
A Behind-the-Scenes Tour

Jeff Dean
Google Fellow

jeff@google.com

User’s View of Google

Organizing the world’s information and making it
universally accessible and useful

A Computer Scientist’s View of Google

Problems span a wide range of areas:

Hardware, Mechanical engineering

Machine learning, Statistics, Information retrieval, AI

Networking, Distributed systems, Fault tolerance

Compilers, Programming languages

Data structures, Algorithms

User interfaces

Product design

…and much,

much more!

• Prefer low-end server/PC-class designs
– Build lots of them!

• Why?
– Single machine performance is not interesting

• Even smaller problems are too large for any single system
• Large problems have lots of available parallelism

Hardware Design Philosophy

“Google” Circa 1997 (google.stanford.edu)

Google (circa 1999)

Google Data Center (Circa 2000)

Google (new data center 2001)

Google Data Center (3 days later)

• In-house rack design
• PC-class motherboards
• Low-end storage and

networking hardware
• Linux
• + in-house software

Current Design

Multicore Computing

The Joys of Real Hardware
Typical first year for a new cluster:

~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
~1 network rewiring (rolling ~5% of machines down over 2-day span)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~5 racks go wonky (40-80 machines see 50% packetloss)
~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)
~3 router failures (have to immediately pull traffic for an hour)
~dozens of minor 30-second blips for dns
~1000 individual machine failures, ~thousands of hard drive failures
slow disks, bad memory, misconfigured machines, flaky machines, etc.

• Long-haul networking breaks for unusual reasons, too:

– Wild dogs, dead horses, thieves, blasphemy, drunken hunters and sharks

Implications of our Computing Environment

Stuff Breaks
• If you have one server, it may stay up three years (1,000 days)

• If you have 10,000 servers, expect to lose ten a day

“Ultra-reliable” hardware doesn’t really help
• At large scales, super-fancy reliable hardware still fails, albeit less often

– software still needs to be fault-tolerant

– commodity machines without fancy hardware give better perf/$

Reliability has to come from the software

How can we make it easy to write distributed programs?

• Overview of Infrastructure
– GFS, MapReduce, BigTable

• A peek at machine translation
• Some fun with interesting data
• General software engineering style/philosophy

Rest of Talk

• Master manages metadata
• Data transfers happen directly between clients/

chunkservers
• Files broken into chunks (typically 64 MB)

Client

Client

Misc. servers

ClientRe
pl

ica
s

Masters

GFS Master

GFS Master

C0 C1

C2C5

Chunkserver 1

C0

C2

C5

Chunkserver N

C1

C3C5

Chunkserver 2

…

GFS Design

• 200+ clusters
• Many clusters of 1000s of machines
• Pools of 1000s of clients
• 4+ PB Filesystems
• 40 GB/s read/write load
• (in the presence of frequent HW failures)

GFS Usage @ Google

MapReduce

• A simple programming model that applies to many large-scale
computing problems

• Hide messy details in MapReduce runtime library:
– automatic parallelization
– load balancing
– network and disk transfer optimizations
– handling of machine failures
– robustness
– improvements to core library benefit all users of library!

Typical problem solved by MapReduce

• Read a lot of data
• Map: extract something you care about from each record
• Shuffle and Sort
• Reduce: aggregate, summarize, filter, or transform
• Write the results

Outline stays the same,
map and reduce change to fit the problem

Processing Large Datasets

Geographic Data Data CenterIndex Files

Transforming data

Feature List
1: <type=Road>, <intersections=(3)>, <geom>, …

2: <type=Road>, <intersections=(3)>, <geom>, …

3: <type=Intersection>, <roads=(1,2,5)>, …

4: <type=Road>, <intersections=(6)>, <geom>,

5: <type=Road>, <intersections=(3,6)>, <geom>, …

6: <type=Intersection>, <roads=(5,6,7)>, …

7: <type=Road>, <intersections=(6)>, <geom>, …

8: <type=Border>, <name>, <geom>, …

.

.

.

Intersection List
3: <type=Intersection>, <roads=(

1: <type=Road>, <geom>, <name>, …

2: <type=Road>, <geom>, <name>, …

5: <type=Road>, <geom>, <name>, …)>, …

6: <type=Intersection>, <roads=(

4: <type=Road>, <geom>, <name>, … >

5: <type=Road>, <geom>, <name>, … >

7: <type=Road>, <geom>, <name>, …)>, …

.

.

.

Input Output

1

2

7

5

4

63

Map-Reduce Programming Model
Input Map Shuffle Reduce Output

Apply map() to each;
emit (key,val) pairs Sort by key Apply reduce() to list

of pairs with same key New list of itemsList of items

1: Road

2: Road

3: Intersection

4: Road

5: Road

6: Intersection

7: Road

(3, 1: Road)

(3, 2: Road)

(3, 3: Intxn)

(6, 4: Road)

(3, 5: Road)

(6, 5: Road)

(6, 6: Intxn)

(6, 7: Road)

(3, 1: Road)

(3, 2: Road)

(3, 3: Intxn.)

(6, 4: Road)

(3, 5: Road)

(6, 5: Road)

(6, 6: Intxn.)

(6, 7: Road)

3

6

3: Intersection
1: Road,
2: Road,
5: Road

6: Intersection
4: Road,
5: Road,
7: Road

1

2

7

5

4

63

Code Example
class IntersectionAssemblerMapper : public Mapper {

 virtual void Map(MapInput* input) {

 GeoFeature feature;

 feature.FromMapInput(input);

 if (feature.type()==FEATURE_INTERSECTION) {

 Emit(feature.id(), input);

 } else if (feature.type() == FEATURE_ROAD) {

 Emit(feature.intersection_id(0), input);

 Emit(feature.intersection_id(1), input);

 }

 }

};

REGISTER_MAPPER(IntersectionAssemblerMapper);

class IntersectionAssemblerReducer:public Reducer {
 virtual void Reduce(ReduceInput* input) {
 GeoFeature feature;

 GraphIntersection intersection;
 intersection.id = input->key();

 while(!input->done()) {

 feature.FromMapInput(input->value());

 if (feature.type()==FEATURE_INTERSECTION)

 intersection.SetIntersection(feature);

 else
 intersection.AddRoadFeature(feature);

 input->next();

 }

 Emit(intersection);

 }

};

REGISTER_REDUCER(IntersectionAssemblerReducer);

(3, 1: Road)

(3, 2: Road)

(3, 3: Intxn)

(6, 4: Road)

(3, 5: Road)

(6, 5: Road)

(6, 6: Intxn)

(6, 7: Road)

(3, 1: Road)

(3, 2: Road)

(3, 3: Intxn.)

(6, 4: Road)

(3, 5: Road)

(6, 5: Road)

(6, 6: Intxn.)

(6, 7: Road)

3

6

Rendering Map Tiles

Input Map Shuffle Reduce Output
Emit each to all

overlapping latitude-
longitude rectangles

Sort by key
(key= Rect. Id)

Render tile using
data for all enclosed

features
Rendered tilesGeographic

feature list

I-5

Lake Washington

WA-520

I-90

(N, I-5)

(N, Lake Wash.)

(N, WA-520)

(S, I-90)

(S, I-5)

(S, Lake Wash.)

(N, I-5)

(N, Lake Wash.)

(N, WA-520)

(S, I-90)

N

S (S, I-5)

(S, Lake Wash.)

…

…

…

…

Widely applicable at Google

– Implemented as a C++ library linked to user programs
– Can read and write many different data types

 Example uses:

web access log stats
web link-graph reversal
inverted index construction
statistical machine translation
…

distributed grep
distributed sort
term-vector per host
document clustering
machine learning
...

Parallel MapReduce

Map Map Map Map

Input
data

Reduce

Shuffle

Reduce

Shuffle

Reduce

Shuffle

Partitioned
output

Master

Example Status

Mapping / Shuffling

Reducing

MapReduce Programs in Google’s Source Tree

0

3000

6000

9000

12000

Jan-03 May-03 Sep-03 Jan-04 May-04 Sep-04 Jan-05 May-05 Sep-05 Jan-06 May-06 Sep-06 Jan-07 May-07 Sep-07

New MapReduce Programs Per Month

0

175

350

525

700

Jan-03 May-03 Sep-03 Jan-04 May-04 Sep-04 Jan-05 May-05 Sep-05 Jan-06 May-06 Sep-06 Jan-07 May-07 Sep-07

Summer intern effect

Usage Statistics Over Time

Number of jobs
Aug, ‘04

29K
Mar, ‘05

72K
Mar, ‘06

171K
Sep, '07
2,217K

Average completion time (secs) 634 934 874 395
Machine years used 217 981 2,002 11,081
Input data read (TB) 3,288 12,571 52,254 403,152
Intermediate data (TB) 758 2,756 6,743 34,774
Output data written (TB) 193 941 2,970 14,018
Average worker machines 157 232 268 394

• Lots of (semi-)structured data at Google
– URLs:

• Contents, crawl metadata, links, anchors, pagerank, …

– Per-user data:
• User preference settings, recent queries/search results, …

– Geographic locations:
• Physical entities (shops, restaurants, etc.), roads, satellite image

data, user annotations, …

• Scale is large
– billions of URLs, many versions/page (~20K/version)
– Hundreds of millions of users, thousands of q/sec
– 100TB+ of satellite image data

BigTable: Motivation

• Scale is too large for most commercial databases

• Even if it weren’t, cost would be very high
– Building internally means system can be applied across many

projects for low incremental cost

• Low-level storage optimizations help performance
significantly
– Much harder to do when running on top of a database layer

Also fun and challenging to build large-scale systems :)

Why not just use commercial DB?

• Distributed multi-dimensional sparse map
 (row, column, timestamp) → cell contents

“www.cnn.com”

“contents:”

Rows

Columns

Timestamps

t3
t11

t17“<html>…”

• Rows are ordered lexicographically
• Good match for most of our applications

Basic Data Model

Tablets & Splitting

…
Tablets

“cnn.com”

“contents:”

“<html>…”

“language:”

 EN

“cnn.com/sports.html”

“zuppa.com/menu.html”

…“yahoo.com/kids.html”

“yahoo.com/kids.html\0”

…

…
“website.com”

“aaa.com”

Tablet Representation

append-only log on GFS

SSTable
on GFS

SSTable
on GFS

SSTable
on GFS
(mmap)

write buffer in memory
(random-access)

write

read

Tablet

SSTable: Immutable on-disk ordered map from string->string
 string keys: <row, column, timestamp> triples

Lock service

Bigtable master

Bigtable tablet server Bigtable tablet serverBigtable tablet server

GFSCluster scheduling system

…

holds metadata,
handles master-electionholds tablet data, logshandles failover, monitoring

performs metadata ops +
load balancing

serves data serves dataserves data

Bigtable Cell
Bigtable client

Bigtable client
library

Open()read/write

metadata ops

BigTable System Structure

BigTable Status

• Design/initial implementation started beginning of 2004
• Currently ~500 BigTable cells
• Production use or active development for ~70 projects:

– Google Print
– My Search History
– Orkut
– Crawling/indexing pipeline
– Google Maps/Google Earth
– Blogger
– …

• Largest bigtable cell manages ~6000TB of data spread
over several thousand machines (larger cells planned)

Future Infrastructure Directions

Existing systems mostly designed to work within cluster or datacenter

Current work: Spanner
• Next generation system that span all our datacenters

– single global namespace
– stronger consistency across datacenters

• tricky in presence of partitions

– allow higher-level constraints:
• “please keep this data on 2 disks in U.S., 2 in Europe and 1 in Asia”

– computational model to allow tying computation with underlying data
– design goal: much more automated operation

Machine Translation

印度和美国…
国防部说,…
两国的空军…

India and the US…

According to the…

Green potatoes fly
MT

Goal: High quality translation of natural language text

Statistical Approach

Viewpoint of statistical Machine Translation (MT):

• Build probabilistic model of translation process

• Explore translation space to maximal prob. translated sentence, given
source sentence

Main source of data for building statistical models:

• Parallel aligned corpora (text with sentence-by-sentence translations)

• Source and target language models (trained on huge amounts of text)

– 5-gram target lang. model makes translations sound more natural

Try Chinese & Arabic translation systems at translate.google.com

Statistical Approach

Language models trained on > 1000 billion words are huge
• 45.6 billion 5-grams

• 66.5% singletons: but, filtering rare events hurts Bleu score

• 1.5 terabyte of count data

Fun system design problems:

• Each sentence needs 100,000 to 1M language model lookups

• Language model doesn’t fit on single machine: needs 100s of machines

NIST 2005 Results (%BLEU Score)

0

15

30

45

60

A B C D E F G H

G
oo

gl
e

Arabic to English

0

10

20

30

40

A B C D E F G H I J K L

G
oo

gl
e

Chinese to English

Official results at:
http://www.nist.gov/speech/tests/mt/mt05eval_official_results_release_20050801_v3.html

BLEU score: roughly fraction of multi-word phrase overlap with set of human translations

Example translation: Arabic - English
(non-Google translation service available on the web)

The Bradi : The inspectors need to “a few months” for end
important their

Paris 13 - 1 (aa so in in) - the general manager for agency announced
international for energy atomic Mohammed the Bradi today Monday that
inspectors of international nze' the weapons need to “a few months” for end
important their in Iraq.
Journalistic conference in end of meeting with French External Minister of
Dominique de Villepin that the inspectors said during “a few their need to
important months for end”.
...
The Bradi that Security Council confirmed “understands” that January 27 final
term not.
…

Example translation: Arabic - English
(Google System; 2005)

El Baradei : Inspectors Need "a Few Months" to Complete Their
Mission

Paris 13 - 1 (AFP) - The Director General of the International Atomic Energy
Agency Mohamed El Baradei announced today, Monday, that the international
disarmament inspectors need "a few months" to complete their mission in
Iraq.
He said during a press conference at the conclusion of a meeting with French
Foreign Minister Dominique de Villepin that the inspectors "need a few
months to complete their mission.”
...
El Baradei stressed that the Security Council "understands" that the 27 January
deadline is not final.
…

More Data is Better

Each doubling of LM training corpus size: ~0.5% higher BLEU score

40

45

50

55

60

75
M

15
0M

30
0M

60
0M 1.2

B
2.5

B 5B 10
B

18
B

+w
eb

lm

AE BLEU[%]

Total tokens processed to build language model

Bleu%

score

Queries containing “world series”Queries containing “eclipse”
Example: Query Frequency Over Time

Queries containing “summer olympics”

Queries containing “Opteron”

Queries containing “full moon”

Queries containing “watermelon”

Jan ʻ02 Jul ʻ03 Jan ʻ02 Jul ʻ03

Locations Mentioned in Books Over Time

1700

1760

1820

1880

1940

2000
Thanks to Matthew Gray

Source Code Philosophy

• Google has one large shared source base
– lots of lower-level libraries used by almost everything
– higher-level app or domain-specific libraries
– application specific code

• Many benefits:
– improvements in core libraries benefit everyone
– easy to reuse code that someone else has written in another context

• Drawbacks:
– reuse sometimes leads to tangled dependencies

• Essential to be able to easily search whole source base
– gsearch: internal tool for fast regexp searching of source code
– huge productivity boost: easy to find uses, defs, examples, etc.
– makes large-scale refactoring or renaming easier

Software Engineering Hygiene

• Code reviews
• Design reviews
• Lots of testing

– unittests for individual modules
– larger tests for whole systems
– continuous testing system

• Most development done in C++, Java, & Python
– C++: performance critical systems (e.g. everything for a web query)
– Java: lower volume apps (advertising front end, parts of gmail, etc.)
– Python: configuration tools, etc.

Multi-Site Software Engineering

• Google has moved from one to a handful to 20+ engineering sites
around the world in last few years

• Motivation:
– hire best canidates, regardless of their geographic location

• Issues:
– more coordination needed
– communication somewhat harder (no hallway conversations, time zone

issues)
– establishing trust between remote teams important

• Techniques:
– online documentation, e-mail, video conferencing, careful choice of

interfaces/project decomposition
– example: BigTable project is split across three sites

Fun Environment for Software Engineering

• Very interesting problems
– wide range of areas: low level hw/sw, dist. systems, storage systems,

information retrieval, machine learning, user interfaces, auction theory,
new product design, etc.

– lots of interesting data and computational resources

• Service-based model for software development is very nice
– very fluid, easy to make changes, easy to test, small teams can

accomplish a lot

• Great colleagues/environment
– expertise in wide range of areas, lots of interesting talks, etc.

• Work has a very large impact
– hundreds of millions of users every month

Thanks! Questions...?

Further reading:
•Ghemawat, Gobioff, & Leung. Google File System, SOSP 2003.

•Barroso, Dean, & Hölzle . Web Search for a Planet: The Google Cluster Architecture, IEEE
Micro, 2003.

•Dean & Ghemawat. MapReduce: Simplified Data Processing on Large Clusters, OSDI
2004.

•Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, & Gruber. Bigtable: A
Distributed Storage System for Structured Data, OSDI 2006.

•Brants, Popat, Xu, Och, & Dean. Large Language Models in Machine Translation, EMNLP
2007.

These and many more available at: http://labs.google.com/papers.html

