CSE 490 GZ Introduction to Data Compression Winter 2004

UW Image Coder

UWIC

- A simple image coder based on
 - Bit-plane coding
 - Significance pass
 - Refinement pass
 - Arithmetic coding
 - Careful selection of contexts based on statistical
- Implemented by undergraduates Amada Askew and Dane Barney in Summer 2003.

CSE 490gz - Lecture 16 - Winter 2004

.

Arithmetic Coding in UWIC

- Performed on each individual bit plane.
 Alphabet is Σ={0,1}
- Uses integer implementation with 32-bit integers. (Initialize L = 0, R = 2³²-1)
- Uses scaling and adaptation.
- Uses contexts based on statistical studies.

CSE 490gz - Lecture 16 - Winter 2004

4

• Standard Daubechies 9/7 Filters low pass filter high pass filter given a standard by the st

1

Coding the Bit-Planes

- · Code most significant bit-planes first
- Significance pass for a bit-plane
 - First code those coefficients that were insignificant in the previous bit-plane.
 - If a coefficient becomes significant then code its
- Refinement pass for a bit-plane
 - Code the refinement bit for each coefficient that is significant in a previous bit-plane

CSE 490gz - Lecture 16 - Winter 2004

Contexts (per bit plane)

- Significance pass contexts:
 - Contexts based on
 - Subband level
 - Number of significant neighbors
 - Sign context
- · Refinement contexts
 - 1st refinement bit is always 1 so no context needed
 - 2nd refinement bit has a context - All other refinement bits have a context
- Context Principles
 - Bits in a given context have a probability distribution
 Bits in different contexts have different probability
 - distributions

CSE 490gz - Lecture 16 - Winter 2004

Subband Level

- Image is divided into subbands until LL band (subband level 0) is less than 16x16
- Barbara image has 7 subband levels

CSE 490gz - Lecture 16 - Winter 2004

Statistics for Subband Levels

Barbara (8bpp)

Subband Level	# significant	# insignificant	% significant
0	144	364	28.3%
1	272	1048	20.6%
2	848	4592	15.6%
3	3134	23568	11.7%
4	12268	113886	9.7%
5	48282	504633	8.7%
6	190003	2226904	7.8%

CSE 490gz - Lecture 16 - Winter 2004

12

Number of Significant Neighbors

Barbara (8bpp)

Significant neighbors	# significant	# insignificant	% significant
0	4849	2252468	.2%
1	13319	210695	5.9%
2	22276	104252	17.6%
3	30206	78899	27.7%
4	33244	55841	37.3%
5	27354	39189	41.1%
6	36482	44225	45.2%
7	87566	91760	48.8%

CSE 490gz - Lecture 16 - Winter 2004

Refinement Bit Context Statistics

Barbara (8bpp)

	0's	1's	% 0's
2 nd Refinement Bits	146,293	100,521	59.3%
Other Refinement Bits	475,941	433,982	53.3%
Sign Bits	128,145	130,100	49.6%

• Barbara at 2bpp: 2nd Refinement bit % 0's = 65.8%

CSE 490gz - Lecture 16 - Winter 2004

Context Details

- Significance pass contexts per bit-plane:
- Max neighbors' num subband levels contexts

 For Barbara: contexts for sig neighbor counts of 0 3 and subband levels of 0-6 = 4*7 = 28 contexts
- Index of a context.
- Max neighbors * subband level + num sig neighbors
 Example num sig neighbors = 2, subband level = 3, index = 4 * 3 + 2 = 14
- Sign context

 1 contexts
- 2 Refinement contexts
 - 1st refinement bit is always 1 not transmitted
- 2nd refinement bit has a context
- all other refinement bits have a context
- Number of contexts per bit-plane for Barbara = 28 + 1 +2 = 31

CSE 490gz - Lecture 16 - Winter 2004

Max Heap

- · Used in significance pass to decide which coefficient to code next
 - Goal code coefficients most likely to become
- All non-empty contexts are kept in a max heap
- Priority is determined by:
 - # sig coefficients coded / total coefficients coded

CSE 490gz - Lecture 16 - Winter 2004

Reconstruction of Coefficients

- · Coefficients are decoded to a certain number of bit planes
 - .101110XXXXX What should X's be?
 - .101110000... < .101110XXXXX < .101110111...
 - .101110100000 is half-way
- Handled the same as SPIHT and GTW
 - if coefficient is still insignificant, do no interpolation
 - if newly significant, add on .38 to scale
 - if significant, add on .5 to scale

UWIC Notes

- UWIC competitive with JPEG 2000, SPIHT-AC, and GTW.
- Developed in Java from scratch by two undergraduates in 2 months.
- Still a few glitches that have to be worked on.

CSE 490gz - Lecture 16 - Winter 2004

26