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Introduction

• Video Coding is a relatively new and amazingly 
interesting field for research;

• It is interdisciplinary in nature: based on facts from 
physics, cognitive psychology, neuro-science, statistics 
(information theory), and computer science;

• Nothing (with only few exceptions) is written on stones: 
extremely fast pace of the development; today’s state of 
the art becomes obsolete tomorrow.
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Some Facts from Human Visual 
System

• Perception of video is a very sophisticated neuro-
biological process 
– first important results are obtained by Helmholtz (1850s)
– many theories were proposed (structuralism, gelstaltism, 

ecological optics, etc.)
– still an area of active research

• Few things that are useful for video coding:
– Mach Bands
– Spatial Sensitivity Thresholds
– Mechanism of Color Vision 
– Limits of Motion Perception
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Visual Illusions
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Mach Band Effect
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Spatial Sensitivity Thresholds
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Perceiving Motion
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Wertheimer’s Experiment (1912)
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Information-theoretic principles and 
techniques used in Video Codecs

• Things to follow:
– Codes for simple stochastic processes
– Prediction-based coding and Motion compensation
– Quantization
– Transform-based coding
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Codes for simple stochastic sources
• Bernoulli (memoryless) source S:

- alphabet
- probabilities of its symbols
- entropy of this source

• Binary prefix code for S:
(B is decipherable)

• Example:
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Redundancy of (simple prefix) Codes:

• Shannon source coding Theorem:

• Classic codes for Bernoulli source:
– Shannon code                                   - simple
– Gilbert-Moore code                           - order preserving
– Huffman code                                    - optimal

• Problem:
– How to improve the performance of Huffman encoding 

when the cardinality of source alphabet is small?
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Block Codes for Bernoulli Source
• Input string: 

• New input string:
• New source Sn:

- alphabet
- probabilities of its symbols, where

is the number of symbols aj in ci

- entropy of this source
• Redundancy rate of Huffman block code: 

• Simple recipe for good compression:
– make n (block size) large!
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What happens if we do not know 
probabilities of (Bernoulli) Source?

• Possible solutions: 
– count frequencies on the fly – too slow
– use fast adaptive algorithms (LZ, move-to-front, splay-

trees, etc) – less efficient 
– use universal codes 
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Universal Block Codes

• Invented by B. Fitingof in 1965 (!), complete 
characterization is given by L. Davisson in 1973.

• Simple (Lynch-Davisson) universal code:
– consider n-symbols sample x from a source over
– let         be the number of symbols ‘1’  in x;
– the code consist of a           -bit prefix transmitting        ,

and a         -bit suffix transmitting the position of x in 

a group of         n-symbols strings with         ‘1’s.

• Redundancy rates of universal block codes: 

( ) log
, n

U

n
R f S O

n
 =   

( )1r x

( )1r xlogn  

( )( )1
log n

r x
 
 

( )( )
1

n
r x ( )1r x

{ }0,1A =

16

Universal Codes for Monotonic Sources
• Monotonic (memoryless) source S:

- alphabet
- the only known property of its 
probabilities

• B. Ryabko, 1979: There exists a code, such that 
for any m-ary monotonic source S:

• For block monotonic codes: 
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Examples of Universal Monotonic Codes

Cases when m=2…9:
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Some Other Types of Sources:
• Fixed-order Markov sources 

– can be decomposed in a system of Bernoulli sources 
(main challenge is the amount of memory needed to 
maintain the states of the encoders)

– there exists a universal code (V.Trofimov, 1974) 

• Unknown order Markov sources – can be handled using 
twice-universal codes (B. Ryabko, 1984)

• Finite memory tree sources – can be handled using 
context tree weighting (CTW) technique (F.Willems, 
Yu.Shtarkov, Tj.Tjalkens, 1995)
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Prediction-based Coding
• Consider a sequence of symbols 

produced by a stochastic source.
• If we can find a predictor:                   (n – order of the 

predictor)  such that a sequence of the residual values 
where                                  are mutually 

independent and        has (at least) a monotonic 
distribution,

• Then, we arrive at the following coding scheme: 

1 2 3... , iX x x x x A= ∈

: ny A A→

1 2 3...δ δ δ∆ = ( )1 1,...,t t t n tx y x xδ − − −= −

kδ

Monotonic encoder-delay

predictor

tx tδ

1tx −

( )1 1,...,t n ty x x− − −

1t nx − −

tx tδ

( )sign tδ

20

Linear Prediction
• We are trying to construct a predictor in a form 

, and we need to find coefficients     .

• Our goal is to make sure that 
are independent from 

• So (at least) we must require 
• Hence:

where  (covariance)

• Which yields a solution:

• Such a prediction technique is called Linear Prediction
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Motion Compensation

• Same idea as in predictor-based encoder (n=1)
• Block-based MC:

• To be encoded:
– motion vectors
– residual information in predicted blocks
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More Accurate Motion Compensation

• Multiple-frame based (n>=2)
– polynomial motion models

• Tracking shape invariants:
– translations (done now)
– rotations
– dilations

• Shape-based (v.s. block-based)
• 3D-model based
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Rate-Distortion Function

• Consider two (correlated) Bernoulli sources S and �

• The Mutual Information between S and is given 
by:

• The average distortion of S when presented by :

• The Information Rate Distortion Function:

• Shannon RD Theorem:
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Examples of Simple RD Functions

• Binary Bernoulli source and Hamming distortion:

• Gaussian Source and square error distortion:
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Quantization
• For memoryless sources the problem of finding 

an optimal quantizer can be solved numerically 
using Lloyd algorithm (1957)

• Modifications:
– Block-based (vector) quantization
– Entropy constrained

• Video codecs typically use simple linear 
quantizers, sometimes in combination with 
compandors:
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Transform-Based Coding

• Consider a sample vector x produced by a 
stationary process X (with finite second moments)

- autocorrelation matrix

• We want to find a matrix T (transform), such that 
the vector

- is decorrelated.

• In other words, we are looking for solution of:
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Karhunen-Loeve Transform:

• The last equation has an immediate solution in 
the form:

• Where      are the eigen vectors of the covariance 
matrix:

• This is a well-known Hotelling (or Karhunen-
Loeve) transform.

• Problems:
– how to obtain the covariance matrix? 
– what if it cannot be easily estimated?
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KLT Approximations

• In a case of a Markov-1 process with transitional 
probability p, Ahmed and Flickner (1982) have 
established convergence  (when        ) of KLT to 

• which is a DCT-II transform. 

• There have been reported several other 
asymptotic results (e.g. convergence to DFT) 
when n is large.
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Simple Transform-Based Encoders

Transform
y T x=x Memoryless encoder 1

Memoryless encoder 2

Memoryless encoder n
…              …

1y

2y

ny

Lossless encoder:

Trans-
form
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Combined with quantizer:
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Hybrid Encoder with Prediction in 
Transform Domain
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Hybrid Encoder with Prediction in 
Spatial or Temporal Domain
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Hybrid Transform/DPCM Video 
Encoder (H.26*, MPEG1-4)

CSE 490gz - Lecture 14 - Winter 2002 33

Questions?


