
CSE 490h, Autumn 2008
Scalable Systems: Design, Implementation
and Use of Large Scale Clusters

Instructors: Ed Lazowska & Aaron Kimball

TA: Slava Chernyak

Content

] The fun stuff from
\ Programming Languages
\ Architecture
\ Operating Systems
\ Networking
\ Databases
\ Parallel Programming

] It doesn’t obviate those courses!
\ There is a huge amount of important material that we won’t

cover

Format

] Like a graduate course
\ Readings from the literature for each class session, which

you really must do
\ Many superb guest speakers

[Jeff Dean
[Werner Vogels
[Mike Cafarella
[Steve Gribble
[Phil Bernstein
[Barry Brumitt
[James Hamilton
[Atul Adya
[perhaps others

\ No quiz section

Consequence of content and format

] Things will be a wee bit chaotic
\ There will be pieces of background that are missing

[You need to stop us and make us fill it in!
\ Topics won’t always be presented in the ideal order

[We sought the ideal guest speaker for each topic, rather than
the person who could be there on the ideal day

\ There will be some “glue” missing
[We’ll spend portions of our own class sessions filling in these

gaps
\ We’ll get you programming right away

[The rest of the course will be about how it works – what’s under
the covers

Requirements

] Active participation
] Several programming assignments on our Hadoop

cluster
] One programming assignment using Amazon Web

Services
] A final exam focused on the readings and class

sessions

] No killer project
\ We’ll offer a project course next quarter, which we hope

you’ll take

What’s a large-scale cluster?

] In September 2007, Google used 11,081 “machine-
years” (roughly, CPU-years) on MapReduce jobs alone
\ If the machines were busy 100% of the time (they’re not), and

if Google did nothing but run MapReduce jobs (this is in fact a
modest proportion of Google’s workload – MapReduce is used
to build the index, but not to process the searches), that
would be 132,972 machines!

\ It’s hard to believe they don’t have 1,000,000 machines
\ A rack holds 176 CPUs (88 1U dual-processor boards), so

that’s about 6,000 racks
\ A rack requires about 50 square feet (given datacenter

cooling capabilities), so that’s about 300,000 square feet of
machine room space (more than 6 football fields of real estate
– although of course Google divides its machines among dozens
of datacenters all over the world)

\ A rack requires about 10kw to power, and about the same to
cool, so that’s about 120,000 kw of power, or nearly
100,000,000 kwh per month ($10 million at $0.10/kwh)

[For comparison, annual power consumption – around 600M kwh –
is equivalent to about 20% of Seattle City Light’s generating
capacity

] Microsoft and Yahoo! are in the same business
] Amazon.com is in a similar business

We’re drowning
in users

We’re drowning in data

] The web
\ 20+ billion web pages x 20KB = 400+ terabytes

[400,000,000,000,000 (that’s a lot of zeroes!)
[One computer can read 30-35 MB/sec from disk
[~four months to read the web
[~1,000 hard drives to store the web

] E-Commerce
\ ~$35B / quarter in the US

%
 o

f t
ot

al
 re

ta
il

sa
le

s

] Sensors
\ Point-of-sale terminals
\ Gene sequencing machines

\ Modern telescopes
\ Large Hadron Collider

We need to service those users and
analyze that data

] Google not only stores (multiple copies of) the web,
it handles an average of 3000 searches per second
(7 billion searches per month)!

] The LHC will produce 700 MB of data per second –
60 terabytes per day – 20 petabytes per year
\ Hopefully they’re going to analyze this data, because it

cost $6 billion to build the sucker

] The only hope: concurrent processing / parallel
computing / distributed computing, at enormous
scale

Traditional parallel computing

] Consider a really stupid example: multiplying
two NxN matrices for huge N

\ C[i,j] = sum k=1..N A[i,k]*B[k,j]

= X

] SIMD / vector processors
\ Vector programming model
\ Performance and reliability

through hugely expensive
components

] MIMD / shared-memory
multiprocessors
\ Shared memory programming model
\ High-performance interconnect

providing cache coherence
\ Single copy of the OS
\ All CPUs are equally “close” to all

memory and disks

] MIMD / message-passing multiprocessors
\ Message-passing programming model
\ Multiple copies of the OS
\ High-performance interconnect
\ Typically, processors
 do not have local disk
 storage

Traditional distributed computing

] Client/server
\ Lots of concurrency, but no attempt to speed up a single app
\ Cheap hardware; modest inter-machine bandwidth
\ Reliability via software
\ Highly scalable

] Let’s talk about reliability

Is there a middle ground – best of both
worlds?

] Speeds up the solution of extremely large
problems/applications

] Uses a distributed system structure
\ Highly scalable
\ Cheap components
\ Reliability achieved via software
\ Modest interconnect bandwidth

] Simple programming model

We need problems that are
“embarrassingly parallel”

] We’re dealing with thousands of independent
computers with local memory and local disk (cheesy
disks – not even SCSI)

] Interconnection bandwidth is significant, but not
monstrous – commodity fast Ethernet switches

] Thus, communication is relatively expensive – the
problem must be decomposable into pieces that are
pretty much independent of one another

] Can you think of some problems that are like this?

] Ray tracing in computer graphics
\ Render a scene by tracing rays from the eye to objects in

the scene
[Each ray is independent

] Compute a web index
\ For each of 20+ billion web pages, make a list of the words it

contains
\ Invert this index – for each of however many words there

are, make a list of the web pages on which it appears

] Answering a Google search request – a single search
request
\ There are multiple clusters (of thousands of computers each)

all over the world
\ DNS routes your search to a nearby cluster

\ A cluster consists of Google Web Servers, Index Servers, Doc
Servers, and various other servers (ads, spell checking, etc.)

\ These are cheap standalone computers, rack-mounted,
connected by commodity networking gear

\ Within the cluster, load-balancing routes your search to a
lightly-loaded Google Web Server (GWS), which will
coordinate the search and response

\ The index is partitioned into “shards.” Each shard indexes a
subset of the docs (web pages). Each shard can be searched
by multiple computers – “index servers”

\ The GWS routes your search to one index server associated
with each shard, through another load-balancer

\ When the dust has settled, the result is an ID for every doc
satisfying your search, rank-ordered by relevance

\ The docs, too, are partitioned into “shards” – the
partitioning is a hash on the doc ID. Each shard contains the
full text of a subset of the docs. Each shard can be
searched by multiple computers – “doc servers”

\ The GWS sends appropriate doc IDs to one doc server
associated with each relevant shard

\ When the dust has settled, the result is a URL, a title, and a
summary for every relevant doc

\ Meanwhile, the ad server has done its thing, the spell
checker has done its thing, etc.

\ The GWS builds an HTTP response to your search and ships
it off

Many hundreds of computers are involved
in responding to a single search request

] The system must have the following characteristics:
\ Fault-Tolerant

[It can recover from component failures without performing
incorrect actions

\ Highly Available
[It can restore operations, permitting it to resume providing services

even when some components have failed
\ Recoverable

[Failed components can restart themselves and rejoin the system,
after the cause of failure has been repaired

\ Consistent
[The system can coordinate actions by multiple components, often in

the presence of concurrency and failure

\ Scalable
[It can operate correctly even as some aspect of the system is

scaled to a larger size
\ Predictable Performance

[The ability to provide desired responsiveness in a timely
manner

\ Secure
[The system authenticates access to data and services

] The system also must support a straightforward
programming model
\ Mere mortals must be able to write apps

] And it must be cheap
\ A Google rack (176 2-GHz Xeon CPUs, 176 Gbytes of RAM,

7 Tbytes of disk) costs about $300K; 6,000 racks ~ $2B
\ You could easily pay 2x this or more for “more robust”

hardware (e.g., high-quality SCSI disks, bleeding-edge
CPUs)

\ And if you wanted a “traditional” multiprocessor with very
high bisection bandwidth, the cost would be astronomical
(and you couldn’t achieve anything like this scale)

] You cannot make any of the following assumptions
\ Hardware

[Components are reliable
[Components are homogeneous

\ Software
[It’s correct

\ Network
[Latency is zero
[Bandwidth is infinite
[It’s secure

\ Overall system
[Configuration is stable
[There is one administrator

How to pull this off is the subject of
this course

] You’ll learn how to program these systems, and you’ll
learn how they’re built

But you tell me …

] How does the Google search application achieve
those characteristics (fault-tolerant, highly-
available, recoverable, scalable, etc.)?

] Where does the Google search application use
replication? Where does it use partitioning?

How on earth would you enable mere mortals
write hairy applications such as this?

] Recognize that many Google applications have the
same structure
\ Apply a “map” operation to each logical record in order to

compute a set of intermediate key/value pairs
\ Apply a “reduce” operation to all the values that share the

same key in order to combine the derived data appropriately
] Example: Count the number of occurrences of each

word in a large collection of documents
\ Map: Emit <word, 1> each time you encounter a word
\ Reduce: Sum the values for each word

] Build a runtime library that handles all the details,
accepting a couple of customization functions from
the user – a Map function and a Reduce function

] That’s what MapReduce is
\ Supported by the Google File System and the Chubby lock

manager
\ Augmented by the BigTable not-quite-a-database system

Some terminology

] MapReduce
\ The LISP functional programming “Map / Reduce” way of

thinking about problem solving
\ Also, the name of Google’s runtime library supporting this

programming paradigm at enormous scale
] Hadoop

\ An open source implementation of the MapReduce
functionality

] Dryad
\ Microsoft’s version

] Cloud computing
\ Computing “out there somewhere” rather than on your

desktop or in your datacenter
\ Gmail, Google Docs, Salesforce.com, etc.
\ Because cloud computing takes place at enormous scale, it

requires many of the techniques we’ll discuss in this class
] Amazon Web Services

\ A commercial service that lets you deploy your own cloud
computing applications

\ Offers computing, storage, database services, etc.

\ This includes
[Purchase + replacement
[Housing
[Power
[Operation
[Instantaneous expansion and contraction

\ Enables VC-less (or VC-lite) web service companies
\ Enables focus on your core business, not generic

infrastructure
\ 1000 processors for 1 hour costs the same as 1 processor

for 1000 hours
[Revolutionary!

\ Your application doesn’t run decently on this environment?
[Start figuring out how to change that!

Animoto

