Amazon Web Services

CSE 490H

This presentation incorporates content licensed under the
Creative Commons Attribution 2.5 License.



» I
Overview

m Questions about Project 37
m EC2

m S3
m Putting them together



Brief Virtualization Review

End-User Applications

Operating System

Hardware Machine Platform




Host and Guest Systems

Host-machine applications

Sandbox

Guest Apps
Guest OS

Hypervisor

Operating System

Hardware Machine Platform




Fully Virtualized Machine

Apps Apps

OS OS

Hypervisor

Hardware Machine Platform




Interacting with the Hypervisor

Apps Apps
oS oS
Control | Hypervisor
interface | k5 rdware Machine Platform




uadd maChineu
“add” Apps Apps
OS 0S
Control Hypervisor
interface .




New machine added

Control
interface

Apps Apps Apps
OS OS OS
Hypervisor

Hardware Machine Platform




Managing Large Deployments

Network connection

.

Apps Apps

OS OS

Provisioning Node

Control
interface

Hypervisor

Hardware Machine Platform




" A
How Web Servers Work

m [nteracting with a web servers has three
stages

Request— A URL (and some data) is sent to
the server

Handler — Some logic looks at the request

Response — Some data is sent back to the
user



"
Serving a Web Page

m Request: “GET /index.html”

m Handler: The server itself reads the
Swwwroot/index.html file

m Response: The contents of the file are
sent back to the user



" J
Web Applications

m Request: “GET

/buyltem.php?itemld=414&customerld=20
OO”

m Handler: The server invokes the
buyltem.php script and runs the code

m Response: Whatever output is sent back
from the script gets sent back to the end
user’'s web browser



" A
CGl Scripts

m This sort of “Web page that does
something” is referred to as CGl (the
Common Gateway Interface)

m [ypically a script that takes in parameters,
does some processing, and returns a new
web page to view in your browser



" A
REST Interfaces

m ... Buy why the focus on “pages?”

m Request: “GET
/launchMissiles.exe?authCode=12345"

m Handler: launchMissiles program works
m Response: “Boom!”

m ...Thisis a “web service”



" A
REST Interfaces

m Well-defined “URLSs” perform operations

m Web server is connected to programs
specific to each of those operations

m Typically work with XML-formatted data

m Designed for connections to be self-
contained and non-persistent



" A
Web without the Web Browser

m Any application can send/receive data with
the HT TP protocol

m Requests can be sent by command-line
utilities, other GUI apps, etc

m [hey then parse the XML response,
display data as is appropriate



Put them together...

Provisioning Node
Apps Apps
Requests 0S oS
from the » Web Server
Internet '
Confrol 1™ Hypervisor
Interface | 2 rdware Machine Platform




EC2 Terminology

m [nstance — A virtual machine
m [mage, AMI — The initial state for a VM

m Security Group — A set of instances with
shared firewall settings



Launching Instances

m ec2-run-instances
Requires AMI id (e.g., ami-1a2b3c4d)
User key, security group, instance type, count

m Doesn’'t run immediately — instances start
In “pending” state; later transition to
“‘running”



Where’'s my instance?

m ec2-describe-instances

RESERVATION r-b27edbdb 726089167552 tom
INSTANCE 1i-90a413f9 ami-4715fl12e
ec2-67-202-10-48.compute—-1.amazonaws.com
ip-10-251-22-143.ec2.internal
running tom O ml.large
2008-11-11T17:23:39+0000
us—east-1c aki-b51cf9dc ari-b31lcf9da



" A
Firewall rules

m ec2-describe-group (groupname)

GROUP 726089167552 aaron aaron
PERMISSION 726089167552 aaron ALLOWS
tcp 22 22 FROM CIDR 0.0.0.0/0
PERMISSION 726089167552 aaron ALLOWS
tep 80 80 FROM CIDR 0.0.0.0/0

m Create a group with ec2-add-group
m Control permissions with ec2-(de)authorize



" A
A new Instance, a blank slate

m How do you log in to an instance?

m How does an instance know what it should
do?

Per-instance metadata




"
ssh keypairs

m ssh lets you log in to a remote machine
with a username

Authentication can be done by password
Also can be done with public/private keys

m EC2 will let you reqister a key pair in db
Injects public key into instance on boot
You have the private key, you can log in



" A
Shutting down instances

m ec2-terminate-instance (instance id)

m [erminates a running instance

m Use ec2-describe-instances to get the
instance id (I-XXXXXXXX)



" A
Using Instance Metadata

m You can create an AMI to do anything you
want

m Very specific AMI may already have full
application stack already loaded

m More generic AMI may run a bootstrap
Script

Can download more programs, data from
another source



* S
S3 — The Simple Storage Service

m S3 Is an infinitely-large, web-accessible
storage service

m Data is stored in “buckets” as (key, value)
pairs
Effectively (server, filename) - file mapping



" A
S3 has a REST API too

m PUT request to a URL with data uploads
the data as the value bound to the key
specified by the URL

m GET request to the URL retrieves the
value (file) or “404 Not Found”



" A
S3 Buckets

m Names must be globally unique
(Since they are addressable as DNS entries)

m Can hold an unlimited number of keys
m Each key can have up to 5 GB of value



"
Starting a Server

B ec2-run-instances can specify metadata
m A new server is provisioned and boots

m Boot process runs a script that reads
metadata

This specifies location of another program
Retrieves the program, runs it
Retrieves data, starts more services, etc...



" A
Project 4 And You

m Project 3 will provide you with map tiles
and an index from (address - lat, lon)

m [n project 4, you will:
Upload this into S3

Write a web server handler applet to do
address lookups

Write the bootstrap scripts to retrieve data
from S3 into your instance and launch your
server



More Web Services

m Simple Queue Service (SQS)

Reliable producer—consumer queues that
hold millions of queue entries, with hundreds
of servers connecting...

m Simple Database Service (SDB)

A lot like BigTable



Self-Scaling Applications

End-user
requests

'

Load-balancing DNS frontend

)

WWwWWwW

WWW

WWwWWwW

W

Load monitor

—

S3 backing store for
common data vault

To EC2
provisioning
system



Self-Scaling Backends

Work queue

\J

Job launcher

To EC2
—® provisioning
system

Data collection

Hadoop
master

f

/

S3 input bucket \
L N

(many worker
nodes)

/

~

S3 output bucket

processes

N

Front-end nodes




" A
GrepTheWeb

m Large web crawl data is stored in S3
m Users can submit regular expression to
the GTW program
GTW uses Hadoop to search for data

Puts your results in an output bucket and
notifies you when it’s ready



Figure 3: Phases of GrepTheWeb Architecture

Launch Monitor Shutdown Cleanup
Phase Phase Phase Phase

r

L

Figure 4: GrepTheWeb Architecture - Zoom Level 3

Amazon 505
Launch Mani ==
e QLIE.UE. onitor B”“rg
Queue Service
Launch Maonitor Shutdown Billing
Controller Controller Controller Controller
Controller E
:
1
Ir'sert.llt:-t:-ID.
Status

@
.‘—
aDFS

GetFile

J‘Skm azon Hadoop Cluster on
SimpleDB Amazon EC2 Amazon 53



" A
Conclusions

m Web Services make for clean couplings
between systems

m Hardware as a Service (EC2/S3) allows

applications to use physical resources
dynamically

m [he two put together allow for very
scalable application design



