m [mage, AMI — The initial state for a VM

m Security Group — A set of instances with
shared firewall settings



Launching Instances

m ec2-run-instances
Requires AMI id (e.g., ami-1a2b3c4d)
User key, security group, instance type, count

m Doesn’'t run immediately — instances start
In “pending” state; later transition to
“‘running”



Where’'s my instance?

m ec2-describe-instances

RESERVATION r-b27edbdb 726089167552 tom
INSTANCE 1i-90a413f9 ami-4715fl12e
ec2-67-202-10-48.compute—-1.amazonaws.com
ip-10-251-22-143.ec2.internal
running tom O ml.large
2008-11-11T17:23:39+0000
us—east-1c aki-b51cf9dc ari-b31lcf9da



" A
Firewall rules

m ec2-describe-group (groupname)

GROUP 726089167552 aaron aaron
PERMISSION 726089167552 aaron ALLOWS
tcp 22 22 FROM CIDR 0.0.0.0/0
PERMISSION 726089167552 aaron ALLOWS
tep 80 80 FROM CIDR 0.0.0.0/0

m Create a group with ec2-add-group
m Control permissions with ec2-(de)authorize



" A
A new Instance, a blank slate

m How do you log in to an instance?

m How does an instance know what it should
do?

Per-instance metadata




"
ssh keypairs

m ssh lets you log in to a remote machine
with a username

Authentication can be done by password
Also can be done with public/private keys

m EC2 will let you reqister a key pair in db
Injects public key into instance on boot
You have the private key, you can log in



" A
Shutting down instances

m ec2-terminate-instance (instance id)

m [erminates a running instance

m Use ec2-describe-instances to get the
instance id (I-XXXXXXXX)



" A
Using Instance Metadata

m You can create an AMI to do anything you
want

m Very specific AMI may already have full
application stack already loaded

m More generic AMI may run a bootstrap
Script

Can download more programs, data from
another source



* S
S3 — The Simple Storage Service

m S3 Is an infinitely-large, web-accessible
storage service

m Data is stored in “buckets” as (key, value)
pairs
Effectively (server, filename) - file mapping



" A
S3 has a REST API too

m PUT request to a URL with data uploads
the data as the value bound to the key
specified by the URL

m GET request to the URL retrieves the
value (file) or “404 Not Found”



" A
S3 Buckets

m Names must be globally unique
(Since they are addressable as DNS entries)

m Can hold an unlimited number of keys
m Each key can have up to 5 GB of value



"
Starting a Server

B ec2-run-instances can specify metadata
m A new server is provisioned and boots

m Boot process runs a script that reads
metadata

This specifies location of another program
Retrieves the program, runs it
Retrieves data, starts more services, etc...



" A
Project 4 And You

m Project 3 will provide you with map tiles
and an index from (address - lat, lon)

m [n project 4, you will:
Upload this into S3

Write a web server handler applet to do
address lookups

Write the bootstrap scripts to retrieve data
from S3 into your instance and launch your
server



More Web Services

m Simple Queue Service (SQS)

Reliable producer—consumer queues that
hold millions of queue entries, with hundreds
of servers connecting...

m Simple Database Service (SDB)

A lot like BigTable
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" A
GrepTheWeb

m Large web crawl data is stored in S3
m Users can submit regular expression to
the GTW program
GTW uses Hadoop to search for data

Puts your results in an output bucket and
notifies you when it’s ready



Figure 3: Phases of GrepTheWeb Architecture
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" A
Conclusions

m Web Services make for clean couplings
between systems

m Hardware as a Service (EC2/S3) allows

applications to use physical resources
dynamically

m [he two put together allow for very
scalable application design



