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Today …

 Disks
 File systems
 GFS



A trip down memory lane …

 IBM 2314
 About the size of 6 

refrigerators
 Capacity: 8 x 29MB 

(M!)



Today …

 Seagate Barracuda 7200.11
 Form factor: 3.5”
 Capacity: 1500 GB

 6500 times the capacity of those 
six refrigerators!!!!!



Physical disk structure

 Disk components
 platters
 surfaces
 tracks
 sectors
 cylinders
 arm
 heads
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Disk performance

 Performance depends on a number of steps
 seek: moving the disk arm to the correct cylinder

 depends on how fast disk arm can move
• seek times aren’t diminishing very quickly (why?)

 rotation (latency): waiting for the sector to rotate under 
head
 depends on rotation rate of disk

• rates are increasing, but slowly (why?)
 transfer: transferring data from surface into disk 

controller, and from there sending it back to host
 depends on density of bytes on disk

• increasing, relatively quickly

 When the OS uses the disk, it tries to minimize the 
cost of all of these steps
 How?



OS / file system accommodations to 
disk performance

 Seek reduction
 Increase block size to reduce seeking
 Co-locate “related” items in order to reduce seeking

 blocks of the same file
 data and metadata for a file

 Scheduling of requests
 FCFS, SSTF, SCAN, C-SCAN

 Log-structured file systems



 Caching and pre-fetching
 Keep data or metadata in memory to reduce physical disk 

access
 But what if a crash occurs??

 If file access is sequential, fetch blocks into memory before 
requested

 Faster re-boot after a crash
 Journaling file systems



 Seagate Barracuda 7200.11
 form factor: 3.5”
 capacity: 1500 GB
 rotation rate: 7,200 RPM (120 RPS)
 platters: 4
 heads: 8
 average sector size: 512 bytes
 cylinders: 16,383
 cache: 32 MB
 sustained transfer rate: 135 MB/s
 average seek: 10 ms (how  many 

bytes worth??)
 adjacent track seek:  1 ms
 average latency:  4 ms

Example disk characteristics



File systems:  Basic operations

NT
• CreateFile(name, CREATE)

• CreateFile(name, OPEN)

• ReadFile(handle, …)

• WriteFile(handle, …)

• FlushFileBuffers(handle, …)

• SetFilePointer(handle, …)

• CloseHandle(handle, …)

• DeleteFile(name)

• CopyFile(name)

• MoveFile(name)

Unix
• create(name)

• open(name, mode)

• read(fd, buf, len)

• write(fd, buf, len)

• sync(fd)

• seek(fd, pos)

• close(fd)

• unlink(name)

• rename(old, new)



The original Unix file system

 Dennis Ritchie and Ken Thompson, Bell Labs, 1969
 “UNIX rose from the ashes of a multi-organizational 

effort in the early 1960s to develop a dependable 
timesharing operating system” – Multics

 Designed for a “workgroup” sharing a single system
 Did its job exceedingly well

 Although it has been stretched in many directions and made 
ugly in the process

 A wonderful study in engineering tradeoffs



All disks are divided into five parts …

 Boot block
 can boot the system by loading from this block

 Superblock
 specifies boundaries of next 3 areas, and contains head of 

freelists of inodes and file blocks
 i-node area

 contains descriptors (i-nodes) for each file on the disk; all i-
nodes are the same size; head of freelist is in the 
superblock

 File contents area
 fixed-size blocks; head of freelist is in the superblock

 Swap area
 holds processes that have been swapped out of memory



So …

 You can attach a disk to a dead system …
 Boot it up …
 Find, create, and modify files …

 because the superblock is at a fixed place, and it tells you 
where the i-node area and file contents area are

 by convention, the second i-node is the root directory of the 
volume



i-node format

 User number, Group number, Protection bits
 Times (file last read, file last written, inode last 

written)
 File code:  specifies if the i-node represents a 

directory, an ordinary user file, or a “special file”
(typically an I/O device)

 Size:  length of file in bytes
 Block list:  locates contents of file (in the file 

contents area)
 more on this soon!

 Link count:  number of directories referencing this i-
node



The flat (i-node) file system

 Each file is known by a number, which is the number 
of the i-node
 seriously – 1, 2, 3, etc.!
 why is it called “flat”?

 Files are created empty, and grow when extended 
through writes



The tree (directory, hierarchical) 
file system

 A directory is a flat file 
of fixed-size entries

 Each entry consists of 
an i-node number and a 
file name 

a_directory144

oh_my_god93

another_file4

my_file216

..18

.152

File namei-node number



The “block list” portion of the i-node 
(Unix Version 7)

 Points to blocks in the file contents area
 Must be able to represent very small and very large 

files



 Each inode contains 13 block pointers
 first 10 are “direct pointers” (pointers to 512B blocks of file 

data)
 then, single, double, and triple indirect pointers

0
1

10
11
12

…

…

…

…

…

… …



So …

 Only occupies 13 x 4B in the i-node
 Can get to 10 x 512B = a 5120B file directly

 (10 direct pointers, blocks in the file contents area are 512B)
 Can get to 128 x 512B = an additional 65KB with a single indirect 

reference
 (the 11th pointer in the i-node gets you to a 512B block in the file 

contents area that contains 128 4B pointers to blocks holding file 
data)

 Can get to 128 x 128 x 512B = an additional 8MB with a double 
indirect reference
 (the 12th pointer in the i-node gets you to a 512B block in the file 

contents area that contains 128 4B pointers to 512B blocks in the 
file contents area that contain 128 4B pointers to 512B blocks 
holding file data)



 Can get to 128 x 128 x 128 x 512B = an additional 1GB 
with a triple indirect reference
 (the 13th pointer in the i-node gets you to a 512B block in 

the file contents area that contains 128 4B pointers to 512B 
blocks in the file contents area that contain 128 4B pointers 
to 512B blocks in the file contents area that contain 128 4B 
pointers to 512B blocks holding file data)

 Maximum file size is 1GB + a smidge



 A later version of Bell Labs Unix utilized 12 direct 
pointers rather than 10
 Why?

 Berkeley Unix went to 1KB block sizes
 What’s the effect on the maximum file size?

 256x256x256x1K = 17 GB + a smidge
 What’s the price?

 Suppose you went to 4KB blocks?
 1Kx1Kx1Kx4K = 4TB + a smidge
 Impact on performance?
 Impact on disk utilization?



Quick comment on crash recovery

 iCheck and dCheck are hugely expensive
 Worse as disks get bigger

 Journaling file systems solve this
 Keep a change log; avoid scanning entire disk

 Will discuss journaling and logs in the “transactions”
module



GFS:  Environment

 Thousands of computers
 Distributed

 Computers have their own disks, and the file system spans 
those disks

 Failures are the norm
 Disks, networks, processors, power supplies, application 

software, operating system software, human error
 Files are huge

 Multi-gigabyte files, each containing many objects
 Read/write characteristics

 Files are mutated by appending
 Once written, files are typically only read
 Large streaming reads and small random reads are typical



 Bandwidth is more important than latency
 Its helpful if the file system provides 

synchronization for concurrent appends



General architecture

 A GFS cluster has one master and many chunkservers
 Files are divided into 64 MB chunks
 Chunks are replicated and stored in the Unix file 

systems of the chunkservers
 The master holds metadata
 Clients get metadata from the master, and data 

directly from chunkservers



File read

 From byte offset within the file, client computes 
chunk index

 Client sends filename and chunk index to master
 Master returns a list of replicas of the chunk
 Client interacts with a replica to access data



Metadata

 Three types of metadata
 File and chunk namespaces
 Mapping from files to chunks (each chunk has a unique ID)
 Locations of each chunk’s replicas

 All metadata kept in memory
 First two types are made persistent via a change log

 Punt discussion to a later module
 Chunk replica locations learned by polling 

chunkservers at startup
 Chunkserver is final arbiter of what chunks it holds



File write

 Primary orders concurrent 
requests, and triggers disk 
writes at all replicas

 Primary reports success or 
failure to client

 Client asks master for identity of primary and 
secondary replicas

 Client pushes data to memory at all replicas via a 
replica-to-replica “chain”

 Client sends write request to primary



Replica failure

 Master detects a failed “heartbeat” of a chunkserver
 Re-creates contents elsewhere
 Write eventually succeeds


