CSE 490h, Autumn 2008
Scalable Systems: Desigh, Implementation
and Use of Large Scale Clusters

Instructors: Ed Lazowska & Aaron Kimball

TA: Slava Chernyak

Content

The fun stuff from
Programming Languages
Architecture
Operating Systems
Networking
Databases
Parallel Programming

It doesn't obviate those courses!

There is a huge amount of important material that we won't
cover

Format

Like a graduate course

Readings from the literature for each class session, which
you really must do
Many superb guest speakers
Jeff Dean
Werner Vogels
Mike Cafarella
Steve Gribble
Phil Bernstein
Barry Brumitt
James Hamilton
Atul Adya
perhaps others

No quiz section

Consequence of content and format

Things will be a wee bit chaotic

There will be pieces of background that are missing
You need to stop us and make us fill it inl
Topics won't always be presented in the ideal order

We sought the ideal guest speaker for each topic, rather than
the person who could be there on the ideal day

There will be some "glue” missing
We'll spend portions of our own class sessions filling in these
gaps

We'll get you programming right away
The rest of the course will be about how it works - what's under
the covers

Requirements

Active participation

Several programming assignments on our Hadoop
cluster

One programming assignment using Amazon Web
Services

A final exam focused on the readings and class
sessions

No killer project

We'll offer a project course next quarter, which we hope
you'll take

What's a large-scale cluster?

In September 2007, Google used 11,081 "machine-
years" (roughly, CPU-years) on MapReduce jobs alone

If the machines were busy 100% of the time (they're not), and
if Google did nothing but run MapReduce jobs (this is in fact a
modest proportion of Google's workload - MapReduce is used
to build the index, but not to process the searches), that
would be 132,972 machinesl!

It's hard to believe they don't have 1,000,000 machines

A rack holds 176 CPUs (88 1U dual-processor boards), so
that's about 6,000 racks

A rack requires about 50 square feet (given datacenter
cooling capabilities), so that's about 300,000 square feet of
machine room space (more than 6 football fields of real estate
- although of course Google divides its machines among dozens
of datacenters all over the world)

A rack requires about 10kw to power, and about the same to
cool, so that's about 120,000 kw of power, or nearly
100,000,000 kwh per month ($10 million at $0.10/kwh)

For comparison, annual power consumption - around 600M kwh -
is equivalent to about 20% of Seattle City Light's generating
capacity

Microsoft and Yahoo! are in the same business
Amazon.com is in a similar business

Internet Users in the World
Growth 1995 - 2010

We're drowning

1700

In users

1500

1300
1200
1100
1000

Millions of Users

T00

500

400

300

200

100

W5 86 97T 9F 99 00 01 02 03 04 05 06 COT 08 09 ™10

Year

Source: www.internetworldstats.com - January, 2008
Copyright@ 2008, Miniwatts Marketing Group

We're drowning in data

The web

20+ billion web pages x 20KB = 400+ terabytes
400,000,000,000,000 (that's a lot of zeroes!)
One computer can read 30-35 MB/sec from disk
~four months to read the web
~1,000 hard drives to store the web

Whring e mage 5Py, Data collscim 78 dme 190 et

% of total retail sales

E-Commerce

===l B L B A B B LN % O TU R AT Ly T .
O OMNLALAM O MNLLERDNLORD

~$35B / quarter in the US

40102030 401020 30 40 1020 30 401020 3040 102030 40 1020 30 40 1020 30 40 1020 30 40 1020
992000 2001 2002 2003 2004 2005 2006 2007 2008

Mot Adjusted =— -— Adjusted

Sensors
Point-of-sale terminals Modern telescopes
Gene sequencing machines Large Hadron Collider

We need to service those users and
analyze that data

Google not only stores (multiple copies of) the web,
it handles an average of 3000 searches per second
(7 billion searches per month)!

The LHC will produce 700 MB of data per second -
60 terabytes per day - 20 petabytes per year

Hopefully they're going to analyze this data, because it
cost $6 billion to build the sucker

The only hope: concurrent processing / parallel
computing / distributed computing, at enormous
scale

Traditional parallel computing

Consider a really stupid example: multiplying
two NxN matrices for huge N

C[i.j] = sum k=1.N A[i k]*B[Kk,j]

o —

[
X

SIMD / vector processors
Vector programming model

Performance and reliability
through hugely expensive
components

MIMD / shared-memory
multiprocessors
Shared memory programming model

High-performance interconnect
providing cache coherence

Single copy of the OS

All CPUs are equally "close” to all
memory and disks

MIMD / message-passing multiprocessors
Message-passing programming model
Multiple copies of the OS
High-performance interconnect

Typically, processors
do not have local disk
storage

Traditional distributed computing

Client/server

Lots of concurrency, but no attempt to speed up a single app
Cheap hardware; modest inter-machine bandwidth
Reliability via software

Highly scalable

Registration

GRAPEVINE

authenticate, membership

Server "A™

locate
authenticate

forward

Registration
Server "D"

authenticate

l

Message
Server "B”

locate

— — —

GrapevineUser

Client program

user "P.Q"

Workstation 1

s

L\ locate

Message
Server "C"

retrieve

— — — — — — — —

GrapevineUser

Client program

Workstation 2

GrapevineUser

File Server "E"

FTP
connection

user "X.Y"

Let's talk about reliability

GRAPEVINE

Registration

authenticate, membership

GrapevineUser

File Server "E"

Server "A"
Registration
locate Server "D"
authenticate _
authenticate locate
forward
Message Message
Server "B" Server "C"
locate send retrieve
!
GrapevineUser GrapevineUser

Client program

Workstation 1

USer ”" P.Qll

Workstation 2

Client program

FTP
connection

user "X.Y"

Is there a middle ground - best of both
worlds?

Speeds up the solution of extremely large
problems/applications
Uses a distributed system structure
Highly scalable
Cheap components

Reliability achieved via software
Modest interconnect bandwidth

Simple programming model

We need problems that are
“embarrassingly parallel”

We're dealing with thousands of independent
computers with local memory and local disk (cheesy
disks - not even SCST)

Interconnection bandwidth is significant, but not
monstrous - commodity fast Ethernet switches

Thus, communication is relatively expensive - the
problem must be decomposable into pieces that are
pretty much independent of one another

Can you think of some problems that are like this?

(= Rosetta@home - Windows Internet Explorer

@@ hd |3&‘;.1- http: /fboinc.bakerlab. orgfrosetta/

v|¢?x|-::_. |pv

GDﬂg'E :!Gwru:usetta SCTeensaver

V Goo & B » 9 Bookmarksw F23ERank o B o11blocked “OP Check v g Autolink » - Autorll () Settingsw

'i:lf aby ‘%. Rosetta@home

[‘ 2~ B) v & v |ibPage v {C Tools ~

F.Y
- _Ln_ef' uNl'n'F_F_.
Rosetta@home whatisroseraghomez §§] 4 < HHMI MTwast]
Q"l.glﬁ'b ok HOWARD HUGHES MEDICAL INSTITUTE
Protein Folding, Design, and Docking
Rosetta@home needs your help to determine the 3-dimensional shapes of proteins in research that may
ultimately lead to finding cures for some major human diseases. By running the Rosetta program on vour
computer while you don't need it yvou will help us speed up and extend our research in ways we couldn't
possibly attempt without vour help. You will also be helping our efforts at designing new proteins to fight
| | : h diseases such as HIV, Malaria, Cancer, and Alzheimer's (See our Dissase Related Research for more
|_Site search | information). Please join us in our efforts! Rosetta@home is not for profit.
Join Rosetta@home User of the da Server Status == of 21 Sep 2008 22:55:54 UTC
- Schedul i d: 18,682
1. Rules and policies , _ ESshrtier vonming:] In p?::::ss'402 330
2. System reguirements Jamison Kingfield . Successes last 24h; 231:583
3. Download, install, and run BOINC Users lul (last daylul) : 215,785 (+109) R
{enter the project URL: http://boinc.bakerlab.org/rosetta) -, i | b b
4. A welcome from David Baker Hemt=list lsstday il) = 618;5681 7305)
Credits last 24h ll : 7,873,217
Total credits lul ¢ 4,864,673,040
.Ahﬂut TeraFLOPS estimate: 78.732
¢ 10 reasons why users crunch Rosetta@home [Sep 21, 2008
» Quick Guide to Rosetta@home and Its Graphics o ; A
e Play the interactive rosetta game, FoldIt! Predictor of the day: Congratulatmns to C_G Edwards (Team EDS) for predicting the
e Rosetta@home FAQ lowest energy structure for workunit
« Rosefiathome Stenoe FAD lopd_ JUMPRELAX_PREDFIX_PREDFRAG_SAVE_ALL_OUT-lopd - 4237 0|
+ [Disease Related Research
s Research Overview el
e MNews & Articles about Rosetta LY availzble as an RSS feed..
¢ David Baker's Rosetta@home Journal
+ Rosetta@home promo video ;
+ Technical news News &
[= St Sept 14, 2008
Returnin artiapants We are currently participating to the first competition for modeling the structure of an
= important biclogical receptar. This protein is much larger than all the targets submitted et
b, ' | k4
& Internet # 100% -+

e &':",.E'”ﬂ el azapm

Ray ftracing in computer graphics
Render a scene by tracing rays from the eye to objects in
the scene Image _

Each ray is independent Camera __________.--""'-_-- 5 Light Source

Scene Object

Compute a web index
For each of 20+ billion web pages, make a list of the words it
contains

Invert this index - for each of however many words there
are, make a list of the web pages on which it appears

Answering a Google search request - a sing/e search
request

There are multiple clusters (of thousands of computers each)
all over the world

DNS routes your' sear'ch ’ro a near'by clus‘rer

FIVORE o cumenr Jﬂ*lm
J ‘—n

REP. O

E SCEAN f Yo F,.,-—‘
i .%% |
mi- SR ,s-@g e

A cluster consists of Google Web Servers, Index Servers, Doc
Servers, and various other servers (ads, spell checking, etc.)

These are cheap standalone computers, rack-mounted,
connected by commodity networking gear

'

Google Web server ~ «a——{ Spell checker

W\ Ad server
/l/l AN VYV AN
/1

\\\\\\\\ . l l

Index servers Document servers

4 ///
s

L1 I

'

Google Web server

~+— | Spell checker

8

Ad server

Index servers Document servers

Within the cluster, load-balancing routes your search to a
lightly-loaded Google Web Server (6WS), which will
coordinate the search and response

The index is partitioned into "shards.” Each shard indexes a
subset of the docs (web pages). Each shard can be searched
by multiple computers - "index servers”

The GWS routes your search to one index server associated
with each shard, through another load-balancer

When the dust has settled, the result is an ID for every doc
satisfying your search, rank-ordered by relevance

'

Google Web server

~+— | Spell checker

8

Ad server

Index servers

Document servers

The docs, too, are partitioned into "shards” - the
partitioning is a hash on the doc ID. Each shard contains the
full text of a subset of the docs. Each shard can be

searched by multiple computers - "doc servers”

The GWS sends appropriate doc IDs to one doc server

associated with each relevant shard

When the dust has settled, the result is a URL, a title, and a

summary for every relevant doc

'

Google Web server

~+—»| Spell checker

8

Ad server

’(

Index servers

Document servers

Meanwhile, the ad server has done its thing, the spell
checker has done its thing, etc.

The GWS builds an HTTP response to your search and ships

it of f

Many hundreds of computers are involved
in responding to a single search request

The system must have the following characteristics:

Fault-Tolerant

It can recover from component failures without performing
incorrect actions

Highly Available

It can restore operations, permitting it to resume providing services
even when some components have failed

Recoverable

Failed components can restart themselves and rejoin the system,
after the cause of failure has been repaired

Consistent

The system can coordinate actions by multiple components, often in
the presence of concurrency and failure

Scalable

It can operate correctly even as some aspect of the system is
scaled to a larger size

Predictable Performance

The ability to provide desired responsiveness in a timely
manner

Secure
The system authenticates access to data and services

The system also must support a straightforward
programming model
Mere mortals must be able to write apps

And it must be cheap

A Google rack (176 2-GHz Xeon CPUs, 176 Gbytes of RAM,
7 Tbytes of disk) costs about $300K; 6,000 racks ~ $2B

You could easily pay 2x this or more for "more robust”
hardware (e.g., high-quality SCST disks, bleeding-edge
CPUs)

And if you wanted a "traditional” multiprocessor with very

high bisection bandwidth, the cost would be astronomical
(and you couldn't achieve anything like this scale)

You cannot make any of the following assumptions

Hardware
Components are reliable
Components are homogeneous
Software
It's correct
Network
Latency is zero
Bandwidth is infinite
It's secure
Overall system
Configuration is stable
There is one administrator

How to pull this off is the subject of
this course

You'll learn how to program these systems, and you'll
learn how they're built

But you tell me ...

How does the Google search application achieve
those characteristics (fault-tolerant, highly-
available, recoverable, scalable, etc.)?

:

Google Web server

Spell checker

,//// /l/l ANV NN
% Ca— LLLL

\ \\\\\\\ \ l |

Document servers

Index servers

Where does the Google search application use
replication? Where does it use partitioning?

:

Google Web server

Spell checker

N

Ad server

N

AN A AN

K17 %
/'(”H

\ \\\\\\\ \ l |

Index servers

Document servers

How on earth would you enable mere mortals
write hairy applications such as this?

Recognize that many Google applications have the
same structure

Apply a "map” operation to each logical record in order to
compute a set of infermediate key/value pairs

Apply a "reduce” operation to all the values that share the

same key in order to combine the derived data appropriately
Example: Count the number of occurrences of each
word in a large collection of documents

Map: Emit <word, 1> each time you encounter a word

Reduce: Sum the values for each word

Build a runtime library that handles all the details,
accepting a couple of customization functions from
the user - a Map function and a Reduce function

That's what MapReduce is

Supported by the Google File System and the Chubby lock
manager
Augmented by the BigTable not-quite-a-database system

Some terminology

MapReduce

The LISP functional programming "Map / Reduce” way of
thinking about problem solving

Also, the name of Google's runtime library supporting this
programming paradigm at enormous scale

Hadoop

An open source implementation of the MapReduce
functionality

Dryad

Microsoft's version

Cloud computing

Computing "out there somewhere" rather than on your
desktop or in your datacenter

Gmail, Google Docs, Salesforce.com, etc.

Because cloud computing takes place at enormous scale, it
requires many of the techniques we'll discuss in this class

Amazon Web Services

A commercial service that lets you deploy your own cloud
computing applications

Offers computing, storage, database services, etc.

Instances

Standard Instances
Instances of this family are well suited for most applications.

$0.10 - Small Instance (Default)
1.7 GB of memory, 1 EC2 Compute Unit {1 virtual core with 1 EC2
Compute Unit), 160 GB of instance storage, 32-bit platform

$0.40 - Large Instance
7.5 GB of memory, 4 EC2 Compute Units (2 virtual cores with 2 EC2
Compute Units each), 850 GB of instance storage, 64-bit platform

$0.80 - Extra Large Instance
15 GB of memory, 8 EC2 Compute Units (4 virtual cores with 2 EC2
Compute Units each), 1690 GB of instance storage, 64-bit platform

High-CPU Instances

Instances of this family have proportionally more CPU resources than memory
{(RAM) and are well suited for compute-intensive applications.

£0.20 - High-CPU Medium Instance
1.7 GB of memory, 5 EC2 Compute Units {2 wvirtual cores with 2.5 EC2
Compute Units each), 350 GB of instance storage, 32-bit platform

$0.80 - High-CPU Extra Large Instance
7 GB of memory, 20 EC2 Compute Units (8 virtual cores with 2.5 EC2
Compute Units each), 1690 GB of instance storage, 64-bit platform

Pricing is per instance-hour consumed for each instance type. Partial instance-hours
consumed are billed as full hours.

EC2 Compute Unit (ECU) - One EC2 Compute Unit (ECU) provides the equivalent CPU
capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor. See Amazon EC2
Instance Types for details on available instance configurations and a complete
description of an EC2 Compute Unit.

This includes
Purchase + replacement
Housing
Power
Operation
Instantaneous expansion and contraction
Enables VC-less (or VC-lite) web service companies

Enables focus on your core business, not generic
infrastructure

1000 processors for 1 hour costs the same as 1 processor
for 1000 hours

Revolutionary!
Your application doesn't run decently on this environment?
Start figuring out how to change that!

Animoto

- LSS 000l 200

- 128 DOE1 LLpD

- 123 D020 L p0

= LES D001 alpd

- L59S 0081 500

- L59S 0020 510

- 1298 0001 # L0

- LSS D02] 200

- 123 D020 £ p0

- 128 D001 EWp0

L1895 00l LIrpd

40000

3300+

00

3400

200

2000 4

2800 4

i)

2400

2200

2000

1800~

1600~
1400
12000 4
11000

300

G000

400

200

(=

