Architecture, Systems, and Networking
ih 80 minutes

CSE 490h, Autumn 2008

Father Guido Sarducci
The Five Minute University

http://www.youtube.com/watch?v=kO8x8eoU3L4
http://www.cs.washington.edu/info/videos/asx/5minutel.asx

Architecture, Systems, and Networking in
&0 75 minutes: Architecture in b minutes

CSE 490h, Autumn 2008

Macro-architectural trends are
changing what we can do

Moore's Law

Transistor density doubles every 18
months

Greater power
Lower cost

Processing power, traditionally
Doubles every 18 months

ARG AETEL OB BRI AN

6 O o/O i m p r‘ o Ve m e n 1. eC(C h yea r‘ \ |i‘I.illhlllilI\I'lIuI!llllllll!]ll'lll.illb!llﬂlI1I (T

A factor of 100 every decade |

AT IIIIIIIIEHIIIIIIIII IIIIIIII
] Ii\'ﬂlll.l.ﬂlllllillllll'lllllﬂ'llllﬂ (I LT

1980: 1 MHz Apple ITI+, $2,000
1980 also 1 MIPS VAX-11/780, $120,000

2006: 3.0 GHz Pentium D, $800

Processing power, recently

Additional transistors => more cores of the same speed,
rather than higher speed

2008: Intel Core2 Quad-Core 2.4 GHz, $800

Chat with uz or call: 1-888-7958-3355 = Cart | Hello, Customer (not Customer?})
| Keyword Search | O
+ SHARE

Dell recommends Windows Vista® Home Premium.

You are here: = USA > Home & Home Office
Dell offers 2 ways to help you shop.

To compare multiple configurations, click the review and continue tab below then click "Add to \Wish List'. CLICK 2 CLICK
_— L}
o Build My Dell | o Add My Software & Accessories o Protect My Investment o Review & Continue ™ CHAT [t BAM ;rc'n'glﬁﬁ 135

» SWITCH TO LIST VIEW
PROCESSING POWER SELECT MY PROCESSOR XPS 420

Experence pure genius — the most)]
powerful Intel processorlets you run O el Me:Chonse: Starting Price $799

multiple intense applications at top speeds.

Ag low as $24/month®

A faster processor increases the efficiency and performance of your applications and e
operations. — Apply | Learn More
O Intel® Core™ 2 Duo Prooessor EB200 {(BMB L2 n Preliminary Ship Date: 10/9/2008"

Cache 2 68GHz,1333FSB) add $0

s)
(@ Intel®Cora™2 Q6600 Quad-Core (BMB L2 cache,2.4GHz, 1065FSE) dagh Print Summary
[Included in Price] BOOMHz - 4 DIMMs -

- 500GB - T200RPM, SATA 2.0Gb/s, 16MB

O Intel® Core™ 2 Duo Prooessor EB400 {(EMB L2

Cache,2.0GHz, 12323FSE) add $0 Cache
= Single Drive: 18X CD/DVD burner {DWVD+-

Intel® Core™ 2 Duo Frocessor ES500 (SMB L2
& melB o ™7 Do Processon ! RW) widouble |ayer write capability

Cache, 2. 18GHz,1222F56) [add $100 or $3/month]

- = Mo Menitor
O Intel® Core™ 2 Extreme QX8850 {2.0GHz, 1233F5B, 12MB L2 Cache) - AT| Radeon HD 2400 PRO 128MB
[add $1,150 or $35/month’] R ernmiee T Gl et reiiny
() Intel®Core™2 03400 Quad-Core (EMB L2 cache,2.66GHz, 1333F5B) B = Mo speakers (Speakers are required to

coa) | e aaaae

i o . hear audic from your system)
! Rating Leadl d-¢ Go to Next Component
g el L . Dell USE Keyboard
. - = Dell Optical USBE Mouse
c Buy Now 2

= Mo Floppy Drive or Media Reader

Primary memory capacity
Same story, same reason (transistor density)

1972: 1MB, $1,000,000

1982: I remember pulling all kinds of strings to get a special
deal: 512K of VAX-11/780 memory for $30,000

2005:

™ LUSA 2=
m Member Purchase Program sbotDal

Desktops Notebooks Software & Peripherals Semnvice & Support Purchase Help

Standard Microzoft Windows XP and Windowes 2000 operating svstems can not address more than 4B of memoary . Large memory configurations
far the Dell Precizion 470 and 670 are only supparted with Red Hat Enterprize WS w3 for Intel EMEAT.

¥ 512MB, DDRZ SDRAM Memory,400MHz, ECC (2 DIMMS)

 1GB, DDRZ SORAM Mermary, 400MHz, ECC (2 DIMMS) [Add $124.10]

" 1.5GE, DORZ SDRAM Memary, 400MHz, ECC (4 DIMMS) [Add $313.10] 4GB vs. 2GB

" 2GB, DDRZ SDRAM Mermary, 400MHz, ECC (4 DIMMS) [Add $466.10] (@4OOI\/| Hz) = $800
' 2GB, DDRZ SORAM Mermary, 400MHz, ECC (2 DIMMS) [Add $700.10] ($400/G B)

" 3GB, DDR2 SORAM Mermary, 400MHz, ECC (4 DIMMS) [Add $952.10]

" 4GB, DDRZ SDRAM Memaory, 400MHz, ECC (6 DIMMS) [Add $1,267.10]
" 4GB, DDRZ SDRAM Memary, 400MHz, ECC (4 DIMMS) [add $1,537.10]
" 1GB, DDRZ SDRAM Memary, 400MHz, ECC (4 DIMMS) [Add $124.10]

2007:

0 Build My Dell Add My Accessories Choose My Software Protect My Investment Confirm & Add to Cart

¥ SWITCH TO LIST VIEVY

SELECT MY MEMORY
e Help Me Choose Wideo Learn More

{¥ 268 Dual Channel DDR2 SORAM at 857TMHz - 2 DIMM=
[Included in Price]
Dell Recommended for an enhanced Windows \Vista
experience

" 4GB Dual Channel DDR2 SDRAM at 867MHz - £ DIMM=
[add 5230 or $%/month’]

4GB vs. 2GB
(@667MHz) = $290
($145/GB)

& Previous Component =) Go to Next Component

Chat with us or call: 1-888-758-3355

Dell recommends Windows Vista® Home Premium.
You are here: BE US4 = Home & Home Office
To compare multiple configurations, click the review and continue tab below then click "Add to Wish List'.

o Build My Dell | 9 Add My Software & Accessories o Protect My Investment o Review & Continue

¥ SWITCH TO LIST VIEWW

SELECT MY MEMORY

3GE Dual Channel DDR2 SDRAM st B00MHz - 4 DIMMs
[Included in Price]

C:) 458 Dual Channsl DDR2Z SORAM at 800MHz - 4 DIMMs
[add $49 or $4/month’]
Maximize Your Memory Performance

4GB vs. 3GB
(@800MHz) = $49
MEMORY ($49/GB)

Help improve multi-tasking, speed up

gaming, and take your PC's performance Q Previous Component
even higherwith increased RAM.

Disk capacity, 1975-1989

doubled every 3+ years
25% improvement each year
factor of 10 every decade
Still exponential, but far less rapid than processor
performance
Disk capacity since 1990
doubling every 12 months
100% improvement each year
factor of 1000 every decade
10x as fast as processor performancel

Only a few years ago, we purchased disks by the
megabyte (and it hurtl)

Today, 1 GB (a billion bytes) costs $ $0:50 $0.25
from Dell (except you have to buy in increments of

2Q 8Q 250 GB)
=> 1 TB costs $K $5Q0 $250, 1 PB costs $™M $500K $250K

Optical bandwidth today
Doubling every 9 months
150% improvement each year
Factor of 10,000 every decade
10x as fast as disk capacity!
100x as fast as processor performancell

Architecture, Systems, and Networking in
20 75 minutes: Systems in 40 minutes

CSE 490h, Autumn 2008

What is an Operating System?

An operating system (OS) is:
A software layer to abstract away and manage details of
hardware resources

A set of utilities to simplify application development

Applications
OS

Hardware

"All the code you didn't have to write" in order to implement
your application

What is Windows?

Application

© John DeTreville, Microsoft Corp.

What is Windows?

:0.
oo
H.

'

EeBRED
TT L

8

IY
T A

L]
ol
.l
Y

Application

© John DeTreville, Microsoft Corp.

N

Wha‘r_is .NE_T?_

© John DeTreville, Microsoft Corp.

What is NET?

eh

Application

© John DeTreville, Microsoft Corp.

The major OS issues

structure: how is the OS organized?
sharing: how are resources shared across users?
naming: how are resources named (by users or programs)?

security: how is the integrity of the OS and its resources
ensured?

protection: how is one user/program protected from another?
performance: how do we make it all go fast?

reliability: what happens if something goes wrong (either with
hardware or with a program)?

extensibility: can we add new features?

communication: how do programs exchange information,
including across a network?

concurrency: how are parallel activities (computation and
I/0) created and controlled?

scale: what happens as demands or resources increase?

persistence: how do you make data last longer than program
executions?

distribution: how do multiple computers interact with each
other?

accounting: how do we keep track of resource usage, and
perhaps charge for i1?

There are fradeoffs, not right and wrong answers!

Architectural features supporting OS's

timer (clock) operation

synchronization instructions (e.g., atomic test-and-
set)

memory protection

I/0 control operations

interrupts and exceptions

protected modes of execution (kernel vs. user)
privileged instructions

system calls (and software interrupts)

Privileged instructions

Some instructions are restricted to the OS
known as privileged instructions

E.g., only the OS can:

Directly access I/0 devices (disks, network cards)
why?

Manipulate memory state management
page table pointers, TLB loads, etc.
why?

Manipulate special ‘'mode bits'’
interrupt priority level
why?

Execute the halt instruction
why?

Kernel and user mode

So how does the processor know if a privileged
instruction should be executed?

The architecture must support at least two modes of
operation: kernel mode and user mode

VAX, x86 support 4 protection modes

Mode is set by status bit in a protected processor register
user programs execute in user mode
OS executes in kernel mode (OS == kernel)

Privileged instructions can only be executed in kernel
mode

What happens if user mode attempts to execute a privileged
Instruction?

Crossing protection boundaries

So how do user programs do something privileged?
E.g., how can you write to a disk if you can't execute I/0
Instructions?

User programs must call an OS procedure
OS defines a sequence of system calls
How does the user-mode to kernel-mode transition happen?

There must be a system call instruction, which:

Causes an exception (throws a software interrupt), which
vectors to a kernel handler

Passes a parameter indicating which system call to invoke

Saves caller's state (registers, mode bit) so they can be
restored

OS must verify caller's parameters (e.g., pointers)
Must be a way to return to user mode once done

Other events can cause the OS to get
control

Two main types of events: interrupts and exceptions

Exceptions are caused by software executing instructions
e.g., the x86 'int' instruction
e.g., a page fault, or an attempted write to a read-only page
an expected exception is a “trap”, unexpected is a “fault”
Interrupts are caused by hardware devices
e.g., device finishes I/0
e.g., timer fires

Kernel defines handlers for each event type

Specific types are defined by the architecture
e.g.: timer event, I/0 interrupt, system call frap
When the processor receives an event of a given type, it
transfers control o handler within the OS
handler saves program state (PC, regs, etfc.)
handler functionality is invoked
handler restores program state, returns to program

I/0

Issues:

how does the kernel start an I/0?
special I/0 instructions
memory-mapped I/0
how does the kernel notice an I/0 has finished?
polling
intferrupts
Interrupts are basis for asynchronous I/0
device performs an operation asynchronously to CPU

device sends an interrupt signal on bus when done

in memory, a vector table contains list of addresses of
kernel routines to handle various interrupt types

who populates the vector table, and when?

CPU switches to address indicated by vector index specified
by interrupt signal

Timers

How can the OS prevent runaway user programs from
hogging the CPU (infinite loops?)
use a hardware timer that generates a periodic interrupt

before it transfers to a user program, the OS loads the
timer with a time to interrupt

"quantum” - how big should it be set?

when timer fires, an interrupt transfers control back to OS
at which point OS must decide which program to schedule next
very interesting policy question: we'll dedicate a class to it

Should the timer be privileged?

for reading or for writing?

Memory protection

OS must protect user programs from each other
maliciousness, ineptitude

OS must also protect itself from user programs

integrity and security

what about protecting user programs from OS?
Paging, segmentation, virtual memory

page tables, page table pointers

translation lookaside buffers (TLBs)

page fault handling

More on this shortly!

Processes

An OS executes many kinds of activities:
users' programs
batch jobs or scripts

system programs
print spoolers, name servers, file servers, network daemons, ...

Each of these activities is encapsulated in a process
a process includes the execution context
PC, registers, OS resources (e.g., open files), etfc...
plus the program itself (code, data, stack)
the OS's process module manages these processes
creation, destruction, scheduling, ...

What's in a process?

A process consists of (at least):
an address space
the code for the running program
the data for the running program

an execution stack and stack pointer (SP)
traces state of procedure calls made

the program counter (PC), indicating the next instruction
general-purpose processor registers and their values
a set of OS resources
open files, network connections, sound channels, ...
In other words, it's all the stuff you need to run the
program
or to re-start it, if it's interrupted at some point

A process's address space

OXFFFFFFFF

A

address space

v

0x00000000

stack
(dynamic allocated mem)

;
T

heap
(dynamic allocated mem)

static data
(data segment)

code
(text segment)

« SP

“— PC

The process control block

There's a data structure called the process control
block (PCB) that holds all this stuff

The PCB is identified by an integer process ID (PID)
OS keeps all of a process’'s hardware execution state
in the PCB when the process isn't running

PC, SP, registers, efc.

when a process is unscheduled, the state is transferred out
of the hardware into the PCB

Note: It's natural to think that there must be some
esoteric techniques being used
fancy data structures that'd you'd never think of yourself

Wrong! It's pretty much just what you'd think of!

Process states

Each process has an execution state, which indicates
what it is currently doing
ready: waiting to be assigned to CPU
could run, but another process has the CPU

running: executing on the CPU
is the process that currently controls the CPU
pop quiz: how many processes can be running simultaneously?

waiting: waiting for an event, eg., I/0
cannot make progress until event happens
As a process executes, it moves from state to state
UNIX: run ps, STAT column shows current state
which state is a process in most of the time?

(unschedule)

exception (I/O,
page/fault, etc.)

(/O co

Synchronization

One process may need to wait for another

A process may be interrupted at an inopportune
moment

Synchronization is hecessary

Sections of code must be able to be executed
atomically - critical sections

Locks, semaphores, monitors, ...

Threads

Imagine a web server, which might like to handle multiple
requests concurrently
While waiting for the credit card server to approve a purchase for
one client, it could be retrieving the data requested by another
client from disk, and assembling the response for a third client
from cached information
Imagine a web client (browser), which might like to initiate
multiple requests concurrently
The CSE home page has 46 "src= .." html commands, each of which

is going to involve a lot of sitting around! Wouldn't it be nice to be
able to launch these requests concurrently?

Imagine a parallel program running on a multiprocessor, which
might like to employ "physical concurrency”
For example, multiplying a large matrix - split the output matrix

into k regions and compute the entries in each region concurrently
using k processors

What's needed in these situations?

In each of these examples of concurrency (web
server, web client, parallel program):
Everybody wants o run the same code
Everybody wants to access the same data
Everybody has the same privileges
Everybody uses the same resources (open files, network
connections, etc.)
But you'd like to have multiple hardware execution
states:

an execution stack and stack pointer (SP)
traces state of procedure calls made
the program counter (PC), indicating the next instruction

a set of general-purpose processor registers and their
values

Threads and processes

Most modern OS's (OS X, NT, modern UNIX)
therefore support two entities:

the process, which defines the address space and general
process attributes (such as open files, etfc.)

the thread, which defines a sequential execution stream
within a process
A thread is bound to a single process / address space

address spaces, however, can have multiple threads
executing within them

sharing data between threads is cheap: all see the same
address space

creating threads is cheap too!

Threads become the unit of scheduling

processes / address spaces are just containers in which
threads execute

Key

address
space

3

thread

The design space

3

MS/DOS

one thread/process
one process

3

3

3

3

one thread/process

many processes

older
UNIXes

s 3
Java % %

many threads/process
one process

3
33

33

3

many threads/process

many processes

OS X, NT,
modern
unix, ...

(old) Process address space

OXFFFFFFFF

A

address space

v

0x00000000

stack
(dynamic allocated mem)

;
T

heap
(dynamic allocated mem)

static data
(data segment)

code
(text segment)

“« SP

“— PC

(new) Process address space with

threads

OXFFFFFFFF

address space

0x00000000

thread 1 stack

;

thread 2 stack

;

thread 3 stack

;
T

heap
(dynamic allocated mem)

static data
(data segment)

code
(text segment)

“— SP (T1)

< SP(T2)

«— SP(T3)

«~— PC (T2)
«~—— PC (T1)
«<— PC (T3)

Memory management - paging

Processes view memory as a contiguous address space
from bytes O through N

virtual address space (VAS)
Logically divided into pages of fixed size (e.g., 4KB)
Pages are scattered across physical memory page
frames - not contiguous

virtual-to-physical mapping

this mapping is invisible to the program
Protection is provided because a program cannot
reference memory outside of its VAS

the virtual address OxXDEADBEEF maps to different physical
addresses for different processes

Address translation

Translating virtual addresses

a virtual address has two parts: virtual page number &
offset

virtual page number (VPN) is index into a per-process page
table

page table entry contains page frame number (PFN)
physical address is PFN::of fset

Page tables
managed by the OS

map virtual page number (VPN) to page frame number (PFN)
VPN is simply an index into the page table

one page table entry (PTE) per page in virtual address space
i.e., one PTE per VPN

Mechanics of address translation

virtual address

virtual page # | offset

physical memory

page
page table frame O
page
frame 1
page
frame 2
page
frame 3

physical address

v

page frame # —— | page frame # | offset ——

page
Note: Each process frame Y
has its own page table!

Example of address translation

Assume 32 bit addresses

assume page size is 4KB (4096 bytes, or 22 bytes)
VPN is 20 bits long (22° VPNs), offset is 12 bits long

Let's translate virtual address 0x13325
VPN is 0x13325, and offset is Ox

assume page table entry 0x13325 contains value 0x03004

page frame number is 0x03004
VPN 0x13325 maps to PFN 0x03004

physical address = PFN::offset = 0x03004

Page Tal:i e

V

prot

1En’r2ries (PTES)20

page frame number

PTE's control mapping

the valid bit says whether or not the PTE can be used
says whether or not a virtual address is valid
it is checked each time a virtual address is used

the referenced bit says whether the page has been

accessed

it is set when a page has been read or written to

the modified bit says whether or not the page is dirty
it is set when a write to the page has occurred

the protection bits control which operations are allowed

read, write, execute

the page frame number determines the physical page

physical page start address = PFN

Paged virtual memory

All the pages of an address space do not need to be
resident in memory

the full (used) address space exists on secondary storage
(disk) in page-sized blocks

the OS uses main memory as a (page) cache

a page that is needed is transferred to a free page frame

if there are no free page frames, a page must be evicted
evicted pages go to disk (only need to write if they are dirty)

all of this is transparent to the application (except for
performance ...)

managed by hardware and OS
Traditionally called paged virtual memory

Page faults

What happens when a process references a virtual
address in a page that has been evicted?
when the page was evicted, the OS set the PTE as invalid

and noted the disk location of the page in a data structure
(that looks like a page table but holds disk addresses)

when a process tries to access the page, the invalid PTE will
cause an exception (page fault) to be thrown
OK, it's actually an interrupt!

the OS will run the page fault handler in response

handler uses the "like a page table" data structure to locate the
page on disk

handler reads page into a physical frame, updates PTE to point
to it and to be valid

OS restarts the faulting process
there are a million and one details ..

How do you “load” a program?

Create process descriptor (process control block)
Create page table

Put address space image on disk in page-sized chunks

Build page table (pointed to by process descriptor)
all PTE valid bits 'false’

an analogous data structure indicates the disk location of
the corresponding page

when process starts executing:

instructions immediately fault on both code and data pages

faults taper off, as the necessary code/data pages enter
memory

Oh, man, how can any of this possibly
work?

Locality!
temporal locality
locations referenced recently tend to be referenced again soon
spatial locality

locations near recently references locations are likely to be
referenced soon (think about why)

Locality means paging can be infrequent
once you've paged something in, it will be used many times
on average, you use things that are paged in
but, this depends on many things:
degree of locality in the application

page replacement policy and application reference pattern

amount of physical memory vs. application "footprint” or
“working set"

Storage Latency:
How Far Away Is the Data?

Andromeda
109 Tape /Optical 2,000 Years
Robot
1()6 Disk Pluto 2 Years
1.5h
100 Memory !

10 On Board Cache
2 On Chip Cache

1 Registers

10 min

%My Head 1 min

© 2004 Jim Gray, Microsoft Corporation

Architecture, Systems, and Networking in
&0 75 minutes: Networking in 30 minutes

CSE 490h, Autumn 2008

Open Systems Interconnection (OSl) Reference Model

Upper Layers Lower Layars

Application Presentation Session Transport Network Data Link Physical
yer(7) Layer (6] Layer (5] Layer (4) Layer (3) Layer (2) Layer (1)

POPS/SMTF POPf2% R5-X,CAT 1

Transmission Internet

Uzenet Control Protocol SLIP, PPP
Protocol [TCP) Version 6
Applications Ll
File Transfer FTP
Host Sessions Telnet

Directory 4 DHS

SErvices 802 .2 SNAP

U=zer Internet

Datagram Protocol
Protocol [UDPA) Yersion 4

SNMP 1617162

Ethemnet II Coaxial

File Services NFs Cablez

Hetwork Mgt.

Data link layer: Ethernet

Broadcast network

0 Uy 0

CSMA-CD: Carrier Sense Multiple Access with
Collision Detection

Analogy: Standing in a circle, drinking beer and telling
stories

Packetized - fixed

Every computer has a unique physical address
00-08-74-C9-C8-7E

Packet format

physical address payload

Interface listens for its address, interrupts OS
when a packet is received

Network layer: IP

Internet Protocol (IP)

Routes packets across multiple networks, from source to
destination

Every computer has a unique Internet address
172.30.192.251

Individual networks are connected by routers that
have physical addresses (and interfaces) on each
network

‘IR
SEENEEEEENE

L

A really hairy protocol lets any node on a network
find the physical address on that network of a router
that can get a packet one step closer to its
destination

Packet format

physical address payload

\— /

IP address payload

A separate really hairy protocol, DNS (the Domain
Name Service), maps from intelligible names
(lazowska.org) to IP addresses (209.180.207.60)

So to send a packet to a destination
Use DNS to convert domain name to IP address
Prepare IP packet, with payload prefixed by IP address
Determine physical address of appropriate router

Encapsulate IP packet in Ethernet packet with appropriate
physical address

Bombs away!

Detail: port number gets you to a specific address
space on a system

Transport layer:

TCP

TCP: Transmission Control Protocol

Manages to achieve reliable multi-packet messages out of
unreliable single-packet datagrams

Analogy: Sending a book via postcards - what's required?

physical address payload
— _/
~
IP address payload
g _/
Y

TCP crap payload

Summary

Using TCP/IP and lower layers, we can get multi-
packet messages delivered reliably from address
space A on machine B to address space C on machine
D, where machines B and D are many heterogeneous
network hops apart, without knowing any of the
underlying details

Higher protocol layers facilitate specific services
email: smtp
web: http
file transfer: ftp
remote login: telnet

Open Systems Interconnection (OSl) Reference Model

Upper Layers Lower Layars

Application Presentation Session Transport Network Data Link Physical
yer(7) Layer (6] Layer (5] Layer (4) Layer (3) Layer (2) Layer (1)

POPS/SMTF POPf2% R5-X,CAT 1

Transmission Internet

Uzenet Control Protocol SLIP, PPP
Protocol [TCP) Version 6
Applications Ll
File Transfer FTP
Host Sessions Telnet

Directory 4 DHS

SErvices 802 .2 SNAP

U=zer Internet

Datagram Protocol
Protocol [UDPA) Yersion 4

SNMP 1617162

Ethemnet II Coaxial

File Services NFs Cablez

Hetwork Mgt.

Client/Server communication

The prevalent model for structuring distributed
computation is the client/server paradigm
A server is a program (or collection of programs) that
provides a service to other programs
e.qg., file server, name server, web server, mail server ...
server/service may span multiple machines
often, machines are called servers too
E.g., the web server runs on a Dell server computer
A client is a program that uses the service
the client first binds to the server
locates it, establishes a network connection to it

the client then sends requests (with data) to perform actions,
and the server sends responses (with data)
e.g., web browser sends a "GET" request, server responds with a
web page
TCP/IP is the Trans;:or’r, but what is the higher-level
programming model’

Messages

Initially, people hand-coded messages to send
requests and responses
Message is a stream of bytes - "op codes” and operands

Lots of drawbacks
Need to worry about message format
Have to pack and unpack data from messages
Servers have to decode messages and dispatch to handlers

Messages are often asynchronous
After sending one, what do you do until response comes back?

Messages aren't a natural programming model

Procedure calls

Procedure calls are a natural way to structure
multiple modules inside a single program
every language supports procedure calls
semantics are well-defined and well-understood
programmers are used to them

"Server” (called procedure) exports an API

“Client" (calling procedure) calls the server
procedure's APT

Linker binds the two together

Procedure call example

Server API:

int Add(int x, iInt y;

Client Program:

Server Program:

sum = server->Add(3,4);

int Add(int x, int y) {
return x + y;

}

If the server were just a library, then "Add" would
just be a local procedure call

Remote Procedure Call (RPC)

Traditional procedure call syntax and semantics
across a network

The most common means used for remote
communication in client/server systems

Used both by operating systems and applications
NFS is implemented as a set of RPCs
HTTP is essentially RPC
DCOM, CORBA, Java RMTI, etc., are just RPC systems

RPC

Use procedure calls as the model for distributed
(remote) communication
Have servers export a set of procedures that can be called
by client programs
similar to library API, class definitions, etc.
Clients do a local procedure call, as though they were
directly linked with the server

under the covers, the procedure call is converted into a
message exchange with the server

largely invisible to the programmer/

RPC issues

There are a bunch of hard issues:

How do we make the "remote” part of RPC invisible to the
programmer?

and is that a good idea?
What are the semantics of parameter passing?
what if we try to pass by reference?
How do we bind (locate/connect-to) servers?
How do we handle heterogeneity?
OS, language, architecture, ...
How do we make it go fast?

RPC example invocation

Client Program: Server Program:
int Add(int x, int y) { . .
sum = server->Add(3,4); return x + y; TOpICS'
¥ * interface
A . .
description
Y
client-side stub: * stubs
server-side stub: e stub
int Add(int x, int y) { .
alloc message buffer; Message Add_Stub(Message m) { generatlon
mark as ‘“add” call; remove x,y from m; ®
store X,y in buffer; r = Add(x,Y); paramet_er
send message; allocate response buffer; marShalllng
receive response; store r in response; . .
unpack response; return response; ¢ blndlng
return response; } ° runtime SyStem
} :
“ e error handling
! performance
RPC runtime system: RIPES MU EREEE * thread pools
i » receive message m;
send_message to server; e
e send response Eo client;

RPC model

A server defines the service interface using an
interface definition language (IDL)

The IDL specifies the names, parameters, and types for all
client-callable server procedures

example: ASN.1in the OST reference model

example: Sun's XDR (external data representation)

A "stub compiler” reads the IDL declarations and
produces two stub procedures for each server
procedure

The server programmer implements the service's procedures
and links them with the server-side stubs

The client programmer implements the client program and
links it with the client-side stubs

The stubs manage all of the details of remote communication
between client and server using the RPC runtime system

RPC stubs

A client-side stub is a procedure that looks to the client as if it
were a callable server procedure

It has the same API as the server's implementation of the
procedure

A client-side stub is just called a "stub” in Java RMI
A server-side stub looks like a caller to the server
It looks like a hunk of code that invokes the server procedure
A server-side stub is called a "skeleton” or "skel” in Java RMI
The client program thinks it's invoking the server
But it's calling into the client-side stub
The server program thinks it's called by the client
But it's really called by the server-side stub

The stubs send messages to each other, via the runtime, to
make the RPC happen transparently

RPC marshalling

Marshalling is the packing of procedure parameters
into a message packet
The RPC stubs call type-specific procedure to marshal or
unmarshal the parameters of an RPC
the client stub marshals the parameters into a message

the server stub unmarshals the parameters and uses them to
invoke the service's procedure

On return:

the server stub marshals the return value

the client stub unmarshals the return value, and returns them
to the client program

RPC binding

Binding is the process of connecting the client to the
server
The server, when it starts up, exports its interface

identifies itself to a network name server
tells RPC runtime that it is alive and ready to accept calls

The client, before issuing any calls, imports the server

RPC runtime uses the name server to find the location of the
server and establish a connection

The import and export operations are explicit in the
server and client programs

A slight breakdown in transparency
more to come...

RPC transparency

One goal of RPC is to be as transparent as possible
Make remote procedure calls look like local procedure calls
We've seen that binding breaks this transparency

What else breaks transparency?
Failures: remote nodes/networks can fail in more ways than
with local procedure calls
network partition, server crash
need extra support to handle failures

server can fail independently from client
“partial failure": a big issue in distributed systems
if an RPC fails, was it invoked on the server?

Performance: remote communication is inherently slower
than local communication

if you're not aware you're doing a remote procedure call, your
program might slow down an awful lot...

RPC and thread pools

What happens if two client threads (or client
programs) simultaneously invoke the same server
procedure using RPC?

Ideally, two separate threads will run on the server

So, the RPC run-time system on the server needs to spawn
or dispatch threads into server-side stubs when messages
arrive

is there a limit on the number of threads?

if so, does this change semantics?

if not, what if 1,000,000 clients simultaneously RPC into the
same server?

RPC in the web world

REST, SOAP, and XML-RPC are different religious
denominations of RPC using XML

Modern web services (e.g., flickr, AWS's S3) of fer APIs
based on all of these

XML is nothing but self-describing data

Great for parameter lists, if verboseness is not an issue,
which it isn't these days

Protocol Buffers: Google's version of this

Thrift: Facebook's version of this

Both PBs and Thrift use an IDL that compiles into stubs for
a wide variety of languages

flickr: http://www.flickr.com/services/api/ ouarentsigned in Signin Help

Home The Tour Sign Up Explore | Search

Flickr Services

APl Documentation Feeds Your APl Keys Apply for a new AP Key

The Flickr APl is available for non-commercial use by outside developers. AP' MElhDdE
Commercial use is possible by prior arrangement.
activity
Read these first:
, = flickr.activity.userComments
= Dnervew e flickr.activity.userPhotos
« Encoding
o User Authentication
auth
» Dates _
+ Tags s flickr.auth.checkToken
e URLS . ﬂichr.ﬂuth.ﬁetFmb
e B AR s flickr.auth.getFullToken

o flickr.auth.getToken

« Flickr APls Terms of Use

blogs

s fickr.blogs.getlist

» APl Keys s flickr.blogs.postPhoto
¢ [Developers' mailing list

tact
Photo Upload API contacis

« flickr.contactis.getlist

« lUploading Photos s flickr.contacis.getPubliclist
+« Heplacing Photos

fliCkI" ouarentisignedin - Signin Help

Home The Tour Sign Up Explore Search

Flickr Services

APl Documentation Feeds Your APl Keys Apply for a new AP Key

Uploading Photos
This is the specification for building photo uploader applications.
Itwarks outside the normal Flickr APl framewark because it involves sending binary files aver the wire.

Uploading apps can call the flickr. people getlpleadSiatus method in the regular AP to obtain file and bandwidth limits for the user.

Uploading

Fhotos should be POSTed to the following URL:

http://fapi.flickr.com/services/upload/

Authentication

This method requires authentication with “write’ permission.

For details of how to obtain authentication tokens and how to sian calls, see the authentication api spec. Mote that the "photo’ parameter should not
be included in the signature. All other FOST parameters should be included when generating the signature.

Arguments

photo

The file to upload.
title (optional)

The title of the photo.
deacription (optional)

A description of the photo. May contain some limited HTML.
taga (optional)

A space-seperated list of tags to apply to the phota.
is public, is friend, is family (optional)

Setto 0 forno, 1 for yes. Specifies who can view the photo.
safety_lewvel (optional)

Setto 1 for Safe, 2 for Moderate, or 3 for Restricted.
content_type (optional)

Setto 1 for Fhoto, 2 for Screenshot, or 3 for Other.
hidden (optional)

Setto 1 to keep the photo in global search results, 2 to hide from public searches.

Example Response

When an upload is successful, the following xml is returned:

<photoid>1234«/photoid>

photoid is the id of the new photo. This response is formatted in the REST AP| response style.

Error Codes

Ifthe upload fails, a REST AFl error response is returned. The following error codes are possible;

2: Ho photo specified
The photo required argument was missing.
3: General upload failure
The file was not correctly uploaded.
4: Filesize was zero
The file was zero bytes in length.
5: Filetype was not recognised
The file was not of a recognised image format.
6: User exceeded upleoad limit
The calling user has reached their monthly bandwidth limit.
96: Imvalid signature
The passed signature was invalid.
97: Mizs=ing =ignature
The call required signing but no signature was sent.
98: Login failed / Inmvalid auth token
The login details or auth token passed were invalid.
99: User not logged in / Insufficient permissions
The method requires user authentication but the user was not logged in, or the authenticated method call did not have the required
permissions.
100: Imvalid APT Key
The AF| key passed was notvalid or has expired.
105: Service currently unavailable
The requested service is temporarily unavailable.

