CSE 490 GZ Introduction to Data Compression Winter 2002

Group Testing for Image Compression
GTW
GT-DCT

Group Testing (Dorfman 1943)

- Given n items, with s items significant
- · Use group tests to identify significant items
 - Group test of size k
 - Group is insignificant: all k items insignificant
 - Group is significant: at least one significant
- Goal: Minimize number of group tests

CSE 490gz - Lecture 16 - Winter 2002

Group Testing (Dorfman 1943)

CSE 490gz - Lecture 16 - Winter 2002

Group Testing (Dorfman 1943)

CSE 490gz - Lecture 16 - Winter 2002

Group Testing (Dorfman 1943)

CSE 490gz - Lecture 16 - Winter 2002

Group Testing (Dorfman 1943)

classes to reduce group tests

CSE 490gz - Lecture 16 - Winter 2002

Zerotree Coding as Group Testing

- Coefficients = items
- Testing trees for significance = group test
- Zerotree coding = one particular group testing algorithm
- Zerotree coding & group testing have similar goals

CSE 490gz - Lecture 16 - Winter 2002

Hwang's Group Testing Algorithm (1972)

- Repeat a Group Iteration until all significant items are found
- · Group Interation
 - Test group G containing k unidentified items
 - If G is significant, find a significant item in log₂k tests
 - Each subsequent test is a subset of G
 - Size of test group is halved each time

CSE 490gz - Lecture 16 - Winter 2002

Group Iteration of size 8

Group Test Result Code

? ? ? ? ? ? ? ? ?

Insignificant 0

CSE 490gz - Lecture 16 - Winter 2002

Group Iteration of size 8

								Group Test Result	Code
?	?	?	?	?	?	?	?	Significant	1
?	?	?	?	?	?	?	?	Insignificant	0
I	I	I	I	?	?	?	?	Significant	1
I	I	I	I	?	?	?	?	Insignificant	0
I	I	I	I	I	S	?	?		

• Equivalent to elementary Golomb code of order 8

CSE 490gz - Lecture 16 - Winter 2002

Group Testing for Wavelet Image Coding (GTW)

- Hong and Ladner (2000)
- New method for encoding significance pass:
 - Uses Hwang's Group Testing Algorithm
 - Divide wavelet coefficients into classes
 - Every group test performed is on coefficients in the same class
 - No arithmetic coding

CSE 490gz - Lecture 16 - Winter 2002

11

GTW Significance Pass Overview

- · Repeat until all coefficients are coded
 - Pick a set of coefficients from the class that is most likely to have significant coefficients.
 - Do one group iteration on the set. The group size is determined by the adaptive group tester.
 - Output the results of the group tests
 - If a significant coefficient is found then
 - Output its sign
 - Update classes of neighboring coefficients

CSE 490gz - Lecture 16 - Winter 2002

12

GTW's adaptive group tester

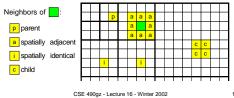
- Choosing group iteration size k:
 - Ramp up: start with k=1
 - While group insignificant, double k
 - Steady state: use past history to estimate probability p of insignificance
 - Optimal k using Gallager & Van Voorhis' (1975) result

$$k = \begin{bmatrix} -1/\log_2 p \end{bmatrix}$$

Same as the adaptive Golomb coding algorithm.

CSE 490gz - Lecture 16 - Winter 2002

17


GTW Classes

- Coefficients with similar characteristics put into the same class
- Classes are ordered so that classes with coefficients more likely to be significant are tested first.
- · Class characteristics
 - Significant neighbor count
 - pattern type
 - Subband level

CSE 490gz - Lecture 16 - Winter 2002

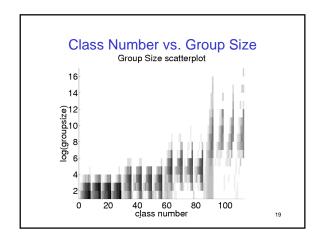
Significant neighbor metric

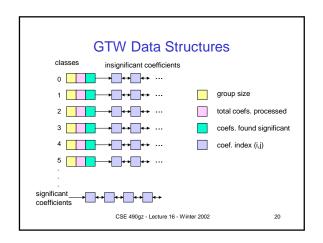
- Count # of significant neighbors
- Example Neighborhood

Pattern Type Accounts for correlation exists between neighbors - Example pattern types for a subband 1 Pattern 1 Pattern 2

Subband level

CSE 490gz - Lecture 16 - Winter 2002


Class Ordering


CSE 490gz - Lecture 16 - Winter 2002

- · Significant neighbor count
 - children count for at most 1
 - 0,1,2 or 3 or more
- Pattern Types 4 and Subband levels 7
- Total number of classes 112
- · Ordering
 - First by significant neighbor count (large to small)
 - Second by pattern type (small to large)
 - Third by subband level (small to large)

CSE 490gz - Lecture 16 - Winter 2002

18

Decoding

- · Decoding algorithm is identical to the encoding algorithm except
 - Decoder knows the results of group test from the compressed bit stream

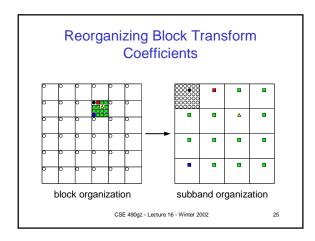
CSE 490gz - Lecture 16 - Winter 2002

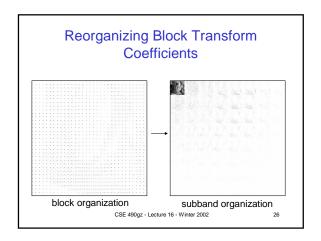
GTW Compression Performance Compression of Barbara 36 PSNR (dB) 28 26 240 0.4 0.6 bit rate (bits/pixel)

Flexibility of Group Testing

- Flexibility
 - Significant data sent first
 - Classes defined to focus of significant data
 - Data can move from class to class
 - We always get a progressive coder
- Applications
 - DCT
 - Lapped Transforms
 - Wavelet Packets

CSE 490gz - Lecture 16 - Winter 2002

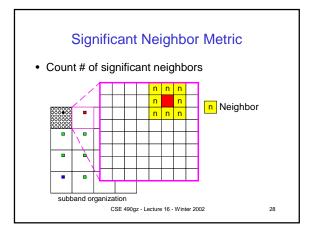

23

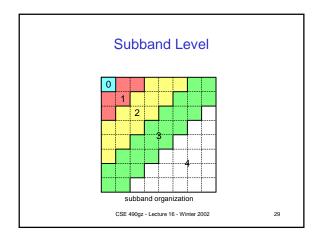

GT-DCT

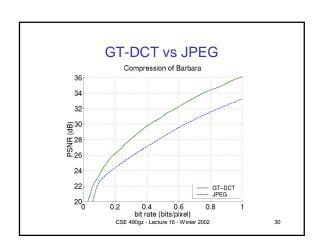
- Hong, Ladner, Riskin (2001)
- · Group testing for the discrete cosine transform.
- We do bit-plane coding of the DCT coefficients.
- DCT classes are defined.
- Group testing done first on the classes that have the smallest group size.

CSE 490gz - Lecture 16 - Winter 2002

24






GT-DCT Classes

- Based on subband reorganization of coefficients
- Class characteristics
 - Significant neighbor metric
 - Subband level

CSE 490gz - Lecture 16 - Winter 2002

Group Testing Notes

- Group testing provides a unified and flexible way to approach bit-plane coding of transformed images.
 Need good classes (contexts)

 - Need good group testing algorithms (adaptive Golomb coding works)
- Compression performance is outstanding
- Group testing is quite a bit more time consuming than JPEG and SPIHT.
 need some good data structures and engineering

CSE 490gz - Lecture 16 - Winter 2002