
Architecture, Systems, and Networking
in 80 minutes

CSE 490h, Autumn 2008

Father Guido Sarducci
The Five Minute University

] http://www.youtube.com/watch?v=kO8x8eoU3L4
] http://www.cs.washington.edu/info/videos/asx/5minuteU.asx

Architecture, Systems, and Networking in
80 75 minutes: Architecture in 5 minutes

CSE 490h, Autumn 2008

Macro-architectural trends are
changing what we can do

] Moore’s Law
\ Transistor density doubles every 18

months
[Greater power
[Lower cost

] Processing power, traditionally
\ Doubles every 18 months
\ 60% improvement each year
\ A factor of 100 every decade

\ 1980: 1 MHz Apple II+, $2,000
[1980 also 1 MIPS VAX-11/780, $120,000

\ 2006: 3.0 GHz Pentium D, $800

] Processing power, recently
\ Additional transistors => more cores of the same speed,

rather than higher speed
\ 2008: Intel Core2 Quad-Core 2.4 GHz, $800

] Primary memory capacity
\ Same story, same reason (transistor density)

[1972: 1MB, $1,000,000
[1982: I remember pulling all kinds of strings to get a special

deal: 512K of VAX-11/780 memory for $30,000
[2005:

4GB vs. 2GB
(@400MHz) = $800

($400/GB)

[2007:

4GB vs. 2GB
(@667MHz) = $290

($145/GB)

[2008:

4GB vs. 3GB
(@800MHz) = $49

($49/GB)

] Disk capacity, 1975-1989
\ doubled every 3+ years
\ 25% improvement each year
\ factor of 10 every decade
\ Still exponential, but far less rapid than processor

performance
] Disk capacity since 1990

\ doubling every 12 months
\ 100% improvement each year
\ factor of 1000 every decade
\ 10x as fast as processor performance!

] Only a few years ago, we purchased disks by the
megabyte (and it hurt!)

] Today, 1 GB (a billion bytes) costs $1 $0.50 $0.25
from Dell (except you have to buy in increments of
40 80 250 GB)
\ => 1 TB costs $1K $500 $250, 1 PB costs $1M $500K $250K

] Optical bandwidth today
\ Doubling every 9 months
\ 150% improvement each year
\ Factor of 10,000 every decade
\ 10x as fast as disk capacity!
\ 100x as fast as processor performance!!

CSE 490h, Autumn 2008

Architecture, Systems, and Networking in
80 75 minutes: Systems in 40 minutes

What is an Operating System?

] An operating system (OS) is:
\ A software layer to abstract away and manage details of

hardware resources
\ A set of utilities to simplify application development

\ “All the code you didn’t have to write” in order to implement
your application

Applications

OS

Hardware

DOS

What is Windows?

Application

© John DeTreville, Microsoft Corp.

DOS

What is Windows?

Windows

Installer

COM

Printing

TCP/IPBrowser

…File system

……

Application

Application

© John DeTreville, Microsoft Corp.

Internet

What is .NET?

Application

© John DeTreville, Microsoft Corp.

magicmagic

Internet

What is .NET?

.NET

Device
independence

XML

Identity
& security

AsynchronyExtensibility

……

Application

eBay FedExBank

© John DeTreville, Microsoft Corp.

The major OS issues

] structure: how is the OS organized?
] sharing: how are resources shared across users?
] naming: how are resources named (by users or programs)?
] security: how is the integrity of the OS and its resources

ensured?
] protection: how is one user/program protected from another?
] performance: how do we make it all go fast?
] reliability: what happens if something goes wrong (either with

hardware or with a program)?
] extensibility: can we add new features?
] communication: how do programs exchange information,

including across a network?

] concurrency: how are parallel activities (computation and
I/O) created and controlled?

] scale: what happens as demands or resources increase?
] persistence: how do you make data last longer than program

executions?
] distribution: how do multiple computers interact with each

other?
] accounting: how do we keep track of resource usage, and

perhaps charge for it?

 There are tradeoffs, not right and wrong answers!

Architectural features supporting OS’s

] timer (clock) operation
] synchronization instructions (e.g., atomic test-and-

set)
] memory protection
] I/O control operations
] interrupts and exceptions
] protected modes of execution (kernel vs. user)
] privileged instructions
] system calls (and software interrupts)

Privileged instructions

] Some instructions are restricted to the OS
\ known as privileged instructions

] E.g., only the OS can:
\ Directly access I/O devices (disks, network cards)

[why?
\ Manipulate memory state management

[page table pointers, TLB loads, etc.
[why?

\ Manipulate special ‘mode bits’
[interrupt priority level
[why?

\ Execute the halt instruction
[why?

Kernel and user mode

] So how does the processor know if a privileged
instruction should be executed?
\ The architecture must support at least two modes of

operation: kernel mode and user mode
[VAX, x86 support 4 protection modes

\ Mode is set by status bit in a protected processor register
[user programs execute in user mode
[OS executes in kernel mode (OS == kernel)

] Privileged instructions can only be executed in kernel
mode
\ What happens if user mode attempts to execute a privileged

instruction?

Crossing protection boundaries

] So how do user programs do something privileged?
\ E.g., how can you write to a disk if you can’t execute I/O

instructions?
] User programs must call an OS procedure

\ OS defines a sequence of system calls
\ How does the user-mode to kernel-mode transition happen?

] There must be a system call instruction, which:
\ Causes an exception (throws a software interrupt), which

vectors to a kernel handler
\ Passes a parameter indicating which system call to invoke
\ Saves caller’s state (registers, mode bit) so they can be

restored
\ OS must verify caller’s parameters (e.g., pointers)
\ Must be a way to return to user mode once done

Other events can cause the OS to get
control

] Two main types of events: interrupts and exceptions
\ Exceptions are caused by software executing instructions

[e.g., the x86 ‘int’ instruction
[e.g., a page fault, or an attempted write to a read-only page
[an expected exception is a “trap”, unexpected is a “fault”

\ Interrupts are caused by hardware devices
[e.g., device finishes I/O
[e.g., timer fires

] Kernel defines handlers for each event type
\ Specific types are defined by the architecture

[e.g.: timer event, I/O interrupt, system call trap
\ When the processor receives an event of a given type, it

[transfers control to handler within the OS
[handler saves program state (PC, regs, etc.)
[handler functionality is invoked
[handler restores program state, returns to program

I/O

] Issues:
\ how does the kernel start an I/O?

[special I/O instructions
[memory-mapped I/O

\ how does the kernel notice an I/O has finished?
[polling
[interrupts

] Interrupts are basis for asynchronous I/O
\ device performs an operation asynchronously to CPU
\ device sends an interrupt signal on bus when done
\ in memory, a vector table contains list of addresses of

kernel routines to handle various interrupt types
[who populates the vector table, and when?

\ CPU switches to address indicated by vector index specified
by interrupt signal

Timers

] How can the OS prevent runaway user programs from
hogging the CPU (infinite loops?)
\ use a hardware timer that generates a periodic interrupt
\ before it transfers to a user program, the OS loads the

timer with a time to interrupt
[“quantum” – how big should it be set?

\ when timer fires, an interrupt transfers control back to OS
[at which point OS must decide which program to schedule next
[very interesting policy question: we’ll dedicate a class to it

] Should the timer be privileged?
\ for reading or for writing?

Memory protection

] OS must protect user programs from each other
\ maliciousness, ineptitude

] OS must also protect itself from user programs
\ integrity and security
\ what about protecting user programs from OS?

] Paging, segmentation, virtual memory
\ page tables, page table pointers
\ translation lookaside buffers (TLBs)
\ page fault handling
 More on this shortly!

Processes

] An OS executes many kinds of activities:
\ users’ programs
\ batch jobs or scripts
\ system programs

[print spoolers, name servers, file servers, network daemons, …

] Each of these activities is encapsulated in a process
\ a process includes the execution context

[PC, registers, OS resources (e.g., open files), etc…
[plus the program itself (code, data, stack)

\ the OS’s process module manages these processes
[creation, destruction, scheduling, …

What’s in a process?

] A process consists of (at least):
\ an address space
\ the code for the running program
\ the data for the running program
\ an execution stack and stack pointer (SP)

[traces state of procedure calls made
\ the program counter (PC), indicating the next instruction
\ general-purpose processor registers and their values
\ a set of OS resources

[open files, network connections, sound channels, …

] In other words, it’s all the stuff you need to run the
program
\ or to re-start it, if it’s interrupted at some point

A process’s address space

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC

SP

The process control block

] There’s a data structure called the process control
block (PCB) that holds all this stuff
\ The PCB is identified by an integer process ID (PID)

] OS keeps all of a process’s hardware execution state
in the PCB when the process isn’t running
\ PC, SP, registers, etc.
\ when a process is unscheduled, the state is transferred out

of the hardware into the PCB
] Note: It’s natural to think that there must be some

esoteric techniques being used
\ fancy data structures that’d you’d never think of yourself

] Wrong! It’s pretty much just what you’d think of!

Process states

] Each process has an execution state, which indicates
what it is currently doing
\ ready: waiting to be assigned to CPU

[could run, but another process has the CPU
\ running: executing on the CPU

[is the process that currently controls the CPU
[pop quiz: how many processes can be running simultaneously?

\ waiting: waiting for an event, e.g., I/O
[cannot make progress until event happens

] As a process executes, it moves from state to state
\ UNIX: run ps, STAT column shows current state
\ which state is a process in most of the time?

dispatch /
schedule

running

ready

blocked

exception (I/O,
page fault, etc.)

interrupt
(unschedule)

interrupt
(I/O complete)

You can create
and destroy
processes!

Synchronization

] One process may need to wait for another
] A process may be interrupted at an inopportune

moment
] Synchronization is necessary
] Sections of code must be able to be executed

atomically – critical sections
] Locks, semaphores, monitors, …

Threads

] Imagine a web server, which might like to handle multiple
requests concurrently
\ While waiting for the credit card server to approve a purchase for

one client, it could be retrieving the data requested by another
client from disk, and assembling the response for a third client
from cached information

] Imagine a web client (browser), which might like to initiate
multiple requests concurrently
\ The CSE home page has 46 “src= …” html commands, each of which

is going to involve a lot of sitting around! Wouldn’t it be nice to be
able to launch these requests concurrently?

] Imagine a parallel program running on a multiprocessor, which
might like to employ “physical concurrency”
\ For example, multiplying a large matrix – split the output matrix

into k regions and compute the entries in each region concurrently
using k processors

What’s needed in these situations?

] In each of these examples of concurrency (web
server, web client, parallel program):
\ Everybody wants to run the same code
\ Everybody wants to access the same data
\ Everybody has the same privileges
\ Everybody uses the same resources (open files, network

connections, etc.)
] But you’d like to have multiple hardware execution

states:
\ an execution stack and stack pointer (SP)

[traces state of procedure calls made
\ the program counter (PC), indicating the next instruction
\ a set of general-purpose processor registers and their

values

Threads and processes

] Most modern OS’s (OS X, NT, modern UNIX)
therefore support two entities:
\ the process, which defines the address space and general

process attributes (such as open files, etc.)
\ the thread, which defines a sequential execution stream

within a process
] A thread is bound to a single process / address space

\ address spaces, however, can have multiple threads
executing within them

\ sharing data between threads is cheap: all see the same
address space

\ creating threads is cheap too!
] Threads become the unit of scheduling

\ processes / address spaces are just containers in which
threads execute

The design space

address
space

thread

one thread/process
many processes

many threads/process
many processes

one thread/process
one process

many threads/process
one process

MS/DOS

Java

older
UNIXes

OS X, NT,
modern
Unix, …

Key

(old) Process address space

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC

SP

(new) Process address space with
threads

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

thread 1 stack

PC (T2)

SP (T2)
thread 2 stack

thread 3 stack

SP (T1)

SP (T3)

PC (T1)
PC (T3)

Memory management – paging

] Processes view memory as a contiguous address space
from bytes 0 through N
\ virtual address space (VAS)

] Logically divided into pages of fixed size (e.g., 4KB)
] Pages are scattered across physical memory page

frames – not contiguous
\ virtual-to-physical mapping
\ this mapping is invisible to the program

] Protection is provided because a program cannot
reference memory outside of its VAS
\ the virtual address 0xDEADBEEF maps to different physical

addresses for different processes

Address translation

] Translating virtual addresses
\ a virtual address has two parts: virtual page number &

offset
\ virtual page number (VPN) is index into a per-process page

table
\ page table entry contains page frame number (PFN)
\ physical address is PFN::offset

] Page tables
\ managed by the OS
\ map virtual page number (VPN) to page frame number (PFN)

[VPN is simply an index into the page table
\ one page table entry (PTE) per page in virtual address space

[i.e., one PTE per VPN

Mechanics of address translation

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset
physical address

page frame #page frame #

page table

offset
virtual address

virtual page #

Note: Each process
has its own page table!

Example of address translation

] Assume 32 bit addresses
\ assume page size is 4KB (4096 bytes, or 212 bytes)
\ VPN is 20 bits long (220 VPNs), offset is 12 bits long

] Let’s translate virtual address 0x13325328
\ VPN is 0x13325, and offset is 0x328
\ assume page table entry 0x13325 contains value 0x03004

[page frame number is 0x03004
[VPN 0x13325 maps to PFN 0x03004

\ physical address = PFN::offset = 0x03004328

Page Table Entries (PTEs)

] PTE’s control mapping
\ the valid bit says whether or not the PTE can be used

[says whether or not a virtual address is valid
[it is checked each time a virtual address is used

\ the referenced bit says whether the page has been
accessed

[it is set when a page has been read or written to
\ the modified bit says whether or not the page is dirty

[it is set when a write to the page has occurred
\ the protection bits control which operations are allowed

[read, write, execute
\ the page frame number determines the physical page

[physical page start address = PFN

page frame numberprotMRV
202111

Paged virtual memory

] All the pages of an address space do not need to be
resident in memory
\ the full (used) address space exists on secondary storage

(disk) in page-sized blocks
\ the OS uses main memory as a (page) cache
\ a page that is needed is transferred to a free page frame
\ if there are no free page frames, a page must be evicted

[evicted pages go to disk (only need to write if they are dirty)
\ all of this is transparent to the application (except for

performance …)
[managed by hardware and OS

] Traditionally called paged virtual memory

Page faults

] What happens when a process references a virtual
address in a page that has been evicted?
\ when the page was evicted, the OS set the PTE as invalid

and noted the disk location of the page in a data structure
(that looks like a page table but holds disk addresses)

\ when a process tries to access the page, the invalid PTE will
cause an exception (page fault) to be thrown

[OK, it’s actually an interrupt!
\ the OS will run the page fault handler in response

[handler uses the “like a page table” data structure to locate the
page on disk

[handler reads page into a physical frame, updates PTE to point
to it and to be valid

[OS restarts the faulting process
[there are a million and one details …

How do you “load” a program?

] Create process descriptor (process control block)
] Create page table
] Put address space image on disk in page-sized chunks
] Build page table (pointed to by process descriptor)

\ all PTE valid bits ‘false’
\ an analogous data structure indicates the disk location of

the corresponding page
\ when process starts executing:

[instructions immediately fault on both code and data pages
[faults taper off, as the necessary code/data pages enter

memory

Oh, man, how can any of this possibly
work?

] Locality!
\ temporal locality

[locations referenced recently tend to be referenced again soon
\ spatial locality

[locations near recently references locations are likely to be
referenced soon (think about why)

] Locality means paging can be infrequent
\ once you’ve paged something in, it will be used many times
\ on average, you use things that are paged in
\ but, this depends on many things:

[degree of locality in the application
[page replacement policy and application reference pattern
[amount of physical memory vs. application “footprint” or

“working set”

10/8/2008 © 2007 Gribble, Lazowska, Levy, Zahorjan 512

Storage Latency:
How Far Away is the Data?

Registers
On Chip Cache
On Board Cache

Memory

Disk

1
2

10

100

Tape /Optical
Robot

109

10 6

Olympia

This Building
This Room

My Head

10 min

1.5 hr

2 Years

1 min

Pluto

2,000 Years

Andromeda

© 2004 Jim Gray, Microsoft Corporation

Architecture, Systems, and Networking in
80 75 minutes: Networking in 30 minutes

CSE 490h, Autumn 2008

Data link layer: Ethernet

] Broadcast network

] CSMA-CD: Carrier Sense Multiple Access with
Collision Detection
\ Analogy: Standing in a circle, drinking beer and telling

stories
] Packetized – fixed
] Every computer has a unique physical address

\ 00-08-74-C9-C8-7E

] Packet format

] Interface listens for its address, interrupts OS
when a packet is received

physical address payload

Network layer: IP

] Internet Protocol (IP)
\ Routes packets across multiple networks, from source to

destination
] Every computer has a unique Internet address

\ 172.30.192.251
] Individual networks are connected by routers that

have physical addresses (and interfaces) on each
network

] A really hairy protocol lets any node on a network
find the physical address on that network of a router
that can get a packet one step closer to its
destination

] Packet format

physical address payload

IP address payload

] A separate really hairy protocol, DNS (the Domain
Name Service), maps from intelligible names
(lazowska.org) to IP addresses (209.180.207.60)

] So to send a packet to a destination
\ Use DNS to convert domain name to IP address
\ Prepare IP packet, with payload prefixed by IP address
\ Determine physical address of appropriate router
\ Encapsulate IP packet in Ethernet packet with appropriate

physical address
\ Bombs away!

] Detail: port number gets you to a specific address
space on a system

Transport layer: TCP

] TCP: Transmission Control Protocol
\ Manages to achieve reliable multi-packet messages out of

unreliable single-packet datagrams
\ Analogy: Sending a book via postcards – what’s required?

payload

physical address payload

IP address payload

TCP crap

Summary

] Using TCP/IP and lower layers, we can get multi-
packet messages delivered reliably from address
space A on machine B to address space C on machine
D, where machines B and D are many heterogeneous
network hops apart, without knowing any of the
underlying details

] Higher protocol layers facilitate specific services
\ email: smtp
\ web: http
\ file transfer: ftp
\ remote login: telnet

Client/Server communication

] The prevalent model for structuring distributed
computation is the client/server paradigm
\ A server is a program (or collection of programs) that

provides a service to other programs
[e.g., file server, name server, web server, mail server …
[server/service may span multiple machines

• often, machines are called servers too
• E.g., the web server runs on a Dell server computer

\ A client is a program that uses the service
[the client first binds to the server

• locates it, establishes a network connection to it
[the client then sends requests (with data) to perform actions,

and the server sends responses (with data)
• e.g., web browser sends a “GET” request, server responds with a

web page
] TCP/IP is the transport, but what is the higher-level

programming model?

Messages

] Initially, people hand-coded messages to send
requests and responses
\ Message is a stream of bytes – “op codes” and operands

] Lots of drawbacks
\ Need to worry about message format
\ Have to pack and unpack data from messages
\ Servers have to decode messages and dispatch to handlers
\ Messages are often asynchronous

[After sending one, what do you do until response comes back?
\ Messages aren’t a natural programming model

Procedure calls

] Procedure calls are a natural way to structure
multiple modules inside a single program
\ every language supports procedure calls
\ semantics are well-defined and well-understood
\ programmers are used to them

] “Server” (called procedure) exports an API
] “Client” (calling procedure) calls the server

procedure’s API
] Linker binds the two together

Procedure call example

] If the server were just a library, then “Add” would
just be a local procedure call

Client Program:

…
sum = server->Add(3,4);
…

Server Program:

int Add(int x, int y) {
return x + y;

}

Server API:

int Add(int x, int y;

Remote Procedure Call (RPC)

] Traditional procedure call syntax and semantics
across a network

] The most common means used for remote
communication in client/server systems

] Used both by operating systems and applications
\ NFS is implemented as a set of RPCs
\ HTTP is essentially RPC
\ DCOM, CORBA, Java RMI, etc., are just RPC systems

RPC

] Use procedure calls as the model for distributed
(remote) communication
\ Have servers export a set of procedures that can be called

by client programs
[similar to library API, class definitions, etc.

\ Clients do a local procedure call, as though they were
directly linked with the server

[under the covers, the procedure call is converted into a
message exchange with the server

[largely invisible to the programmer!

RPC issues

] There are a bunch of hard issues:
\ How do we make the “remote” part of RPC invisible to the

programmer?
[and is that a good idea?

\ What are the semantics of parameter passing?
[what if we try to pass by reference?

\ How do we bind (locate/connect-to) servers?
\ How do we handle heterogeneity?

[OS, language, architecture, …
\ How do we make it go fast?

RPC example invocation

Client Program:

…
sum = server->Add(3,4);
…

Server Program:

int Add(int x, int y) {
return x + y;

}

client-side stub:

int Add(int x, int y) {
alloc message buffer;
mark as “add” call;
store x,y in buffer;
send message;
receive response;
unpack response;
return response;

}

RPC runtime system:

send message to server;
receive response;

server-side stub:

Message Add_Stub(Message m) {
remove x,y from m;
r = Add(x,y);
allocate response buffer;
store r in response;
return response;

}

RPC runtime system:

receive message m;
response = Add_Stub(m);
send response to client;

Topics:
• interface
description

• stubs
• stub
generation

• parameter
marshalling

• binding
• runtime system
• error handling
• performance
• thread pools

RPC model

] A server defines the service interface using an
interface definition language (IDL)
\ The IDL specifies the names, parameters, and types for all

client-callable server procedures
[example: ASN.1 in the OSI reference model
[example: Sun’s XDR (external data representation)

] A “stub compiler” reads the IDL declarations and
produces two stub procedures for each server
procedure
\ The server programmer implements the service’s procedures

and links them with the server-side stubs
\ The client programmer implements the client program and

links it with the client-side stubs
\ The stubs manage all of the details of remote communication

between client and server using the RPC runtime system

RPC stubs

] A client-side stub is a procedure that looks to the client as if it
were a callable server procedure
\ It has the same API as the server’s implementation of the

procedure
\ A client-side stub is just called a “stub” in Java RMI

] A server-side stub looks like a caller to the server
\ It looks like a hunk of code that invokes the server procedure
\ A server-side stub is called a “skeleton” or “skel” in Java RMI

] The client program thinks it’s invoking the server
\ But it’s calling into the client-side stub

] The server program thinks it’s called by the client
\ But it’s really called by the server-side stub

] The stubs send messages to each other, via the runtime, to
make the RPC happen transparently

RPC marshalling

] Marshalling is the packing of procedure parameters
into a message packet
\ The RPC stubs call type-specific procedure to marshal or

unmarshal the parameters of an RPC
[the client stub marshals the parameters into a message
[the server stub unmarshals the parameters and uses them to

invoke the service’s procedure
\ On return:

[the server stub marshals the return value
[the client stub unmarshals the return value, and returns them

to the client program

RPC binding

] Binding is the process of connecting the client to the
server
\ The server, when it starts up, exports its interface

[identifies itself to a network name server
[tells RPC runtime that it is alive and ready to accept calls

\ The client, before issuing any calls, imports the server
[RPC runtime uses the name server to find the location of the

server and establish a connection

] The import and export operations are explicit in the
server and client programs
\ A slight breakdown in transparency

[more to come…

RPC transparency

] One goal of RPC is to be as transparent as possible
\ Make remote procedure calls look like local procedure calls
\ We’ve seen that binding breaks this transparency

] What else breaks transparency?
\ Failures: remote nodes/networks can fail in more ways than

with local procedure calls
[network partition, server crash
[need extra support to handle failures
[server can fail independently from client

• “partial failure”: a big issue in distributed systems
• if an RPC fails, was it invoked on the server?

\ Performance: remote communication is inherently slower
than local communication

[if you’re not aware you’re doing a remote procedure call, your
program might slow down an awful lot…

RPC and thread pools

] What happens if two client threads (or client
programs) simultaneously invoke the same server
procedure using RPC?
\ Ideally, two separate threads will run on the server
\ So, the RPC run-time system on the server needs to spawn

or dispatch threads into server-side stubs when messages
arrive

[is there a limit on the number of threads?
[if so, does this change semantics?
[if not, what if 1,000,000 clients simultaneously RPC into the

same server?

RPC in the web world

] REST, SOAP, and XML-RPC are different religious
denominations of RPC using XML
\ Modern web services (e.g., flickr, AWS’s S3) offer APIs

based on all of these
] XML is nothing but self-describing data

\ Great for parameter lists, if verboseness is not an issue,
which it isn’t these days

] Protocol Buffers: Google’s version of this
] Thrift: Facebook’s version of this

\ Both PBs and Thrift use an IDL that compiles into stubs for
a wide variety of languages

http://www.flickr.com/services/api/

