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Group Testing for Image Compression
Edwin S. Hong, Richard E. Ladner

Abstract— This paper presents Group Testing for Wavelets
(GTW), which is a novel embedded wavelet-based image
compression algorithm based on the concept of group test-
ing. We explain how group testing is a generalization of the
zerotree coding technique for wavelet-transformed images.
We also show that Golomb coding is equivalent to Hwang’s
group testing algorithm (Hwang, 1972). GTW is similar
to SPIHT (Said & Pearlman, 1996) but replaces SPTHT’s
significance pass with a new group testing based method.
Although no arithmetic coding is implemented, GTW per-
forms competitively with SPIHT’s arithmetic coding variant
in terms of rate-distortion performance.

I. INTRODUCTION

Many recent image coding techniques for generating an
embedded bit stream rely on coding wavelet coefficients of
an image bit-plane by bit-plane, with the most significant
bit-plane first. Embedded image coders such as EZW [1],
SPIHT [2], and ECECOW |[3], differ chiefly in the method
of encoding bit-planes. In this paper, we address the prob-
lem of how to efficiently code the bit-planes of a wavelet-
transformed image.

Shapiro’s use of zerotrees in EZW [1] showed that clever
coding of wavelet coefficients can lead to image compres-
sion algorithms that are fast and effective in rate-distortion
performance. SPIHT [2] improved upon EZW with a bet-
ter method of managing how the trees are subdivided. This
paper introduces a new image coder, called Group Testing
for Wavelets (GTW). Our algorithm seeks to improve upon
these two previous works by placing coeflicients into groups
which are then coded. Since the groups do not have to be
zerotrees, our algorithm can be thought of as a generaliza-
tion of SPTHT.

Group testing is a technique for identifying a few sig-
nificant items out of a large pool of items. First studied
by Dorfman [4] in 1943, group testing has been applied
to many diverse fields. Our observation that zerotree cod-
ing is a special case of group testing lead us to investigate
group testing as a basis for wavelet coding. In this paper,
we describe several group testing techniques and how they
apply to data compression. We show that Hwang’s group
testing algorithm [5] generates a code that is equivalent to
an elementary Golomb code [6].

Much of this paper explains our new image compression
algorithm (GTW) and its development. Our basic method
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is divide the coefficients in a bit-plane into different classes,
and code each class with a different group tester. We can
think of each class of coeflicients as a different context, and
each group tester as a general entropy coder. Our particu-
lar method of defining classes was derived from examining
the characteristics of wavelet coefficients of images. We
hope the ideas behind GTW’s development will lead to a
better understanding of how one should code image wavelet
coefficients.

We compare the rate-distortion performance of GTW
with that of SPIHT (without arithmetic coding) and
SPIHT-AC (with arithmetic coding). GTW is significantly
better than SPIHT and close to SPTHT-AC over a large
range of bit-rates. This is a significant result because GTW
does not employ arithmetic coding, but relies only on group
testing. It shows that the simple group testing procedure
can supplant the need for arithmetic coding in a practical
image coder.

This paper is organized as follows: Section II explains
some of the basic wavelet image coding techniques. Sec-
tion IIT explains the basics of group testing, and its appli-
cation to data compression. Section IV introduces GTW,
the new image compression algorithm. Section V evaluates
our algorithm’s rate-distortion performance. Section VI
discusses the performance of some variations of our algo-
rithm. Finally, we conclude with section VII by comparing
GTW with other related work.

II. WAVELET IMAGE CODING BACKGROUND
A. Basic Techniques of Wavelet Image Coding

Most of the embedded image coders published recently
apply a pyramidal wavelet decomposition to an image, and
encode the resulting wavelet coefficients in a bit-plane by
bit-plane fashion. If we normalize the wavelet coefficients
so that their magnitude is less than 1, then bit-plane ¢
would consist of the ith most significant bit of the mag-
nitude of all coefficients written in binary. Thus, the bit-
plane ordering represents successive refinement of a simple
scalar quantization of the coefficients. We say a coefficient
is significant when enough bit-planes have been coded so
that its value is known to be nonzero. A coefficient is in-
significant or a zero coefficient when it is still indistinguish-
able from zero.

Wavelet image coding methods typically code each bit-
plane with a refinement pass and a significance pass. The
refinement pass for bit-plane ¢ codes those coefficients that
were significant in bit-plane ¢ — 1. The significance pass for
bit-plane 7 codes those coefficients that were insignificant
in bit-plane i — 1; this corresponds to identifying those
coefficients that become significant in bit-plane i. This pass
also codes the sign of the newly significant coefficients.
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Shapiro, with EZW, pioneered the use of zerotrees in
its significance pass to predict the insignificance of coeffi-
cients. A zerotree is a set of zero coefficients from many
different subbands of similar orientation that represent the
same spatial location in the image. This set is organized in
a tree, where each coefficient not in the lowest frequency
subband has four children coefficients in the next higher
frequency subband of similar orientation (assuming it ex-
ists). These children always represent the same spatial lo-
cation, as illustrated in figure 1. Coefficients in the lowest
frequency subband have children in the subbands of dif-
ferent orientations at the same frequency level. Although
Shapiro’s EZW and Said and Pearlman’s SPTHT both used
these trees, the exact assignment of children to the lowest
frequency subband was slightly different in the two algo-
rithms.
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Fig. 1. Illustration of two parents connected to their children in a
3-level wavelet transform

The zerotree method places all the coefficients into large
tree structures, and tests whether the trees are significant.
A tree is significant if any coefficient in that tree is sig-
nificant; a tree is insignificant if all its coefficients are in-
significant (i. e., if it is a zerotree). Each tree is coded
with a single symbol. Only the significant trees must be
subdivided into smaller subtrees which will then need to
be tested for significance and coded; the values of all coef-
ficients in an insignificant tree are known after coding it as
a zerotree.

B. On Wavelet Coefficients

Compression works by finding how the input data are
correlated, and then by removing this correlation so that
the data can be represented in fewer bits. In order to ex-
plain why a particular wavelet image coder performs well,
we need to understand some of the statistical properties
of wavelet coefficients so that we can see how the image
coder exploits them. These properties and models of how
wavelet coeflicients are related to each other led to the de-
sign of algorithms such as EZW and SPIHT. This section
discusses some of the properties of wavelet coefficients and
shows how recent image coders use the properties for effi-
cient image compression.

One basic property of wavelet coefficients is that most
are zero or close to zero in value, and few coefficients have
a large magnitude. Another is Shapiro’s zerotree property,
which states that if a coeflicient is found to be insignificant,
then the entire tree rooted at that coeflicient is also likely

to be insignificant. These properties ensure that zerotrees
are likely to be common, and thus motivated the design of
zerotree coding.

Another property of wavelet coefficients is that the mag-
nitude of a child coeflicient is usually less than its parent.
This implies that coefficients in a lower frequency subband
are more likely to become significant before coefficients in
a higher frequency subband. Shapiro’s EZW algorithm
utilizes this knowledge when it subdivides the significant
trees that it finds: EZW always subdivides a significant
tree into several parts, where the first part is former root
coefficient of the significant tree. This root coefficient is al-
ways checked for significance before the other parts of the
significant tree.

The key observation in SPTHT was that if a coefficient
becomes significant in bit-plane k, then it is likely that its
siblings (those other coefficients having the same parent)
will become significant in bit-plane & or became significant
in a previous bit-plane. By exploiting this fact in the way it
subdivided its trees, SPTHT improves upon EZW in terms
of rate distortion performance.

More recent work ([6], [3], [7], [8]) has shown that signif-
icant coefficients are likely to be found in clusters that are
close together. This is similar to the property that SPTHT
exploited, but more general because it implies an adjacent
neighbor of a significant coefficient in any subband is likely
to be significant, regardless of whether the two coeflicients
share the same parent. This can be exploited by altering
the strategy of coding a coefficient based on the values of
its neighboring coeflicients.

In general, the more correlation between coeflicients that
an algorithm can exploit, the better its compression ef-
ficiency. We can see the basic trend in obtaining better
compression is to find some property of wavelet coefficients
that was not previously accounted for, and then to exploit
it to obtain better compression.

III. GrROUP TESTING BACKGROUND
A. Introduction

The concept of group testing was originally derived from
the problem of identifying Army recruits that were infected
with syphilis [5]. A laboratory blood test could detect the
presence or absence of syphilitic antigen. Instead of testing
the recruits individually, the blood samples of several men
could be pooled together and tested. A lack of the antigen
would imply none of these men have syphilis; its presence
would imply at least one of these men has syphilis. If the
percentage of infected recruits is small, then pooling the
bloods samples can greatly reduce the required number of
laboratory tests.

A simple version of the group testing problem can thus be
defined as follows: Given n items, s of which are significant,
what is the best way to identify the s significant items? It
is assumed that items can be identified as significant or
insignificant only through group tests. A group test is the
process of picking a subset of the n items and determining
whether there is a significant item in that set. There are
two possible outcomes of a group test on set K: either K
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is insignificant (meaning all items in K are insignificant),
or K is significant (meaning there is at least one significant
item in K).

Algorithms solving this and many other group testing
problems can be found in Du and Hwang’s book [5]. Most
of this book focuses on combinatorial group testing, where
the objective is to minimize the number of group tests that
can occur in the worst case. In probabilistic group testing
literature (see [9]), a probability distribution is put over the
set of items and the objective is to minimize the expected
number of group tests.

B. Applicability

Group testing has been found to be widely applicable
to problems in many different areas. Besides screening for
disease, applications have been found in areas as diverse as
industry (for identifying defective Christmas lights), graph
theory, and fault tolerant computing. In fact, group testing
can also be used for data compression, if we view compres-
sion in the following manner:

Given a binary bit stream as input, think of each in-
put bit as an item, where 1’s represent significant items,
and 0’s represent insignificant items. Now let an encoder
use a group testing algorithm to identify the significant
items (the 1’s in the bit stream). As output, it would send
binary bits representing the outcomes of the group tests
performed: 0 for an insignificant set, and 1 for a significant
set. As long as the method of choosing the input bits for
each group test is deterministic, a decoder could infer the
input bit stream based solely on the output.

Given this encoding and decoding scheme, the obvious
next step is to ask how well a group testing algorithm would
perform on compressing the given data. Since group testing
algorithms try to minimize the number of group tests, in
our scenario, that is equivalent to minimizing the number
of bits in the encoder’s output. Since this is exactly what a
good compression scheme would do, we expect good group
testing algorithms to also be good at compressing data.

Group testing can also be used for wavelet-based image
compression. Recall (see section IT) that recent image com-
pression techniques code the wavelet coefficients bit-plane
by bit-plane, and code whether a coefficient is significant
or insignificant. These bits can be directly coded with any
group testing algorithm.

In fact, group testing can be thought of as a generaliza-
tion of the zerotree coding technique. Recall that zerotree
coding tests trees of coefficients for significance, where trees
are significant only when some coefficient in that tree is sig-
nificant. This is exactly the same as performing a group
test on the coefficients in that tree. The significance pass
(called the sorting pass in [2]) of the SPTHT algorithm can
be thought of as a group tester that identifies the significant
coeflicients of a given bit-plane. Group testing is more gen-
eral than zerotree coding because the groups that it tests
together are not restricted to be trees, but can be arbitrary
collections of coeflicients.

C. Group Testing Algorithms
C.1 Hwang’s Algorithm

One of the first group testing algorithms was proposed
by Hwang in 1972 [10]. As input, the algorithm is given n
items and the knowledge that s of these n items are sig-
nificant. The algorithm identifies the s significant items
as follows. Let P be the initial set of n items. Select a
subset K of P of size k (the choice of k is critical and will
be discussed later). Test whether K is significant. If K is
insignificant then we repeat the process for the set P — K
with the knowledge that all the members of K are insignif-
icant. If K is significant then the algorithm uses binary
splitting (described below) to identify a single significant
item z in the set K. Binary splitting will also identify a
set I of insignificant items, where I C K. The algorithm
then repeats the process, trying to identify s —1 significant
items in the set P — (I U {z}). The algorithm terminates
when s significant items have been identified. Any untested
items are then determined to be insignificant. The process
of selecting the set K for testing is called a group iteration.

The binary splitting algorithm works on an input set K
of size k, with K assumed to be significant (so that at least
one item in K is significant). If ¥ = 1 we are done. Oth-
erwise, partition K into two roughly equal sized parts, K;
and K». Perform a group test on K;. If K is insignificant,
then we know K, is significant, so recursively search K, for
a significant item. Otherwise, K is significant, and K; can
be recursively searched for a significant item. Eventually,
a significant item will be found, and it will take at most
[log, k] tests to find a significant item in K. In the process,
all the items in the sets that were tested to be insignificant
are identified as individually insignificant.

The choice of the group iteration size k can drastically
affect the effectiveness of the group tester. Choosing k&
to be large is helpful if the result is insignificant; in this
case all k items will be identified as insignificant. However,
choosing k to be small is helpful if the result is significant;
in this case it will not take many tests to identify which
item is significant. We want to choose k to strike a bal-
ance between these two cases. Intuitively, a good choice
for k would be one where the probability that our set K is
significant is about 1/2, so that half the time k items are
identified as insignificant, and the other half of the time we
look for a significant item which does not take too many
tests to find. Hwang chose k = 218 "_?Llj, where n is the
number of items left, and s is the number of significant
items left. Note that it is a power of 2 to simplify binary
splitting.

Since we do not require powers of 2 for our work, our
method of choosing k is different from Hwang’s and based
on entropy arguments found in section ITI-C.3. Our exact
choice can be found in section IV-D.2.

C.2 Example

Consider a binary source where each bit has value 0 in-
dependently with probability p = .92, and apply Hwang’s
group testing algorithm. For this value of p, a good choice
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for the group iteration size would be k = 8, because the
probability that one of our sets is insignificant is .92% ~ %
For this example, we assume that when k items are chosen,
they are the first k bits in the source that are not yet coded.
We also assume that whenever a set K is partitioned into
two sets, the first set tested (K3) will contain the bits of
the first half of K, in the order that the bits were in the
input source.

We will first examine two cases, one where the first 8
input bits are 00000000 and the other where they are
00000110. We will use ? to denote bits whose value are
not yet coded. Figure 2 shows the sequence of group tests
performed, and the resulting output bits for the two exam-
ple cases.

State of Input
Case I:
7777777

0000000

Output Bit

[@J RSN

Case II:

?T?T??T?7?77

7777777
00007 7|7
0000[?]7 7
0000017

O = O =

N N N N | N

Fig. 2. Example showing group tests performed. Each box represents
a group test of the items inside the box.

We can calculate the output produced by a group iter-
ation of size 8 by examining all possible cases; the result
is shown in table I. If the 8 input bits are all 0, then one
group test (and thus one output bit) is used to describe
all 8 bits. In all other cases, the first output bit signifies
that the set of input bits is significant, and the remaining
3 output bits indicate the position of the first significant
input bit. The value of the input bits represented with a ‘7’
will not affect the output bits sent. Note that the value of
these bits will remain unknown after one group iteration;
their value must be determined in a subsequent group it-
eration. In contrast, the input bits represented with ‘0’
will be coded (known to be insignificant) after one group
iteration.

Table I also shows that Hwang’s algorithm essentially
yields a variable-to-variable length code. If we ignore the
?’s in the table, then the string of eight 0’s codes to the sin-
gle bit 0 while each of the other run-length strings ending
in 1 codes to a 4 bit string. This is the elementary Golomb
code of order 8 (see [6]) which is equivalent to a Golomb
code [11] of order 8 applied to the sequence of zero-run
lengths. Generalizing, we see that the code that a group
iteration of size k produces is equivalent to an elementary
Golomb code of order k. Interestingly, Ordentlich, et al. [6]
and Malvar [12] both use elementary Golomb codes to ef-
fectively code wavelet coefficients. Because zerotree coding
and Golomb coding are both equivalent to group testing
we can state that a significant number of wavelet coding

TABLE I
GROUP TESTING CODE WITH GROUP ITERATION SIZE 8

Input bits | Output bits
00000000 0
00000001 1000
00000017 1001
00000177 1010
00001777 1011
00017777 1100
00177777 1101
01777777 1110
17777777 1111

techniques essentially rely on group testing.

C.3 Entropy

One goal of codeword design for lossless compression is
to achieve an average code length that is as close to the en-
tropy of the source as possible (that is, to have low redun-
dancy). Although minimizing the number of group tests
in our group testing framework also minimizes the length
of the code generated by group testing, it does not tell us
how well group testing performs relative to the entropy.

Gallager and Van Voorhis [13] studied the effectiveness of
Golomb codes in terms of entropy, for memoryless sources.
By directly applying their results, we know that the op-
timal group size k is the unique integer k satisfying the
inequalities

pk +pk+1 S 1 <pk +pk—1’ (1)

where p is the probability that a source bit has value 0. It
can be shown that for this choice of k, elementary Golomb
codes, and therefore group testing using Hwang’s algo-
rithm, is always within 5% of entropy, and usually much
lower. Figure 3 compares the bit-rate due to group testing
against the entropy of a source, for various values of p.

Note that when k is not a power of 2, then it is not
immediately obvious how binary splitting should partition
the initial set of K of size k into two sets K and K> in order
to minimize the expected number of bits required to code
the group iteration. It turns out that we should partition
K into two sets of size i and k — ¢ where i is a power of two
and k — 7 is as close to i as possible. Furthermore, the set
of smaller size should be tested first. Making this choice in
the binary splitting is the only way to ensure that group
testing with group iteration size k is the the same as an
elementary Golomb code of order k for all values of k. The
reason for this choice is explained below.

The example in section ITI-C.2 shows that group testing
with group iteration size k is a variable-to-variable length
code where the input sequence 0¥ is coded with 0, and for
0 < j <k, 071 is coded with a codeword of that starts with
a 1. Define [ = |log, k|. If k is a power of 2, then [ + 1
is the length of the codeword for the input sequence 071.
When £ is not a power of 2, then of the k£ input sequences
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Entropy of Group Testing
0.04
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bitrate
entropy 0.02
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Fig. 3. Compares group testing bit-rate to entropy, on a memoryless
source where p is the probability that a source bit is 0. Numbers
on the graph indicate the optimal group iteration size for that
section of the curve.

of the form 071, k' = 2!+ — k of them will be coded with
a codeword of length [ + 1, while £ — k&’ of them will be
coded with a codeword of length [ + 2. Choosing the sizes
of K1 and K corresponds to deciding which of the input
sequences 071 will have longer codewords than the others.
Clearly, we want the less probable input sequences to have
the longer codeword, and more probable input sequences
to have shorter codewords. If p is the probability that a
source bit is zero, then the probability of input sequence
071 occurring is p?(1 — p). This implies that if j < k', we
should code 071 with a codeword of length I + 1, and that
the other input sequences should be coded with codewords
of length [ + 2.

We can use a binary tree to represent the series of group
tests that the binary splitting algorithm makes, as illus-
trated in figure 4. The root node represents the initial
group test of size k. Every other node represents a group
test of size equal to the number of leaves in the subtree
rooted at that node. Each left branch signifies that the
group tested was significant, and each right branch signi-
fies that the group tested was insignificant. Let node L
be the left child of the root node, and consider the sub-
tree rooted at this node. In this subtree, the left-most leaf
represents a series of group tests where the group tested
was always significant. This corresponds to where the in-
put sequence was 1. The right-most leaf of this subtree
corresponds to a series of group tests where the each group
tested was insignificant. This corresponds to the input se-
quence 0¥~ 11, In fact, the leaves at the bottom of the tree
represent the input sequence 1,01,001, ...,0*~'1 when read
from left to right. Furthermore, the depth of a leaf repre-
sents the length of the associated output codeword. Thus,
we wotuld like to construct the tree where the first &' leaves
are at depth [ 4+ 1, and the rest of the leaves are at depth
l+2

Recall that in the binary splitting algorithm, we split set
K of size k into two sets K; and K, respectively of size

ok
1

101001 -«

Ve Ok-ll
2" inputs

Fig. 4. Binary tree representing the codewords produced by Hwang’s
group testing algorithm. Left branches and right branches cor-
respond to output bits of 1 and 0, respectively. Leaves represent
the input sequence that was coded on that branch.

k1 and ko, and test set K first. If K; is significant, then
we will have to identify a significant item from a set of k
elements; if K; is insignificant, we will have k2 elements
from which to identify a significant item. This implies that
the left child of node L has k; leaves, and that the right
child has ks leaves. To optimize the depths of the leaves for
coding performance, either the left child of node L should
be a complete binary tree (case I), or the right child of node
L should be a complete binary tree (case II). This implies
one of K7 or K5 must have a power of 2 number of elements.
Furthermore, we also need to test the smaller set first so
that number of elements on the left branch of node L will
be less than the number of elements on the right branch.
This is the reason behind our choice of partitioning during
binary splitting.

C.4 Other Group Testing Algorithms

Hwang’s group testing algorithm assumes the number of
significant items in the initial set is already known. This
number is used to select the group iteration size k. In
the context of data compression, the encoder can send this
number as side information to the decoder at the beginning
of the bit stream. However, it may be preferable to not
send this information at all, but instead estimate k adap-
tively as bits are encoded. Strategies for choosing k can be
found from both competitive group testing literature [14]
and adaptive Golomb coding literature [15].

C.4.a Competitive Group Testing. In competitive group
testing, the problem of group testing is solved when s, the
number of significant items, is unknown. The goal is to
minimize the ratio of how an algorithm performs in the
worst case compared to how well the best algorithm that
knows s would do. One example is the doubling strategy
of Bar-Noy et al. [14], where k, the size for each group it-
eration, starts at 1, and doubles every time. It continues
doubling as long as no significant items are found, and re-
sets to 1 once a significant item is found. Note that the goal
of competitive group testing does not directly minimize the
number of group tests, and thus the algorithms in this area
may not be as directly applicable to data compression.
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C.4.b Adaptive Golomb Coding. Adaptive Golomb cod-
ing could also be used to pick k. The algorithm of Langdon
[15] starts out with k¥ = 1. Then k adapts according to the
result of the previous group iteration: if no significant item
was found, then k doubles, otherwise k halves in value (al-
though k never drops below 1). This simple adaptive strat-
egy was meant to adapt very quickly to the input source,
as well as to be very inexpensive computationally.

IV. THE GTW ALGORITHM
A. Owerall Algorithm Design

The design goal behind GTW is to find the most ef-
fective method of using group testing for image compres-
sion. Recall that the significance pass in SPTHT is really
one method of implementing group testing. We thus pro-
pose a new image coder that replaces SPTHT s significance
pass with a different method of group testing; this new
method will be based on Hwang’s group testing algorithm.
Other aspects of our image coder, such as the wavelet trans-
form and the refinement passes will be the same as that of
SPIHT.

An obvious way of using group testing in the significance
pass is to simply take all the coeflicients in order, from
lowest frequency subband to highest frequency subband,
and code them with a group testing coder. Unfortunately,
this will not work well because of the assumptions made in
the group testing problem. In particular, the group testing
problem assumes that nothing is known about the initial
items. This is similar to assuming that all coefficients are
equally likely to be significant, and that all coefficients are
independent of each other. As explained in section II-B,
neither of these facts is strictly true in our application for
wavelet coeflicients.

One way to surmount this difficulty is to make the char-
acteristics of our input to group testing match with what
the group testing algorithm expects. This means that when
we perform a group iteration on a set of items, we want each
item in the set to be independent of the others, and we want
each item in the set to be equally likely to be significant.
To do this, we will organize all the coefficients into classes
that tend to have our desired properties. We will try to
make the coefficients in each class as independent as pos-
sible of each other, as well as approximately equally likely
to be significant. Each class could then be coded with a
different adaptive group tester; this is necessary because
we expect different classes to have different probabilities of
being significant.

Putting coefficients into classes is similar to choosing dif-
ferent contexts for the coefficients, and coding each context
with a different entropy coder. Thus, we must design our
classes with the context dilution problem in mind. That is,
having too many classes will result in many classes with
only a few coefficients. Group testing may never effec-
tively adapt to these classes, resulting in poor coding per-
formance. On the other hand, having many classes may
be beneficial because the coefficients in a class will have
similar characteristics. This will lead to better adaptation
and coding performance. The number of classes must be

chosen to balance the effectiveness of many classes with the
ineffectiveness of very few coefficients in each class.

B. GTW C(lasses

We define the GTW classes based on the properties of
typical wavelet transform coefficients of image data; these
properties were derived from previous work such as SPTHT.
The characteristics that distinguish between GTW classes
are the subband level, the significant neighbor metric, and
the pattern type. We now proceed to describe these char-
acteristics.

B.1 Subband Level

In a bit-plane of a wavelet-transformed image the co-
efficients in lower frequency subbands are more likely to
be significant. The lowest frequency subband counts as a
subband level. There is one additional subband level for
each level of the wavelet transform. Figure 5 shows the 4
subband levels when 3 levels of the wavelet transform are
performed.

1
2
3

Fig. 5. Ilustration of subband levels of a wavelet transformed image.

B.2 Significant Neighbor Metric

A coefficient in a bit-plane is likely to be significant if
more of its neighbors are significant. A neighbor is defined
to be the following: one of up to 8 spatially adjacent coefhi-
cients in the same subband, one of the 2 spatially identical
coefficients in another subband at the same level, the par-
ent coefficient in the next lower subband, or one of the
4 child coefficients in the next higher subband. The par-
ent/child relations are exactly as defined in SPIHT. Figure
6 shows the neighbors of a coefficient. There are 4 values in
the significant neighbor metric, 0, 1, 2, and 3+, correspond-
ing to whether 0, 1, 2, or more than 2 neighbors are signifi-
cant, respectively. In counting the significant neighbors we
count one for each spatially adjacent, spatially identically,
and parent coefficients, but just one for all 4 children coeffi-
cients. That is, if one or more children are significant then
we add one to the count of significant neighbors. Thus, the
maximum neighbor count is 12 even though there are 15
neighbors. In determining the significant neighbor metric
for a coefficient in the current bit-plane, a neighbor can
be known to be significant from the coding of a previous
bit-plane or from the coding of the current bit-plane.

We derived our significant neighbor metric from several
considerations. We chose to limit the 4 children to count
as at most one because the 4 children, taken together, rep-
resent one spatially equivalent spot in the next higher sub-
band level. Also, knowing that 4 child coefficients are sig-
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nificant does not seem to bear 4 times as much information
as knowing that one child coefficient is significant.

We reduce the resulting count of significant neighbors to
four values for several reasons. One is too avoid having too
many classes, and suffering from a context dilution prob-
lem. Another is the observation that once the metric for
a coefficient reaches about 4, then the probability of sig-
nificance for that coefficient is high enough that a group
iteration size of one is sufficient. The inequalities (1) show
that k = 1 when p < (v/5—1)/2 = .62, implying that when
the probability of being significant is greater than about
.38 then a group size of 1 is optimal.

B.3 Pattern Type

Coeflicients adjacent to each other are assigned different
pattern types. The pattern type is based solely on position
in a subband. In GTW, each coefficient belongs to one of
4 distinct pattern types as shown in figure 7.
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Fig. 7. Illustration of pattern type.

One idea behind using the pattern type is to make coef-
ficients in any class less likely to be correlated. This will
make the coeflicients more likely to be independent of each
other, which is what Hwang’s group testing algorithm ex-
pects.

We can also view the pattern type as an attempt to con-
trol the order in which the information known about neigh-
boring coeflicients propagates. Let C; represent the set of
coefficients with pattern type i. If we assume all coefficients
in C; are coded before those in C;41, then figure 8 shows
that a coefficient in C;;+1 knows more information about
its neighbors than in C;. The greater amount of available
information should make it easier to code C;y1 than C;.
We call this the bootstrapping effect. Controlling the cod-
ing order of the pattern type will change how accurately

the coefficients in C; are classified, and how well they are
coded. This may help improve the net coding efficiency.

Known information when coding . . .

Pattern 0 Pattern 1 Pattern 2 Pattern 3

D Significance likely unknown at current bit-plane

D Significance known at current bit-plane

Fig. 8. Illustration of bootstrapping.

C. Class Ordering

A GTW class is defined by these three characteristics:
subband level, significant neighbor metric, and pattern
type. For our study we used 7 subband levels, 4 signifi-
cant neighbor metric types, and 4 pattern types for a total
of 112 classes. With these specified classes, what is the best
order in which to code these classes? From the perspective
of generating an embedded bit stream, we should code the
coefficients that contain the most information first. Since
finding significant coeflicients increases the fidelity of the
image and finding insignificant coefficients has no effect on
the fidelity, those coefficients more likely to be significant
should be coded first.

Based on this heuristic, we should code the low sub-

band level classes before the high subband level classes. We
should also code the classes with more significant neighbors
before those with fewer or no significant neighbors. After
some testing (see section VI-C), we determined that the
following ordering resulted in good rate-distortion perfor-
mance:
GTW Ordering: Always code the classes with the great-
est significant neighbor metric first. If there are several
classes with the same significant neighbor metric, then code
the classes with the lowest pattern type first. If there are
classes with the same significant neighbor metric and pat-
tern type, then code the class with the lowest subband level
first.

One way to verify that this ordering works well is through
figure 9. It is a scatter plot of the log of the group iteration
size k for each class. Every group iteration performed is
placed in a rectangular bin. Darker bins correspond to bins
containing more elements. Classes are ordered according to
the GTW ordering; thus, the classes on the left of the plot
are always coded before the classes on the right. This graph
shows that the classes with the lower group iteration sizes
tend to be coded first. The classes with low group iteration
size also tend to contain those coefficients most likely to be
significant.

Note that the ordering depends mostly on the significant
neighbor metric because it happens to be the best predictor
for when a coeflicient is significant.

In addition to improving the image quality, finding sig-
nificant coefficients quickly will contribute to better classi-
fication of their neighbors. Once a significant coeflicient is
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found, its neighbors could change classes because they now
have one more neighboring coefficient that is significant.
The new classes will be coded earlier than the old classes
that the coefficients were formerly contained in. This has
an effect of searching for clusters of significant coefficients
because once a significant coefficient is found, then neigh-
boring coefficients are more likely to be coded next. If any
of these neighboring coefficients were tested as significant,
then the coefficients around them will also be more likely
be coded earlier.

D. GTW Details

In our study we perform 6 levels of wavelet transform
using the Daubechies 9/7-tap filters [16] on 512 x 512 gray-
scale images. In this case, there are 7 subband levels lead-
ing to an 8 x 8 lowest frequency subband. The average
of the coefficients in the lowest frequency subband is sub-
tracted from the lowest frequency subband before the sig-
nificance and refinement passes start. This average is coded
and sent in the first bits of GTW. The refinement pass
works exactly the same as the one in Said and Pearlman’s
SPIHT. The significance pass and the adaptive group test-
ing strategy are described below.

D.1 Significance Pass

The GTW algorithm to code the significant coefficients
in a bit-plane is fairly simple. The basic idea is to repeat-
edly code coefficients in the GTW classes until all have
been coded. Each class has its own group size statistic.
These statistics are used to calculate the size of the next
group iteration for that class, according to our adaptive
group tester defined in section IV-D.2.

We try to code the coefficients in a class only when the
GTW class is adequate. A class C' is adequate if there are
at least k¢ coefficients in that class, where k¢ is the cur-
rent group iteration size for class C. Coding only adequate
classes ensures that group testing might find k¢ insignif-
icant coefficients with one test; this is necessary for good
coding performance.

Our Algorithm works as follows:

Repeatedly:

1. Perform a group iteration on the group within the first
adequate GTW class, according to the GTW ordering of
the classes. Output bits corresponding to the group itera-
tion.

2. If a significant coefficient is found, output its sign and
update the neighbors of that coefficient (coefficients could
change classes at this point).

3. Update the group size statistics for the class tested.

At the end of this loop, there will be a few coefficients
left in inadequate classes. At this point, we start coding
the coefficients in the inadequate classes. We combine the
coefficients from different classes together and code these
combined groups. In this context, a group of coeflicients
is end-adequate when it contains k coefficients, where k is
the miniumum k¢ such that a coefficient of the group is a
member of class C.

We can view the remaining coefficients as being on a list
ordered by the GTW ordering. Our method chooses the
first group of coefficients in this list that is end-adequate,
and performs a group iteration on that group. If there are
not enough remaining coeflicients to form an end-adequate
group, then all these coeflicients are combined into one
group and tested together. This process is then repeated
until all coefficients are coded.

D.2 Adaptive Group Testing Strategy

The only difference between our group testing strategy
and Hwang’s algorithm is in our adaptive method of choos-
ing the group iteration size k. Since our k does not have to
be a power of 2, our implementation of binary splitting is
slightly more general than Hwang’s. As described in sec-
tion III-C, binary splitting partitions a significant set K
into two sets K3 and K> of roughly equal size. Our imple-
mentation of binary splitting chooses the cardinality of the
two sets to be i and k& — 7 where i is a power of two and
k —1i is as close to i as possible. The size of K; is chosen to
be min(i, k —4). For example, a set of size 11 is partitioned
into sets of size 4 and 7 with the set of size 4 tested first,
and a set of size 13 is partitioned into sets of size 5 and 8
with the set of size 5 tested first.

Our adaptive strategy for choosing the group iteration
size k¢ for class C' works as follows: Continually keep track
of s¢, the number of significant coefficients identified so far
in class C, and n¢, the total number of coefficients identi-
fied so far in C. Initially, when ne = 0, start with group
iteration size k¢ = 1. While no significant coefficient is
found in the previous group iterations for C, double k¢ and
perform another group iteration. Once the first significant
coefficient is found, use p = (n¢ — s¢)/nc as the probabil-
ity estimate of insignificance, and choose k¢ satisfying the
inequalities (1). Note that the initial phase of our strategy
is the same as both the doubling strategy taken from Bar-
Noy, et al. [14] and Langdon’s [15] adaptive Golomb coding
method. This scheme quickly adapts to the characteristics
of the source.
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Fig. 10. Comparison of SPTHT and GTW.

V. RESULTS

We present our results on the 512 x 512 Barbara image
and compare our PSNR curve with the ones for SPTHT with
and without arithmetic coding. Figure 10 shows that GTW
performs about 0.7 dB better than SPTHT and about the
same as SPTHT-AC. We chose to examine Barbara because
it is harder to compress than an image like Lena. The
qualitative results found for Barbara are also present in
other images. However, quantitatively, the results are more
pronounced for Barbara; this makes it easier to see the
difference between two algorithms.

Table IT compares GTW against SPTHT with arithmetic
coding for a wide variety of natural images. All images
are 512 x 512 in size, except for the man image which is
1024 x 1024. All are 8-bit gray-scale images. The stan-
dard test images Goldhill, Lena, and Barbara can be ob-
tained from UCLA’s web site [17]. The other images are
part of the USC image database [18]. All results are mea-
sured in terms of PSNR, in dB. The A SPIHT-AC rows
represent the difference in PSNR between SPTHT-AC and
GTW. Positive numbers indicate the amount of PSNR im-
provement of SPTHT-AC over GTW. We can see that the
difference between SPTHT-AC and GTW is very small.

VI. ALTERNATIVE APPROACHES
A. Alternative Significant Neighbor Metric

It is clear that our significant neighbor metric is ad hoc
in nature, since all neighbors of a coeflicient ¢ (except its
children) have an equal say towards whether c is likely to
be significant. By performing statistical analysis across an
image, it should be possible to calculate a set of weights
wy, Wa, .., w5 for the 15 neighbors of ¢ that represent how
much each neighbor contributes to ¢’s significance status.
By taking the statistics into account, we are able to bet-
ter predict whether ¢ will become significant, resulting in
better compression.

TABLE II
COMPARISON OF GTW AND SPITHT-AC. A SPIHT-AC =
SPIHT-AC — GTW.

Image Algorithm Rate (Bits/pixel)
0.1 0.25 0.5 1.0
rough wall GTW 24.37 | 27.22 | 29.51 | 32.51
A SPIHT-AC +.31 +.10 0.00 —.07
couple GTW 26.12 | 29.13 | 32.41 | 36.45
A SPIHT-AC +.05 +.08 +.04 +.13
man GTW 27.80 | 31.31 | 34.13 | 37.42
A SPIHT-AC +.32 +.05 +.12 —.15
boat GTW 27.31 | 30.93 | 34.27 | 39.01
A SPTHT-AC +.05 +.04 +.18 +.11
tank GTW 27.50 | 29.35 | 31.17 | 33.86
A SPTHT-AC —.05 +.01 +.01 —.08
: GTW 27.86 | 30.49 | 33.09 | 36.42
Goldhill A spITAC | .08 [ +.07 [ +.04 | .13
Lena GTW 30.17 | 34.17 | 37.28 | 40.45
A SPIHT-AC +.05 —.06 —.07 —.04
Barbara GTW 24.41 | 27.86 | 31.49 | 36.42
A SPIHT-AC —.15 —.28 —.09 —.01

As a more “principled” approach, we redefined the sig-
nificant neighbor metric to be Z,lil w;b;, where w; is the
weight given to the ith neighbor of a coefficient, and b; is
the bit value of the ith neighbor (1 for significant, and 0 for
insignificant or unknown). Although the numeric weights
could be calculated by many different methods, we used the
logit [19] approach, which is a standard method in statistics
for assigning weights when the training data are discrete.
To compress an image, we calculated the weights using that
image and then sent the weights in the initial part of the
compressed bit-stream.

Figure 11 is a graph that shows the percentage of signif-
icant coefficients found in the set of coefficients that had
a given value as its significant neighbor metric. Compar-
ing with figure 12, it appears that the logit metric and the
GTW significant neighbor count give about the same in-
formation. The logit metric is slightly better because at
low values of the metric, the percentage of significant co-
efficients is higher. However, we feel the added complexity
of training to obtain the weights was not worth the slight
benefits. Overall, this approach performed slightly better
than our significant neighbor metric. The improvements
over the ad hoc method ranged from 0.0 dB to 0.15 dB at
various bit rates on the Barbara image.

B. Alternative Pattern Types

We observed that the coefficients that just became sig-
nificant in the current bit-plane had a substantial effect on
the value of the significant neighbor metric for its neigh-
boring coefficients. Thus, it would be nice to maximize
the amount of information known about neighboring co-
efficients. Unfortunately, this may not be possible in an
overall sense: We must pick a specific ordering in which
to code the coefficients, and on average, when coding a
specific coefficient, we expect roughly half of its currently
insignificant neighbors to not yet be coded at the current
bit-plane.
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Fig. 12. Adhoc significant neighbor count in GTW, from Barbara.

Although maximizing the information known might not
be possible, we can change the rate at which the infor-
mation about neighboring coeflicients increases. Recall
that the bootstrapping effect describes how information
increases as more coefficients are coded. This effect is dif-
ferent for different patterns, as illustrated in figure 13. We
tried the two alternative patterns in figure 13 and found no
difference in coding efficiency between these different pat-
terns and the original pattern. The rate-distortion curves
for the Barbara image using different pattern types looked
almost exactly the same as that of the original pattern.

We also tried eliminating the pattern type completely,
so that there were only 28 classes. This change performed
slightly worse than GTW on the Barbara image. In fact,
the PSNR curve for this method looked exactly the same
as the method in section VI-C when the class ordering was
significant neighbor metric first, subband level next, and
the pattern type characteristic last.
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Fig. 13. How information propagates in different patterns

C. Varying Ordering of Testing Groups
C.1 Varying GTW Class Ordering

The class ordering in GTW, described in section IV-C,
considers the 3 class characteristics in the following order:
significant neighbor metric first, then pattern type, then
subband level. We tried our algorithm with each of the
6 possible total orderings of the 3 different characteristics.
From experimentation we found that these alternative or-
derings did not perform as well; figure 14 shows the per-
formance of these orderings on the Barbara image.. Intu-
itively, it would appear that considering the subband level
first would give good results because lower frequency sub-
bands tend to have more significant coefficients in the early
bit planes. However, ordering with subband level first pro-
duced concave dips in the rate distortion curve. This could
mean that it pays off to identify significant coefficients in
higher frequency subbands early. Furthermore, the order-
ings with pattern type first were significantly worse, be-
cause the pattern type is not useful for predicting signifi-
cance of coefficients.

Alternate GTW Class Orderings

36
34r
32F
)
E30¢
o
C% 28r
o SigPatSub
SigSubPat
26/ ~-~  SubSigPat
- - - PatSubSig
24+ PatSigSub
SubPatSig
22 ! ! ! !
0 0.2 0.4 0.6 0.8 1

bit rate (bits/pixel)

Fig. 14. Different class orderings on the Barbara image. Sig, Sub, and
Pat stand for Significant Neighbor Metric, Subband Level, and
Pattern Type, respectively. Each line is labelled by the order of
importance of the characteristics, so that SigSubPat represents
the normal GTW ordering.
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C.2 Group Iteration Size Ordering

One of the reasons why ordering by significant neighbor
metric first is better than ordering by subband level first is
that the significant neighbor metric is better at predicting
significance than subband level. In terms of rate-distortion
theory, we would like to find the significant coefficients as
soon as possible to reduce the distortion. Thus, it is bet-
ter to test all the coefficients in order of most likely to be
significant, to least likely to significant.

One way to apply this principle is to use the adaptive
group testing statistics to set the ordering of which classes
should be tested first. Classes with a smaller group size are
more likely to have significant coefficients and thus should
be tested first. We tried this ordering where classes were
tested in the order of smallest group iteration size first.
Ties were broken by the regular GTW ordering. On the
Barbara image, the rate-distortion performance did not
change with this technique.

C.3 Generalized Coeflicient Ordering

We could also try different ways of ordering the coeffi-
cients within a particular class. Instead of arbitrarily group
testing the first k coefficients that are in a GTW class, we
could instead look for k most important coefficients in that
class, and code them first. The criteria of importance could
be based on the likelihood that a coeflicient is significant,
or on the amount of information a coeflicient could give to
its neighbors. This is the idea behind the two new order-
ings described in this section: the parent-first ordering and
the neighbors-first ordering. Figure 15 shows how these or-
derings compare to the original GTW ordering on Barbara.

In the parent-first ordering, only coefficients whose par-
ents are already coded are allowed to be tested in a group
iteration. In this case, a class is considered inadequate if
it does not have enough coeflicients with coded parents to
fulfill the group iteration size quota. The normal GTW or-
dering was used to decide which classes to check first. Note
that with this ordering, it is still possible for coefficients in
high frequency subbands to be coded before coefficients in
low frequency subbands. This can happen when the coef-
ficients in the high frequency subband are not descendants
of the coefficients in the low frequency subband. This or-
dering performed slightly worse than the normal GTW or-
dering.

In the neighbor-first ordering, we allowed a coefficient of
pattern type ¢ to be coded only when its neighboring coef-
ficients that have pattern type < ¢ are already coded. In
this case, a class is considered inadequate if it does not have
enough coefficients with an appropriate number of coded
neighbors to fulfill the group iteration size quota. We can
view this an attempt to maximize information flow, based
on the following scenario: Suppose that ¢, and ¢ are both
uncoded coeflicients in the current bit-plane, and that all
of ¢,’s neighbors are coded while none of ¢;’s neighbors
are coded yet. Then it may be more beneficial to code
¢y before ¢, because ¢, will provide information about it-
self to its neighbors, where as ¢, will not. The neighbor
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first method performed significantly worse than the nor-
mal GTW ordering.

GTW generalized orderings
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Fig. 15. Generalized coefficient orderings on the Barbara Image.

The results of these two orderings imply that trying to
maximize the information flow between coefficients does
not improve the net performance. Although better pre-
diction can be obtained for coefficients when we maximize
the information available, it appears that the slightly bet-
ter prediction is not enough to offset the loss incurred from
not coding the most likely to be significant coefficients first.

D. GTW with Arithmetic Coding

There is a significant gain in going from SPIHT to
SPTHT-AC for Barbara. Such a gain does not seem pos-
sible in adding arithmetic coding to GTW. The SPIHT
zerotrees take into account the correlation between a co-
efficient and its parent and children, but not its spatially
adjacent coefficients in the same subband. Arithmetic cod-
ing in SPTHT-AC helps account for correlation between
spatially adjacent coefficients by using different contexts
for adjacent neighbors of different values. In GTW, spa-
tially adjacent neighbor information is used as part of the
context for group testing. Out of curiosity we added an
adaptive first-order arithmetic coder on a binary symbol
set to GTW. There was no appreciable difference in rate-
distortion performance.

E. Varying group testing strategies

Another way to optimize GTW is to change the exact
group testing strategy. Instead of using adaptive group
testing, it is possible to initially send statistics saying what
the group iteration size should be for each class. This
method performed worse than our adaptive strategy.

VII. CONCLUSION

We have shown that the proposed method of coding
GTW classes performs better than SPTHT’s method of cod-
ing zerotrees, in the rate-distortion sense. This should not
be surprising since GTW is a generalization of SPTHT. We
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also have shown that it is possible to get performance com-
parable to SPTHT-AC without using arithmetic coding.

We conclude by highlighting the differences between
GTW and other recent work in image compression. Or-
dentlich, Weinberger, and Seroussi’s algorithm (OWS) [6]
and Malvar’s algorithm (PWC) [12] are similar to GTW
in that they both use Golomb codes. The main differences
are in what contexts are used and in what order the bits
are coded. In OWS the coefficients are coded in a zig-zag
order, where as in PWC the coefficients are reordered in
a complicated but fixed way. GTW orders its coeflicients
dynamically, optimizing for information flow and for likeli-
hood of being significant.

Wu’s ECECOW algorithm [3] does not use group test-
ing, but strict arithmetic encoding with context. Training
is used to calculate the contexts that will be used in the
coding. ECECOW has impressive rate-distortion perfor-
mance, certainly better than SPTHT-AC and GTW, but
neither SPTHT-AC nor GTW rely on training to achieve
their results.

Chai et al’s SLCCA [8] coder identifies significant coef-
ficients in clusters. It initially codes the starting positions
of a cluster of significant coefficients, and expands a clus-
ter by coding the coefficients around the starting position.
When a significant coeflicient’s children is the start of a
new cluster, then a significance link symbol is sent, so that
the position of the new cluster need not be sent. This ap-
proach of looking for clusters of significant coefficients is
similar to how GTW updates the neighbors of a signifi-
cant coefficient, and codes the coefficients with the highest
significant neighbor metric. Including the parent in the
significant neighbor metric helps “link” parent clusters to
their children clusters.

Taubman’s EBCOT coder introduced the idea of having
independent, finely embedded bit-streams that could be
reordered in a user-defined fashion. The bit-plane coding
technique uses a combination of zerotree coding, run-length
coding, sign coding, and magnitude refinement. Each of
these techniques is followed by arithmetic coding with care-
fully chosen contexts. They achieve better performance
than GTW mainly due to the sign coding, and through
keeping track of how the orientation of a subband affects
the correlation between neighbors. Furthermore, they use
the idea of “fractional bit-planes” to determine the order
in which coeflicients are coded. This is where they code the
coeflicients in a bit-plane in several passes. The coefficients
coded in the earlier passes are those that are more likely to
be significant. This method is similar to how GTW chooses
the ordering of its GTW classes to find significant coef-
ficients quickly. Since GTW propagates the information
about significant neighbors as soon as they are discovered,
we can view GTW as making many fractional bit-plane
passes. This is in contrast to EBCOT which has only 4
passes in its fractional bit-plane method.

We believe that group testing is useful for its generality
and applicability. This method unifies into a single frame-
work many previously proposed wavelet coding algorithms,
including zerotree algorithms and Golomb code algorithms.
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Furthermore, we believe this method is very flexible be-
cause it can be easily tweaked to efficiently code many dif-
ferent data sources. More sophisticated group testing ap-
proaches may lead to image compression algorithms with
even better rate-distortion performance.
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