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Introduction

» Video Coding is a relatively new and amazingly
interesting field for research;

« ltis interdisciplinary in nature: based on facts from
physics, cognitive psychology, neuro-science, statistics
(information theory), and computer science;

» Nothing (with only few exceptions) is written on stones:
extremely fast pace of the development; today’s state of
the art becomes obsolete tomorrow.

Some Facts from Human Visual
System

« Perception of video is a very sophisticated neuro-
biological process
— first important results are obtained by Helmholtz (1850s)

— many theories were proposed (structuralism, gelstaltism,
ecological optics, etc.)

— still an area of active research
+ Few things that are useful for video coding:
— Mach Bands
— Spatial Sensitivity Thresholds
— Mechanism of Color Vision
— Limits of Motion Perception
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Spatial Sensitivity Thresholds

Contrast sensitivity (dB)

L1 1
o 05 1 5 10 50

Spatial frequency, cycles/degree

(b)

MTF of the human visual system. (a) Contrast versus spatial frequency
sinusoidal grating; (b) typical MTF plot
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Information-theoretic principles and
techniques used in Video Codecs

+ Things to follow:
— Codes for simple stochastic processes
— Prediction-based coding and Motion compensation
— Quantization
— Transform-based coding

Codes for simple stochastic sources

* Bernoulli (memoryless) source S:

A={a....a,} - alphabet
P={p...p,}-0<p, <Y p=1 - probabilities of its symbols
h==Y plogp, - entropy of this source

+ Binary prefix code for S:
f:S—Bc{o1y (Bis decipherable)
+ Example:
A={a,b,c}; P={1/2,1/3,1/6}
h =—1logi—1logt—tlogt=~1.459
Code: B={0,01,11}
Average codelength:
C=l1+1-2412=15

Redundancy of (simple prefix) Codes:

» Shannon source coding Theorem:
YfR(£,8)20, R(f,S)=C(f,S)—h
» Classic codes for Bernoulli source:

— Shannon code fs: R(fs.S)<1 - simple
— Gilbert-Moore code f,, : R(f,,.S)<2 - order preserving
— Huffman code fu: R(f,.8)<1 -optimal

» Problem:

— How to improve the performance of Huffman encoding
when the cardinality of source alphabet is small?




Block Codes for Bernoulli Source

* Input string:

s! =a4,a,..4, , @ .4 G G .G

* New input string: s/ =c.c.c,
» New source S™:
c=A" - alphabet
Pr(c,)=p/“)..p;") - probabilities of its symbols, where
(<) is the number of symbols q; in ¢;

h(s")=nh(S) - entropy of this source
» Redundancy rate of Huffman block code:
R(/',,.S“)<%

» Simple recipe for good compression:
— make n (block size) large!

What happens if we do not know
probabilities of (Bernoulli) Source?

+ Possible solutions:
— count frequencies on the fly — too slow

— use fast adaptive algorithms (LZ, move-to-front, splay-
trees, etc) — less efficient

— use universal codes

Universal Block Codes

Invented by B. Fitingof in 1965 (!), complete
characterization is given by L. Davisson in 1973.
Simple (Lynch-Davisson) universal code:

— consider n-symbols sample x from a source over A={0,1}
— let 7;(x) be the number of symbols ‘7” in x;

— the code consist of a [logn|-bit prefix transmitting 7 (x),

and a [k’g(n?’x)ﬂ—bit suffix transmitting the position of xin

a group of (,"(")) n-symbols strings with 5 (x) ‘1.

Redundancy rates of universal block codes:
R(f‘,,s”):o[l"%]
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Universal Codes for Monotonic Sources
» Monotonic (memoryless) source S:

A={a,.a,} - alphabet
1>p 2p,2..2p,>0 -the only known property of its
probabilities

» B. Ryabko, 1979: There exists a code, such that
for any m-ary monotonic source S:

R(f.8)=0(loglogm)
» For block monotonic codes:

R(fws”): O[M}
n

Examples of Universal Monotonic Codes
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Some Other Types of Sources:

« Fixed-order Markov sources
— can be decomposed in a system of Bernoulli sources
(main challenge is the amount of memory needed to
maintain the states of the encoders)
— there exists a universal code (V.Trofimov, 1974)

+ Unknown order Markov sources — can be handled using
twice-universal codes (B. Ryabko, 1984)

» Finite memory tree sources — can be handled using
context tree weighting (CTW) technique (F.Willems,
Yu.Shtarkov, Tj.Tjalkens, 1995)




Prediction-based Coding

+ Consider a sequence of symbols X =xx,x,..., x€ A
produced by a stochastic source.

+ If we can find a predictor: y:A"—>A (n—order of the
predictor) such that a sequence of the residual values

A=60,0,... where & =x-y(x__...x,) aremutually

independent and |%,| has (at least) a monotonic
distribution,

+ Then, we arrive at the following coding scheme:
[5]

Linear Prediction

We are trying to construct a predictor in a form

y(¥, %)= Y ax,,, and we need to find coefficients «, .
i=l

Our goal is to make sure that &, =x,— y(x_, ;X))

are independent from X, - X

So (at least) we must require E(8,x_)=0, i=1,...n
Hence: E(5,x,,)= E((x, 7Zarxm )XH )= E(xx,, )*ZarE(xHxH)
=E(xX)-RyA=0
where A=[a..a,] . X =[x_..x__] .R, = E{X X"} (covariance)
Which yields a solution:
A=E(xX)R;
Such a prediction technique is called Linear Prediction
20

Motion Compensation

» Same idea as in predictor-based encoder (n=1)
° BIOCk-based MC best match motion vector

000

» To be encoded:
— motion vectors
— residual information in predicted blocks

current block

F,

'

More Accurate Motion Compensation

* Multiple-frame based (n>=2)
— polynomial motion models
+ Tracking shape invariants:
— translations (done now)
— rotations
— dilations
+ Shape-based (v.s. block-based)
» 3D-model based
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Rate-Distortion Function

Consider two (correlated) Bernoulli sources Sand S;
The Mutual Information between Sand S is given
by: ,(s;g){;pr(a,,a,)log%
The average distortion of S when presented by S :

d(5:8)=Y. Y Pr(q,)Pr(a;14,)d(a.a,)
The Information Rate Distortion Function:

RO(D)= min  I(S:5);
I s
Shannon RD Theorem:
vf: R(f,S,D)=R"(D);

Examples of Simple RD Functions
+ Binary Bernoulli source and Hamming distortion:

h(p)fh(D), 0< D <min (p,l*p),
0, D>min(p,1-p).

R(D):{

» Gaussian Source and square error distortion:
1. o’ N M
R(D): EIOgE’ 0<D<o", s

0, D>o?.

ERCOE
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Quantization Transform-Based Coding

» For memoryless sources the problem of finding » Consider a sample vector x produced by a
an optimal quantizer can be solved numerically stationary process X (with finite second moments)
using Lloyd algorithm (1957) R =E{xx"} - autocorrelation matrix
* Modifications: » We want to find a matrix T (transform), such that
— Block-based (vector) quantization ’
— Entropy constrained the vector
« Video codecs typically use simple linear y=Tx  -is decorrelated.
quantizers, sometimes in combination with « In other words, we are looking for solution of:
compandors: A 0
— . R =E{yy" }= E{Txx'T" }=TRT" =
A HE 0
c ¢ 25 2
Karhunen-Loeve Transform: KLT Approximations
» The last equation has an immediate solution in « In a case of a Markov-1 process with transitional
the form: 1, .1 probability p, Ahmed and Flickner (1982) have

) ) established convergence (whenp—1) of KLT to
* Where «, are the eigen vectors of the covariance .
matrix: o Phocos[ O I
’ Ru; =Au, L= 7 Kucos " Lk, =Y s uv=0,.n-1;

« This is a well-known Hotelling (or Karhunen-
Loeve) transform.

» Problems:
— how to obtain the covariance matrix?
— what if it cannot be easily estimated?

which is a DCT-II transform.

There have been reported several other
asymptotic results (e.g. convergence to DFT)
when nis large.
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Hybrid Encoder with Prediction in
Transform Domain

+
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Simple Transform-Based Encoders

Lossless encoder:

Input
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Combined with quantizer:
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Y
y, ‘ Memoryless encoder ’7‘ Hybrid coding with prediction in the transform domain. a) coder; b) decoder.
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Hybrid Encoder with Prediction in
Spatial or Temporal Domain

Signal

From

a)
(Predictor) B

Reconstructed

b

Hybrid coding with prediction in the spatial ot temporal domain.

Hybrid Transform/DPCM Video
Encoder (H.26*, MPEG1-4)

multiplex

he transform and its
inter: Th = threshold;

ed variable delay;
for transmitted or not: q = quantizing index for
;v = motion veetor: f = switching on/off of the loop

imverse refer (0 the 2D 8x8
T = transform: Q =
Fal
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Questions?
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