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Abstract

This paper extends the group testing for wavelets (IEEE Trans. Image Process. 11 (2002) 901) algorithm to code
coefficients from the wavelet packet transform, the discrete cosine transform, and various lapped transforms. Group
testing offers a noticeable improvement over zerotree coding techniques on these transforms; is inherently flexible; and
can be adapted to different transforms with relative ease. The new algorithms are competitive with many recent state-of-

the-art image coders that use the same transforms.
© 2003 Published by Elsevier Science B.V.

Keywords: Group testing; Image compression; Discrete wavelet transform; Wavelet packets; Block transform coding; Lapped

transforms; Embedded coding

1. Introduction

Much of recent compression work has focused
on efficient methods for encoding the transform
coefficients of an image. Although the wavelet
transform has received the most attention in recent
years, alternative transforms such as wavelet
packets and various block transforms have also

" This work appeared in part at the 2001 Data Compression
Conference and the 35th Asilomar Conference on Signals,
Systems, and Computers. Research supported by NSF grant
CCR-9732828, NSF Grant EIA-9973531, and NSF Grant
CCR-0104800.

*Corresponding author.

E-mail addresses: edhong@u.washington.edu (E.S. Hong),
ladner@cs.washington.edu (R.E. Ladner), riskin@ee.washing-
ton.edu (E.A. Riskin).

been effectively applied to images. Different trans-
forms have various characteristics such as ease of
implementation or suitability for specific types of
images, and hence may offer competitive advan-
tages over the discrete wavelet transform in certain
situations. In this paper, we extend the group
testing for wavelets (GTW) algorithm [8] to
alternative transforms including the wavelet pack-
et transform, the discrete cosine transform (DCT),
and several versions of lapped transforms [12,19].
The overall goal of this paper is to demonstrate the
flexibility of group testing and its ability to be
extended to different transforms in a straightfor-
ward manner.

As presented in [8], the group testing framework
transforms an image and then encodes the result-
ing transform coefficients in a bit-plane order with

0923-5965/03/$ - see front matter © 2003 Published by Elsevier Science B.V.
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many different adaptive group testers. For efficient
compression, the coefficients are divided into
classes whose coefficients have similar statistical
characteristics. To apply this framework effec-
tively on alternative transforms, new class defini-
tions are needed. One main goal of this work is to
discover the appropriate class definitions for each
type of transform that will result in good
performance.

Our work is partially motivated by previous
work that applied zerotree coding (introduced in
[17]) to these alternative transforms (see
[11,13,15,20,24]). In particular, EZ-DCT [24] gave
dramatic improvements over JPEG on both the
Barbara and Lena images (see Table 3). The
success achieved by EZ-DCT leads us to explore
this area further.

The zerotree technique was motivated by the
multi-resolution structure of the dyadic wavelet
decomposition, where coefficients could be orga-
nized into trees formed across different subbands.
Since there is a mismatch between the zerotree
structure and the statistical characteristics of the
coefficients generated from the alternative trans-
forms we study, using zerotree coding on these
coefficients may lead to some inefficiency in coding
performance. Furthermore, there does not appear
to be a natural way to define the parent—child
relationships between the alternative transform
coefficients, as there is in the dyadic wavelet
decomposition.

As a generalization of zerotree coding, group
testing is not hampered by the zerotree structure
and can easily be adapted to more efficiently code
these transform coefficients. Our results indicate
that our group testing technique achieves better
PSNR performance than previous zerotree coding
techniques for a given transform.

Further, our new results show significant
performance improvements over GTW on the
Barbara image. On this image, the algorithm using
the best lapped transform performed about 1.6 dB
better than GTW at a wide range of bit-rates.
Similarly, the wavelet packets version performed
about 1.2 dB better than GTW. Other images also
showed some improvement, although not quite as
much. In addition, the algorithms also compare
favorably to the JPEG 2000 standard.

This paper is organized as follows: Section 2
reviews the main elements of the framework that
was used in the GTW algorithm. This includes a
brief overview of group testing, image coding, and
the GTW algorithm. Section 3 presents the group
testing for wavelet packets (GTWP) algorithm,
which includes a brief overview of wavelet packet
image compression, the GTWP algorithm, and
GTWP’s rate-distortion performance. Section 4
presents the group testing for block transforms
(GTBT) algorithm, including an overview of block
transforms, and GTBT’s performance results. We
summarize our overall results in Section 5.

2. Group testing for image compression
2.1. Introduction

Group testing is a technique used for identifying
a few significant items out of a large pool of items.
In this framework, the significant items can be
identified only through a series of group tests. A
group test consists of picking a subset of items and
testing them together. There are two possible
outcomes of a group test on set K: either K is
insignificant (meaning all items in K are insignif-
icant), or K is significant (meaning there is at least
one significant item in K). The goal is to minimize
the number of group tests required to identify all
the significant items. In this paradigm, the cost of
testing any set of items for significance is the same
as the cost of testing a single item.

As shown in [8], group testing can be viewed as a
generalized form of zerotree coding, where the
groups tested together do not have to be coeffi-
cients organized strictly into trees. The encoded
output would simply be a series of bits represent-
ing the group test results; this is exactly like using
bits to represent whether a tree of coefficients is
significant in zerotree coding. Group testing for
image compression replaces the zerotree coding
process of a typical embedded zerotree coder with
a technique based on group testing. Other methods
besides zerotree coding for coding significant
coefficients have also been previously studied.
These include Andrew’s hierarchical set partition-
ing [3] and Davis’s significance tree quantization,
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which coded DCT coefficients from an 8 x 8 block
in contiguous groups, and optimized the groups
for performance [7].

2.2. Group testing framework overview

In our group testing framework, we follow the
standard practice of applying a linear transform to
the image data, and then coding the transform
coefficients. The transform coefficients are coded
in a bit-plane by bit-plane fashion, with each bit-
plane coded by two passes: a significance pass that
identifies newly significant coefficients in the
current bit-plane, and a refinement pass that gives
an additional bit of precision to already significant
coefficients.

The significance pass uses an adaptive form of
group testing based on group iterations (described
in Section 2.3.1). Since this adaptive method is
known to work well on i.i.d. sources, we try to
ensure that the coefficients we code are approxi-
mately i.i.d. We accomplish this by dividing the
coefficients into classes, where each class is coded
by a different adaptive group tester. The classes
are designed so that coefficients within one class
are well approximated by an i.i.d. source. Note
that dividing the coefficients into classes is similar
to choosing a different methods of coding coeffi-
cients based on context.

Since the statistical characteristics of the trans-
form coefficients depend on the transform used,
the classes should be designed separately for each
transform. In [8], the GTW classes were designed
for the dyadic wavelet decomposition of an image.
In this work, we design new classes for the
alternative transforms that we use. We present
several different definitions of classes in Sections
3.4 and 4.5.1.

For the purposes of obtaining good embedded
performance, we code the classes in order of the
probability of significance of their coefficients.
Classes with coefficients that have a higher
probability of being significant are encoded first.
Since the probability of significance of the
coefficients in any class depends on the class
definition, we order the classes based on the class
definition.

2.3. Some significance pass details

We first describe group iterations, the method
by which our significance pass is encoded. We then
describe our adaptive group testing strategy.
Finally, we then end this subsection with a
description of how the group testing framework
encodes the different classes using adaptive group
testing. This section only presents an overview of
our significance pass; for full details, see [8].

2.3.1. Group iterations

A group iteration is a simple procedure that is
given a set K of k items, and uses group tests to
identify up to 1 significant item, and up to k
insignificant items. At the end of a group iteration,
there may be some unidentified items in K that
must be tested in a future group iteration. If the set
K contains a significant item, the group iteration
will use [log, k] + 1 group tests in a recursive,
binary search-like process to identify one signifi-
cant item; otherwise it will use exactly one group
test to identify set K as containing only insignif-
icant items.

2.3.2. Adaptive group testing

We adaptively pick the group iteration size k
depending upon the statistical characteristics of
the items being encoded. We start out initially in a
doubling phase, with group iteration size 1, and
double the size of each successive group iteration
as long as no significant items have yet been found.
Once a significant item has been found, we move
to the steady-state estimation phase, where we
choose a group iteration size that results in
optimal coding performance based on our estimate
of the probability of significance. Our estimate is
calculated as the percentage of significant items
seen so far.

2.3.3. Significance pass algorithm

As previously described, our method divides the
coefficients of one bit-plane into classes, and uses
the previously described adaptive group testing
technique to code each class. Given the class
ordering and the definition of classes, the algo-
rithm for encoding the significance pass is con-
ceptually very simple:
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Pick the first class (according to the class
ordering) that contains enough coefficients. Then
perform a group iteration of size k on that class,
where k is chosen according to the statistics in the
adaptive group tester for that class. Then update
the coefficients as necessary with the information
learned from the group tests (coefficients could
change classes at this point). Finally, repeat this
entire procedure until all coefficients are coded.

3. Group testing for wavelet packets
3.1. Wavelet packets background

As described in [23], wavelet packets are a
generalization of the standard dyadic wavelet
decomposition of a signal. The standard dyadic
wavelet transform decomposes the signal by
applying a series of successive filters to the lowest
frequency subband. Wavelet packets are a general-
ization of this where the successive filters can be
applied to any subband of any orientation, not just
the lowest frequency LL subband. Any one
particular choice of subbands to decompose is
known as a basis; the choice of exactly which basis
to use depends on the characteristics of the input.
Fig. 1 shows the subbands after transforming an
image with the wavelet packet transform using one
particular basis.

A basis that adapts well to the input signal can
be chosen via Coifman and Wickerhauser’s
entropy-based technique [6] or by Ramchandran
and Vetterli’s rate-distortion optimization techni-
que [16]. These methods work by fully decompos-
ing all subbands to a predefined maximum depth,

Fig. 1. Sample subbands of a wavelet packet-transformed
image.

thus forming a decomposition tree where each
decomposed subband is represented in the tree by
a parent node with four child nodes. Then the best
basis is found by pruning this decomposition tree
in a recursive bottom-up fashion. The entropy-
based technique prunes the tree to minimize the
overall estimated entropy of the wavelet packet
structure. The rate-distortion method is given a
particular target bit rate for the image and prunes
the tree to minimize the distortion of the image.

Xiong et al. [25] first explored the combination
of a wavelet packet decomposition of an image
with the space-frequency quantization (SFQ)
coder, a coder that uses zerotree quantization
techniques. The difficulty in applying zerotree
quantization to wavelet packets is that it is no
longer clear how to define the parent—child
relationships in the trees. As noted by Rajpoot
et al. [15], there is a parenting conflict, where some
child coefficients could have multiple parents. This
problem has typically been solved by limiting the
space of possible wavelet packet decompositions
so that no parenting conflict occurs, or by assign-
ing the parent—child relationships in a somewhat
ad hoc manner (see [11,15,25]). We believe that it is
preferable that the coder not constrain the wavelet
decomposition.

3.2. Group testing for wavelet packets

We propose a new coder, group testing for
wavelet packets (GTWP), that applies our group
testing framework to the wavelet packet trans-
form. The first step is to find the best basis for the
input image, and encode the structure of this basis
in the first bits of our compressed image. Then we
define the GTWP classes based on the character-
istics of the wavelet packet decomposition of the
image, so that the classes are encoded efficiently.
Along with the class definition, we also specify the
order in which we will code the classes. Once both
the GTWP classes and the ordering between them
are defined, then we can code each class with a
different group tester, and proceed as described in
the group testing framework for image compres-
sion.

We first describe how we choose the best basis
and encode it; then we describe a method for
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defining the GTWP classes with their associated
orderings.

3.3. Best basis

We investigated using both the entropy-based
technique and the rate-distortion technique for
computing the best wavelet packet basis. For the
entropy-based technique, we explored many dif-
ferent metrics for calculating the entropy of a
particular subband. Let v; represent the value of
the coefficients of a subband. Then the entropy
metrics we tried are as follows:

log energy metric: >, In(v?),

Shannon metric (used in [6]): Y, v7 In(v?),
L1-norm metric: ), |v;l,

threshold metric: given a threshold value T,
calculate [{v;: |v;| > T},

® first-order entropy metric (used in [11]): given a
quantization step size Q, divide the coefficients
into quantization bins, and estimate the prob-
ability p; of a bin occurring by p; = n/t, where n
1s the number of coefficients in that bin, and ¢ is
the total number of coefficients. Calculate

—>_pilog,(p)).

We also tried the rate-distortion optimization
technique, optimizing for a wide variety of bit-
rates for various different possible scalar quanti-
zers. Note that this technique is not well suited to
our problem because it forces us to pick artificial
parameters, namely, the final bit-rate for which to
optimize and the quantizer step sizes to consider.
Since GTWP is an embedded coder, the final bit-
rate we choose for the purpose of obtaining the
best basis does not correspond to the actual final
bit-rate to which we encode the image. Further-
more, since GTWP codes the transform coeffi-
cients bit-plane by bit-plane, it cannot choose to
code a subband with a particular quantizer step
size; the step size it ends up using may not have
any relation to the quantizer step size parameters
that we chose to run the rate-distortion optimiza-
tion technique.

It is interesting to note that for the Barbara
image, the optimal calculated quantizer step size
for all the subbands under the rate-distortion

technique differed from each other by no more
than a factor of 2. In the bit-plane encoding
technique, if we stop coding in the middle of a bit-
plane, then the coefficients that have not yet been
coded in the current bit-plane are quantized with a
step size of two times the step size of those
coefficients that have been coded. This suggests
that GTWP’s bit-plane encoding technique may be
a good approximation to the quantization step
sizes that the rate-distortion optimization best
basis produces.

The log energy, Shannon, and L1-norm metrics
are the simplest in that they do not require
additional parameters (such as threshold value or
quantization step size) to compute. The top
performers for our algorithm are the log energy
metric and the rate-distortion optimization metric.
Seeing that the log-energy metric was simpler and
did not require selecting artificial parameters, we
used it exclusively. As an example, we show the
best basis chosen by the log-energy metric on the
Barbara image in Fig. 2. For simplicity, we show
only five levels of decomposition even though our
algorithm uses a maximum of six levels. Notice
how the wavelet packet decomposition reflects the
large number of diagonal and vertical edges in the
Barbara image, and how much it differs from the
standard DWT decomposition.

To encode the decomposition tree, we simply
perform a depth-first traversal of the tree, and
encode a 1 when that particular node is split into
children, and a 0 when the node is a leaf.

jjf

<H

JF

SRR

Fig. 2. Illustration of the best basis for the Barbara image.
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3.4. GTWP classes

For simplicity and to allow convenient compar-
isons against JPEG 2000, the GTWP classes are
based on the contexts in Taubman’s EBCOT coder
[18] (also found in the JPEG 2000 coder). In this
class definition, there are only two characteristics
that define the classes: the orientation type and the
neighborhood significance label. We also tried a
variant of GTWP based on classes that were very
similar to those used in GTW, and obtained
similar results to the JPEG 2000-based classes.

3.4.1. Orientation type

The orientation type of a subband is either LH,
HH, or HL as illustrated in Fig. 3. A wavelet packet
subband is of orientation type LH if it is contained
in a wavelet subband which is the horizontal low
pass and the vertical high pass component. In
addition, the lowest-level subband (the LL sub-
band) is considered to have orientation-type LH.
Similarly, a wavelet packet subband is of orienta-
tion HH (HL) if it contained in a wavelet subband
which is the horizontal high pass and the vertical
high (low) pass component.

3.4.2. Neighborhood significance label

Let h, v, and d represent the number of
significant neighbors that a coefficient has which
are adjacent to it horizontally, vertically, and
diagonally, respectively. Thus, & and v both have a
value of up to 2, whereas d has a maximum value
of 4. The neighborhood significance label is
assigned according to Table 1. Note that the
labeling is dependent on the orientation type of the

LH| HL
LH[HH

HL

LH-| HH

HH

-

Fig. 3. Illustration of orientation type of a wavelet-packet
transformed image. All shaded coefficients have orientation-
type HL.

Table 1

Neighborhood significance label

Assigned label LH subband HL subband HH subband
h v d h v d d h+v

0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 1

2 0 0 =2 0 0 =22 0 =2

3 0 1 >0 1 0 =0 1 0

4 0 2 =0 2 0 =0 1 1

5 1 0 0 0 1 0 1 =1

6 1 0 =1 0 1 =1 2 0

7 1 =21 =20 =21 1 =0 2 =0

8 2 20 =20 =0 2 =0 =2 >0

coefficient. This label is taken from the context
classifier in the EBCOT coder.

With three orientation types and nine significant
neighbor labels for each orientation type, there are
a total of 27 classes. The classes are dynamically
ordered according to the group iteration size.
Classes with smaller group iteration size are coded
first, since they are more likely to be significant.
Ties are broken arbitrarily.

In our investigations on how to organize the
coefficients into classes we discovered that the
depth of the wavelet packet decomposition was
not a good predictor of the magnitude of the
coefficients. Since the decision of whether to
decompose a subband is determined locally, the
magnitudes of coefficients at the same depth can
vary widely. In particular, the magnitudes of the
lowest-frequency subband are usually much higher
than those of all other subbands.

3.5. Results

Here we present our results on a set of standard
eight-bit monochrome images: the 512 x 512
images Barbara et al. (available from [21]); and a
768 x 768 fingerprint image from the FBI’s
fingerprint compression standard [5]. We present
results for several different algorithms, including
GTW, GTWP, JPEG 2000 and SFQ-WP [26]. All
algorithms use the Daubechies %—tap filters [4].
JPEG 2000 results were produced with a beta
version of a codec [2] for the JPEG 2000 image
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Compression of Barbara

— GTWP
36 | JPEG-2000
--- GTW

341

PSNR (dB)
N N w w
[e)] [e0] o N

N
S

0 0.2 0.4 0.6 0.8 1
bit rate (bits/pixel)

22

Fig. 4. Comparing performance of GTW, GTWP, and JPEG
2000.

compression standard. SFQ-WP represents the
practical version of Xiong et al.’s SFQ algorithm
applied with wavelet packets; results are taken
from [26]. To our knowledge, SFQ-WP is the
current state-of-the-art method for image com-
pression with wavelet packets.

Fig. 4 compares the PSNR curves for GTW,
GTWP, and JPEG 2000 on the Barbara image. As
can be seen, using wavelet packets increases the
PSNR by about 1.2 dB over GTW.

Table 2 lists PSNR results for all four images on
the different algorithms. It shows that the amount
of improvement for using wavelet packets instead
of the dyadic wavelet decomposition is highly
dependent on the type of image. Some images (like
Barbara) benefit significantly from the wavelet
packet decomposition; some images (like Goldhill)
benefit slightly; and some (like Lena) do not
benefit at all. In fact, the best wavelet packet basis
for the Lena image was calculated to be the
standard dyadic wavelet decomposition with one
additional decomposition of a highest-frequency
subband. Thus, as expected, the results for GTWP
on Lena are roughly the same as that for GTW.
The slight performance differences are due mostly
to differing significant neighbor metrics. In fact, it
appears that the significance of a coefficient
depends almost entirely on its eight immediately
adjacent neighbors, and very little on the parents

Table 2
Comparing PSNR results of various algorithms

Rate (bits/pixel)

Image Algorithm 0.1 0.25 0.5 1.0
Barbara GTW 2437 27.87 31.59 3647
AJPEG 2000 +0.19 +0.46 +0.50 +0.46
AGTWP +1.15 +127 +1.28 +1.07
ASFQ-WP NA +1.38 +1.53 +1.22
Lena GTW 30.06 34.13 37.27 40.51
AJPEG2000  —0.27 -0.12 -0.13 —0.46
AGTWP —0.02 +0.09 -0.01 —-0.09
ASFQ-WP NA +0.22 +0.13 +0.04
Goldhill GTW 27.76 3046 33.10 36.47
AJPEG2000  —0.05 +0.04 +0.05 -0.07
AGTWP +0.01 +0.09 +0.17 +0.13
Fingerprint GTW 28.35 32.80 36.06 3998
AJPEG2000 +0.24 +0.17 +0.10 +0.16
AGTWP +045 +031 +0.70 +1.38

Best results in boldface. GTW is used as the baseline, so that for
algorithm A, AA = A — GTW.

and other neighbors in different subbands. This
agrees with the findings in [18].

If we compare our results with the published
results of previous zerotree coding techniques on
wavelet packets, we see that we outperform
Rajpoot et al.’s technique by over 1.0 dB on the
fingerprint image, and we outperform Khalil et al.’s
technique by about 0.3 dB on the Barbara image.

As can be seen in Table 2, GTWP’s performance
is always better than JPEG 2000. Furthermore,
GTWP’s performance is not too far from that of
SFQ-WP for the Barbara and Lena images.
Although GTWP is worse, GTWP is an embedded
coder, while SFQ-WP is not. Furthermore,
GTWP, unlike SFQ, neither uses arithmetic
coding nor performs rate-distortion optimization.

4. Group testing for block transforms
In this section, we show the results of applying

our group testing framework to some standard
block transforms. We first overview the use of
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block transforms for image compression. We then
define the classes that we use for the block
transforms, and conclude with a discussion of
our results.

4.1. Block transform overview

4.1.1. Block transform background

When applying standard block transforms such
as the DCT to images, the input pixels are divided
into M x M blocks, and each block is separately
transformed into an output block of size M x M.
The coefficient at position (0,0) in each output
block is known as the DC coefficient, and all other
coefficients are known as AC coefficients. Note
that the DC coefficient of a particular block
represents the average of the pixel values in the
block.

A lapped transform [12] is a generalization of
the standard block transform where the input is
divided into overlapping blocks of length L, with
each block transformed into an output block of
size M; we call this an M x L lapped transform.
An M x L lapped transform can be computed by
multiplying the input row vector of length L with
an L x M size matrix representing the transform,
resulting in a output block of length M. In a
typical example where L = 2M, each input data
point is used in two adjacent output blocks. In this
case, the inverse transform to recover one original
block of M input data points is computed by
taking two adjacent output blocks of coefficients
(2M coefficients total) and multiplying it with
another 2M x M matrix representing the inverse
transform. In the two-dimensional case, we can
view a lapped transform as mapping overlapping
input blocks of size L x L into output blocks of
size M x M.

Unlike non-lapped block transforms, lapped
transforms can take correlation between adjacent
blocks into account; this makes it more efficient at
decorrelating signals. Lapped transforms can also
reduce blocking artifacts because their basis
functions decay smoothly to near zero at the
boundaries. Both lapped orthogonal transforms
(LOT) and lapped biorthogonal transforms (LBT)
have been studied. LBTs have more degrees of
freedom than LOTs since the biorthogonality

condition is weaker than the orthogonality condi-
tion. Aase and Ramstad [1] have shown that these
extra degrees of freedom can be used to design
better lapped transforms for image coding.

4.2. Organization into subbands

The block-transform coefficients of an LM x
LM image are typically stored in a block-by-block
fashion, so that the output of a block transform
that uses M x M blocks consists of an L x L grid
of M x M blocks, where each block represents an
M x M block of the original input image. How-
ever, we can conceptually reorder the transform
coefficients into a grid of M x M subbands, each
of size L x L. This reordering puts all the DC
coefficients into one subband, ordered so that the
DC coefficient in block (x, y) is at position (x, ) in
the DC subband. Similarly, there will be a separate
subband for each AC coefficient; subband (i, ) will
contain AC coefficients from position (Z,;) within
their block, ordered so that the AC coefficient at
position (i,j) in block (x,y) will be located at
position (x,y) in subband (i,j). Fig. 5 illustrates
this reorganization when M =4 and L = 6.

In this reorganized picture, each of the M?
subbands represents the entire original image at a
different frequency decomposition. Note that with
this organization, these subbands are similar to the
subbands from a dyadic wavelet decomposition in
that coefficients in a subband represent the same
frequency decomposition of an image over differ-
ing spatial locations. Furthermore, the upper-left
block of DC coefficients (see Fig. 5) represents a
postage-stamp size overview of the entire image,
much like how the lowest-frequency subband in a
dyadic wavelet decomposition gives an overview of
the image. The principal difference between the
dyadic wavelet decomposition and this reorga-
nized block transform picture is that all the
subbands from block transforms are the same
size, whereas in the wavelet transform, the sub-
bands’ sizes decrease by a factor of 2 with every
additional level of the DWT performed. In other
words, block transforms offer a wuniform-band
frequency partitioning of the input, in contrast to
the octave-band frequency partitioning of the
wavelet transform (see [20]).
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Fig. 5. Block transform coefficients on the left are reorganized into subbands on the right. The DC coefficients are represented as
circles and end up together in one subband; black coefficients from one block are scattered out to all subbands.

For the DCT transform, the DC coefficient of
an output block represents an average of the 8 x 8
input block. Since adjacent image blocks often are
similar, adjacent coefficients in the DC subband
will be correlated. For the lapped transforms, each
traditional M x M output block is computed from
an L x L input block of the original image. Most
of the energy in the DC coefficient of the lapped
transform is from the average of the entire L x L
block. Since blocks are overlapping, some image
pixels are used in more than one average and
contribute their energy to adjacent coefficients in
the DC subband.

4.3. Relation to the wavelet transform

With the subband organization, it becomes clear
that we can also perform several levels of block
transforms by recursively reapplying the block
transform to the DC subband. We use the term
hierarchical block transform to refer to any block
transform scheme that decorrelates its DC sub-
band by applying another transform. Note that
hierarchical block transforms are similar to the
levels of the DWT in a dyadic wavelet decomposi-
tion. Since the DC subband represents a small low-
resolution overview of the entire image, we expect
there to be significant correlation in the DC
subband. Hierarchically reapplying a block trans-
form to the DC subband should decorrelate it
further and enable better compression perfor-
mance. We could continue to perform levels of
the block transform as long as the lowest-

frequency DC subband is not too small. Note that
after every block transform step, we always
reorganize the transform coefficients so that a
DC subband is always present. Also note that in
principle, any transform could be used to decorr-
elate the DC subbands; in addition to the lapped
transforms and the DCT, even a DWT could be
used to decorrelate the DC subband.

Another relationship between lapped transforms
and the DWT is that a lapped transform can be
thought of as a generalization of one level of the
DWT. Recall that the output coefficients of a
wavelet transform can be computed via convolu-
tion. For a k-tap wavelet transform, any one
output coefficient depends on at most k consecu-
tive input coefficients. Thus, an M x (M + k)
lapped transform can use the overlap of k& data
points on the input to compute the convolution of
the input with the wavelet filter coefficients as
would be done by the DWT. In other words, the
DWT can be implemented as a lapped transform.
Furthermore, hierarchical lapped transforms can
completely implement the DWTs that use many
levels. In its full generality, hierarchical block
transforms have the potential to perform better
than the DWT.

4.4. Previous block transform zerotree coders

The most widespread image compression format
using DCT is the standard JPEG [22] format. It
uses 8 x 8 DCT blocks. Xiong et al.’s embedded
zerotree DCT algorithm (EZ-DCT) [24] applied
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the zerotree technique to the DCT-transformed
coefficients of an image. Although the coefficients
of a DCT transform are not naturally tree-
structured, this coder showed that by imposing a
somewhat arbitrary tree structure on the coeffi-
cients, reasonable performance could be achieved,
certainly better than JPEG.

Malvar applied the zerotree technique to lapped
transform coefficients [13,24]. He basically used
the same method as EZ-DCT, but replaced the
DCT transform with lapped transforms. He
defined an 8 x 16 LOT transform as well as a 8 x
16 LBT transform that were optimized for both
image compression efficiency and low computa-
tional requirements. We use EZ-LOT (EZ-LBT) to
refer to Xiong et al.’s embedded zerotree technique
when applied to Malvar’s fast version of the LOT
(LBT) transforms.

Tran et al. [13,20,24] focused on designing the
best lapped transforms for image compression,
and did not consider the speed of computation to
be a crucial factor. They designed several lapped
transforms, including the 8 x 16 generalized LBT
(GLBT). This transform was optimized solely for
good coding performance on images. They used a
hierarchical coder that performed additional trans-
forms on the DC components and a zerotree
coding scheme that was very similar to the EZ-
DCT scheme. We use EZ-GLBT to refer to Tran
et al.’s hierarchical zerotree coder when applied to
the GLBT transform.

4.5. Group testing for block transforms

In this section, we introduce our group testing
for block transforms algorithm (GTBT) [10],
which applies the group testing framework to
code block transform coefficients. In describing
our technique, we simply need to define the GTBT
classes, and the ordering in which we code the
GTBT classes. Our group testing framework then
uses these definitions to code the transform
coefficients in the significant pass. We also try
both hierarchical and non-hierarchical versions of
each of these block transforms. We now proceed
to present GTBT classes, followed by the ordering
we use when we code these classes.

4.5.1. GTBT classes

Similar to the definition of GTW classes, our
GTBT classes have two different defining char-
acteristics: the subband level and the significant
neighbor metric.

In the definition of classes, we will exclusively
use the subband view of the block-transform
coefficients, as shown in Fig. 5. Thus, the trans-
form coefficients have M? subbands, where M is
the output block size of the transform.

4.5.1.1. Subband level. 1t is well known that for
any particular block, the energy in the AC
coefficients decreases as you move away from the
DC coefficient. This means that coefficients in
subbands closer to the DC coefficient are more
likely to be significant than those in subbands
farther away from the AC coefficient. To model
this behavior, we classify subband (i, ;) according
to its distance from the DC coefficient at position
(0,0).

The DC subband is in subband level 0. Subband
level 1 contains those subbands (7,) which satisfy
i+j=1 or i+j=2. Subband level 2 contains
those subbands (i,j) which satisfy 2<i-+j<5.
Subband level 3 contains those subbands (i,j)
which satisfy 5<i+ j< M, where M is the output
block size, and subband level 4 contains those
subbands whose position (i,j) satisfy M <i—+j.
Fig. 6 shows the five subband levels. This method
of defining the subband levels was made based on
the two competing goals: preventing context
dilution (by having a small number of subband
levels) and making the probability of significance
of coefficients in one subband level about the same
(by having many subband levels).

For hierarchical transforms that have two levels,
we basically double the number of subband levels;
one set of levels contain subbands from the first
transform, and the other set contains the subbands
from the second-level transform of the DC
subband of the first transform. Since a two-level
hierarchical transform does not have any DC
coefficients from the first level, there are actually
only nine subband levels in a two-level hierarchical
transform. The subbands from the second level are
considered more important than the subbands
from the first level of the transform.
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4.5.1.2. Significant neighbor metric. As expected,
adjacent coefficients in a subband show statistical
dependencies on each other. Here, we consider the
neighbors of a coefficient to only be the eight
coefficients in the same subband that surround a
coefficient. Thus, we define four values in the
significant neighbor metric: 0, 1, 2, and 3+,
depending on whether 0, 1, 2, or 3-8 neighbors
are significant. Note that this definition is a
simplification of the original GTW scheme; this
definition omits the parent—child relationships
present in the GTW metric.

For non-hierarchical transforms, there are five
subband levels and four significant neighbor types,
resulting in 20 classes total. For two-level hier-
archical transforms, there are nine subband levels,
resulting in 36 classes total. These classes are once
more ordered with significant neighbor metric
considered more important than subband level.

4.6. Results

Here we again present our results on the
Barbara, Goldhill, Lena, and the fingerprint
images. We present results for our GTBT on
several different transforms: the 8 x 8 DCT; the
8 x 16 type-I fast LOT with angles (6o, 0;,0,) =
(0.1457,0.177,0.167) [12]; the 8 x 16 LBT from
[24]; the 8 x 16 GLBT from [20]. For convenience,
we refer to GTBT using the DCT, LOT, LBT, or
GLBT transforms as GT-DCT, GT-LOT, GT-
LBT, and GT-GLBT, respectively.

First, we compare PSNR results of a non-
hierarchical version of GT-DCT with Xiong et al.’s
EZ-DCT scheme (results are taken from [24]), and

Fig. 6. The subband levels of a block-transformed image in
GTBT. Solid lines separate subband levels, dotted lines separate
subbands.

Table 3
Comparing PSNR results of coders using the non-hierarchical
8 x 8 DCT transform

Rate (bits/pixel)

Image Algorithm 0.25 0.5 0.75 1.0

Barbara GT-DCT 27.12 31.02 33.97 36.11
EZ-DCT 26.83 30.82 33.70 36.10
JPEG 25.1 28.49 31.28 33.26

Lena GT-DCT 32.30 35.87 38.04 39.50
EZ-DCT 32.25 36.00 38.06 39.62
JPEG 31.67 34.9 36.67 37.94

In all cases, the best result is in boldface.

with standard JPEG. As Table 3 shows, GT-DCT
performs somewhat better than EZ-DCT on
Barbara, and about the same on Lena. The
0.3 dB difference on Barbara illustrates the im-
provement from using group testing instead of
zerotree coding. Further, both GT-DCT and EZ-
DCT significantly outperform standard JPEG. As
expected, bit-plane coding works better than
quantization followed by entropy coding.

Next, we show our results for hierarchical
versions of the four different transforms we
considered. For a given first-level block transform,
we tried using many different transforms at the
second level of the hierarchy. However, we found
that the rate-distortion performance difference
between different transforms at the second level
was insignificant. Using any second level trans-
form, however, did show a noticeable improve-
ment over the non-hierarchical version. Given this
fact, we only present results for hierarchical
transforms that apply the same transform for the
first and second level of the hierarchy. PSNR
results are shown in Table 4.

Note that the transforms we use all produce 8 x
8 output blocks of coefficients, and 64 total
subbands. Thus, after a two-level hierarchy on
512 x 512 images, the size of the second level DC
subband is 8 x 8; this is small enough that
applying another level of transform would not
help.
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Table 4 Compression of Barbara
Comparing PSNR results of various algorithms 38
GT-GLBT
Im: Algorith Rate (bits/pixel x EZGLBT -7
mage gorithm ate (bits/pixel) 361 - - arwp ) ~
0.1 0.25 0.5 1.0
341
Barbara GTW 2437  27.87 31.59 36.47
AGT-DCT  -020 -029 -0.32 -0.16 o 32}
AGT-LOT ~ +085 +117 +120 +1.05 =
AGT-LBT  +1.15 +149 +1.61 +1.39 Z 30
AGT-GLBT +1.27 +1.58 +1.65 +1.54 & gl
Lena GTW 30.06 34.13 37.27 40.51 26t
AGT-DCT —-1.69 —-1.58 —-122 —-0.87
AGT-LOT -096 —-095 -0.79 —0.63 24+
AGT-LBT —-046 —-046 —-0.38 —0.39
AGT-GLBT -045 -032 -0.20 —-0.31 0 02 04 0.6 08 1
Goldhill  GTW 2776 3046 3310 3647 bit rate (bits/pixel)
AGT-DCT -0.63 -0.54 -0.55 047 Fig. 7. Comparing performance of coders using the GLBT
AGT-LOT -0.14 0.00 —-0.07 —-0.07 transform and GTWP.
AGT-LBT +0.05 +0.14 +0.11 +0.09
AGT-GLBT +0.05 +0.15 +0.10 +0.14
Fingerprint GTW 28.35 32.80 36.06 39.98 tioning Of? the input, COl:npaI‘ed with the octave-
AGT-DCT  —1.15 —1.05 —044 +0.30 band partitioning found in the wavelet transform.
AGT-LOT  —0.13 -0.23 +0.20 +0.93 As mentioned in [20], the finer frequency parti-
AGT-LBT ~ +0.12 +0.09 +047 +1.11 tioning increases the frequency resolution and can
AGT-GLBT +0.16 +0.23 +0.71 +1.41

Best results in boldface. GTW is used as the baseline, so that for
algorithm A, AA = A — GTW.

In general, coding performance improves as we
proceed in order from DCT to LOT to LBT to
GLBT. This is expected, because each transform is
of higher quality than the previous one. LOT is
better than DCT because it is lapped; LBT is a
general form of the LOT; and the GLBT throws
away the fast-computability characteristic of the
LBT.

It also appears that the lapped transform
methods perform much better than the standard
GTW on only Barbara and fingerprint, the two
images containing the most edges. These edges
lead to more energy in the high-frequency coeffi-
cients. This suggests that the lapped transforms are
better than the dyadic wavelet decomposition at
decorrelating high-frequency content. One possi-
ble reason for this behavior is that the lapped
transforms offer a uniform-band frequency parti-

often generate more insignificant coefficients.

Surprisingly, the GT-GLBT outperforms
GTWP by about 0.30 dB (see Fig. 7) on the
Barbara image. This is especially significant
because GTWP already outperforms GTW on
this image by about 1.3 dB.

As expected, GT-GLBT also shows improve-
ment over Tran et al’s Embedded Zerotree
technique applied to the GLBT (EZ-GLBT).
Improvements of up to 0.45 dB were observed on
the Barbara image, as illustrated in the PSNR
curves of Fig. 7. EZ-GLBT results are taken from
[20]. This figure shows the performance gain of
using group testing instead of zerotree coding in
image compression.

5. Conclusion

In conclusion, we have shown that group testing
is a general and flexible method that can be easily
adapted to encode transform coefficients gener-
ated from wavelet packets as well as many block
transforms. In most cases, designing classes based
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on a coefficient’s number of significant neighbors
leads to the best compression performance. We
have shown that GTWP has good PSNR perfor-
mance, in that it outperforms previously published
zerotree coders that used wavelet packets. We have
also shown that group testing of both DCT and
GLBT transform coefficients improves upon
zerotree coding of these coefficients by an average
of 0.3 dB, over a range of bit-rates for the Barbara
image. We conclude that the group testing
technique is superior to the zerotree coding
technique. In fact, our group testing algorithms
also compare favorably to standards such as JPEG
2000, a benchmark algorithm that uses the dyadic
wavelet decomposition. On the Barbara image,
GTWP, as well as all the lapped transform
algorithms, all perform better than JPEG 2000.

Our class definitions give one effective method
of coding wavelet packets and block transform
coefficients. They give more insight into the
statistical characteristics of these coefficients, in-
sight which can be may be used to create better
image coders in the future. Thus, our image coders
based on group testing are an interesting addition
to the field of image compression.
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