
Nutch,
and Search Engine History

Michael J. Cafarella
CSE 490H

October 21, 2008

Agenda
 Nutch in-depth
 A Technical History of Search Engines

Nutch
 Built to encourage public search work

 Open-source, w/pluggable modules
 Cheap to run, both machines & admins

 Search engine is usable, not great
 Pretty good ranking (last rigorous test several

years ago showed roughly Inktomi-level quality)
 Has done ~ 200M pages, more possible

 Hadoop is a spinoff

Timeline
 Fall, 2002 - Nutch started with ~2 people
 Summer, 2003 - 50M pages demo’ed
 Fall, 2003 - Google File System paper
 Summer, 2004 - Distributed indexing, started

work on GFS clone
 Fall, 2004 - MapReduce paper
 2005 - Started work on MapReduce. Massive

Nutch rewrite, to move to GFS & MapReduce
framework

 2006 - Hadoop spun out, Nutch work slows
 2007 - Widespread Hadoop adoption

Outline
 Nutch design

 Link database, fetcher, indexer, etc…

 Hadoop support
 Distributed filesystem, job control

WebDB

Fetcher 2 of N
Fetcher 1 of N

Fetcher 0 of N

Fetchlist 2 of N
Fetchlist 1 of N

Fetchlist 0 of N
Update 2 of NUpdate 1 of NUpdate 0 of N

Content 0 of NContent 0 of NContent 0 of N

Indexer 2 of N
Indexer 1 of N

Indexer 0 of N

Searcher 2 of N
Searcher 1 of N

Searcher 0 of N

WebServer 2 of M
WebServer 1 of M

WebServer 0 of M

Index 2 of NIndex 1 of NIndex 0 of N

Inject

Moving Parts
 Acquisition cycle

 WebDB
 Fetcher

 Index generation
 Indexing
 Link analysis (maybe)

 Serving results

WebDB

 Contains info on all pages, links
 URL, last download, # failures, link score,

content hash, ref counting
 Source hash, target URL

 Must always be consistent
 Designed to minimize disk seeks

 19ms seek time x 200m new pages/mo
 = ~44 days of disk seeks!

 Single-disk WebDB was huge headache

Fetcher
 Fetcher is very stupid. Not a “crawler”
 Pre-MapRed: divide “to-fetch list” into k

pieces, one for each fetcher machine
 URLs for one domain go to same list,

otherwise random
 “Politeness” w/o inter-fetcher protocols
 Can observe robots.txt similarly
 Better DNS, robots caching
 Easy parallelism

 Two outputs: pages, WebDB edits

2. Sort edits (externally, if necessary)

WebDB/Fetcher Updates

ContentHash: None

LastUpdated: Never

URL: http://www.flickr/com/index.html

ContentHash: None

LastUpdated: Never

URL: http://www.cnn.com/index.html

ContentHash: MD5_toewkekqmekkalekaa

LastUpdated: 4/07/05

URL: http://www.yahoo/index.html

ContentHash: MD5_sdflkjweroiwelksd

LastUpdated: 3/22/05

URL: http://www.about.com/index.html

ContentHash: MD5_balboglerropewolefbag

URL: http://www.cnn.com/index.html

Edit: DOWNLOAD_CONTENT

ContentHash: MD5_toewkekqmekkalekaa

URL: http://www.yahoo/index.html

Edit: DOWNLOAD_CONTENT

ContentHash: None

URL: http://www.flickr.com/index.html

Edit: NEW_LINK

WebDB Fetcher edits

1. Write down fetcher edits3. Read streams in parallel, emitting new database4. Repeat for other tables

ContentHash: MD5_balboglerropewolefbag

LastUpdated: Today!

URL: http://www.cnn.com/index.html

ContentHash: MD5_toewkekqmekkalekaa

LastUpdated: Today!

URL: http://www.yahoo.com/index.html

Indexing
 Iterate through all k page sets in parallel,

constructing inverted index
 Creates a “searchable document” of:

 URL text
 Content text
 Incoming anchor text

 Other content types might have a different
document fields
 Eg, email has sender/receiver
 Any searchable field end-user will want

 Uses Lucene text indexer

Link analysis
 A page’s relevance depends on both intrinsic

and extrinsic factors
 Intrinsic: page title, URL, text
 Extrinsic: anchor text, link graph

 PageRank is most famous of many
 Others include:

 HITS
 OPIC
 Simple incoming link count

 Link analysis is sexy, but importance
generally overstated

Link analysis (2)
 Nutch performs analysis in WebDB

 Emit a score for each known page
 At index time, incorporate score into

inverted index
 Extremely time-consuming

 In our case, disk-consuming, too (because
we want to use low-memory machines)

 Fast and easy:
 0.5 * log(# incoming links)

Administering Nutch
 Admin costs are critical

 It’s a hassle when you have 25 machines
 Google has >100k, probably more

 Files
 WebDB content, working files
 Fetchlists, fetched pages
 Link analysis outputs, working files
 Inverted indices

 Jobs
 Emit fetchlists, fetch, update WebDB
 Run link analysis
 Build inverted indices

Administering Nutch (2)
 Admin sounds boring, but it’s not!

 Really
 I swear

 Large-file maintenance
 Google File System (Ghemawat, Gobioff, Leung)
 Nutch Distributed File System

 Job Control
 Map/Reduce (Dean and Ghemawat)
 Pig (Yahoo Research)

 Data Storage (BigTable)

Nutch Distributed File System
 Similar, but not identical, to GFS
 Requirements are fairly strange

 Extremely large files
 Most files read once, from start to end
 Low admin costs per GB

 Equally strange design
 Write-once, with delete
 Single file can exist across many machines
 Wholly automatic failure recovery

NDFS (2)
 Data divided into blocks
 Blocks can be copied, replicated
 Datanodes hold and serve blocks
 Namenode holds metainfo

 Filename  block list
 Block  datanode-location

 Datanodes report in to namenode every
few seconds

NDFS File Read

Namenode

Datanode 0 Datanode 1 Datanode 2

Datanode 3 Datanode 4 Datanode 5

1. Client asks datanode for filename info
2. Namenode responds with blocklist, and

location(s) for each block
3. Client fetches each block, in sequence, from

a datanode

“crawl.txt”(block-33 / datanodes 1, 4)
(block-95 / datanodes 0, 2)
(block-65 / datanodes 1, 4, 5)

NDFS Replication

Namenode

Datanode 0
(33, 95)

Datanode 1
(46, 95)

Datanode 2
(33, 104)

Datanode 3
(21, 33, 46)

Datanode 4
(90)

Datanode 5
(21, 90, 104)

1. Always keep at least k copies of each blk
2. Imagine datanode 4 dies; blk 90 lost
3. Namenode loses heartbeat, decrements blk

90’s reference count. Asks datanode 5 to
replicate blk 90 to datanode 0

4. Choosing replication target is tricky

(Blk 90 to dn 0)

Nutch & Hadoop
 NDFS stores the crawl and indexes
 MapReduce for indexing, parsing,

WebDB construction, even fetching
 Broke previous 200M/mo limit
 Index-serving?

 Required massive rewrite of almost
every Nutch component

Nutch Conclusion
 http://www.nutch.org/

 Partial documentation
 Source code
 Developer discussion board

 Nutch has been only moderately
successful, but led to Hadoop

 “Lucene in Action” by Hatcher,
Gospodnetic is a useful resource

Search: A Technical History
 Search engines have been around a lot

longer than you think
 Almost all of them are dead and gone,

but their ideas live on
 Search existed before the Web, though

it was a very different beast

Primordial Era: 1960s-1994
 Electronic content was rare and

expensive
 Only large organizations with huge well-

curated archives (libraries, govts) had
any need for search

 CPU & storage were expensive,
networked systems very rare

 Most systems were small, searched only
metadata (like card catalogs)

Primordial Era (2)
 Two important technical contributions

 Inverted index
 Tf/idf & vector document model

 Document ranking was not a huge
problem
 Relatively few documents
 Clean metadata
 Boolean operators commonplace

Inverted Index: why bother?
 Disk access: 1-10ms

 Depends on seek distance, published average is 5ms
 Thus perform 200 seeks / sec
 (And we are ignoring rotation and transfer times)

 Clock cycle: 2 GHz
 Typically completes 2 instructions / cycle

 ~10 cycles / instruction, but pipelining & parallel execution
 Thus: 4 billion instructions / sec

 Disk is 20 Million times slower
 Inverted index allows us to read all of the docs for a

single search term, usually with a single seek.
 # seeks grows with # terms, not # documents.

Tf/idf: Vector Model

•Tf = term frequency, idf = inverse document
frequency; tf/idf for a term places it in N-dim space
•Documents that are “close together” in space are
similar in meaning.

The Web (1994-)
 The popularization of the Web in the

1990s led to a crazy explosion of search
engine companies

 Web search was a vastly different
problem compared to previous systems
 Content was cheap but messy
 Storage was becoming cheap
 Finding a document became harder
 Users were much less sophisticated

Information from
searchenginewatch.com

Number of indexed pages, self-reported

Search Engine Size over Time

Search Engine Storage Costs
 Figure 10kb to index one Web page

plus a compressed cached copy
 In 2008, 1GB costs ~0.15

 100k docs per gig, so $0.0000015/doc
 50M docs costs $75.00

 In 1990, 1GB costs $1000.00
 100k docs per gig, so $0.01/doc
 50M docs costs $500k
 Just about within reach for startup search

companies

WebCrawler
 Created in 1994 by a UW student!
 Notable features:

 First dynamic crawler (rather than using
hand-curated corpus)

 Fate:
 Bought by AOL, then Excite, then

InfoSpace
 Now a meta-engine, serving results from

elsewhere

Excite (aka Architext)
 Created in 1994 by Stanford ugrads
 Notable features:

 Full-text indexing for Web pages
 “Related search” suggestions
 Famous in mid-90s for consuming tons of

expensive high-end Sun machines

 Fate:
 Went public, bought many other companies,

merged with @Home, collapsed in bankruptcy,
then sold for parts

Infoseek
 Created in 1994
 Notable features:

 Very fancy query language (booleans,
NEAR, etc)

 Performed some linguistic analysis,
including stemming. Gave stemming a bad
name for a decade.

 Fate:
 Bought by Disney in 1998

Inktomi
 Created in 1996 by UCB grad student
 Notable features:

 Distributed commodity-box infrastructure
 Resold its search engine to other

destination sites (Hotbot, Yahoo, others)
 Search was just one of several products

(others were caches and video serving)

 Fate:
 Went public, stock collapsed in crash, sold

to Yahoo in 2002

AltaVista
 Created in 1995 as a DEC research project
 Notable Features:

 Originally meant to demo new 64-bit Alpha
processor: high speed & huge address space

 First really high-quality multithreaded crawler:
30m pages at launch!

 Recognized that page ranking was an issue, but
used awful solution: URL length

 Fate:
 Compaq bought DEC, then sold AV to CMGI, which

sold AV to Overture, which was then bought by
Yahoo

Google
 Founded in 1998. Have you heard of it?
 Major feature was PageRank (Page, 1998)

 Largely solved page-ranking problem faced by AltaVista
 First major commercial deployment of link-based methods
 Really miraculous when compared to other methods at the

time

 However, link-based methods were common in
academia
 Authoritative Sources in a Hyperlinked Environment,

Kleinberg. JACM, 1999.
 “Silk from a sow’s ear”, Pirolli, Pitkow, Rao. CHI, 1996.

Google (2)
 PageRank is its best-known contribution, but Google was helped

by its predecessors:
 Full-text indexing, like Excite
 An aggressive large-scale crawler, like WebCrawler and

AltaVista
 Distributed processing from Inktomi

 The last interesting Web search engine?
 Probably. Previous search engines got a ton of traffic. They

just didn’t have ad revenue
 The period 1994-1998 was very unusual, made possible by

the Web’s split between search and content ownership

